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The potential of lactic acid
bacteria in mediating the control
of plant diseases and plant
growth stimulation in crop
production - A mini review
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The microbial diseases cause significant damage in agriculture, resulting in major

yield and quality losses. To control microbiological damage and promote plant

growth, a number of chemical control agents such as pesticides, herbicides, and

insecticides are available. However, the rising prevalence of chemical control

agents has led to unintended consequences for agricultural quality,

environmental devastation, and human health. Chemical agents are not naturally

broken down by microbes and can be found in the soil and environment long after

natural decomposition has occurred. As an alternative to chemical agents,

biocontrol agents are employed to manage phytopathogens. Interest in lactic

acid bacteria (LAB) research as another class of potentially useful bacteria against

phytopathogens has increased in recent years. Due to the high level of biosafety,

they possess and the processes they employ to stimulate plant growth, LAB is

increasingly being recognized as a viable option. This paper will review the

available information on the antagonistic and plant-promoting capabilities of

LAB and its mechanisms of action as well as its limitation as BCA. This review

aimed at underlining the benefits and inputs from LAB as potential alternatives to

chemical usage in sustaining crop productivity.

KEYWORDS

lactic acid bacteria, phytopathogens, biological control agent, plant disease
management, plant growth
1 Introduction

According to the Food and Agriculture Organization (FAO) of the United Nations (UN),

farmers will need to produce 70 to 100 percent more food to meet the demand of the

predicted growing population of 9.3 billion people by 2050 (UNDP, 2021). Apart from the

growing population, depletion of natural resources, climate change, and the emergence of

new pests and diseases are among the several factors that have a negative impact on
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agricultural production and productivity. Various pests and diseases

contribute 20 to 40 percent yearly economic losses in agricultural

products by reducing crop output, degrading its quality, and

contaminating food with hazardous compounds (Guo et al., 2013).

Plant diseases caused by phytopathogens can limit crop production in

a vast array of plant species worldwide, resulting in significant annual

losses on a global scale. The most common infectious plant diseases

are caused by pathogenic organisms such as fungi, bacteria, viruses,

protozoa, insects, and parasitic plants. Wilting, spotting (necrosis),

mold, pustules, rot, overgrowth (hypertrophy), distortion

(mummification), staining (discoloration), and destruction of

afflicted tissue are the symptoms of plant diseases (Nazarov

et al., 2020).

Plant diseases can be mitigated in a variety of ways, including

cultural, physical, chemical, and behavioral practices. Growers

typically rely on the use of chemical treatments, such as fungicides

and bactericides, which have been in widespread use for more than a

century but none of them are sustainable (Malik et al., 2021). On the

other hand, the use of these synthetic chemical treatments in

agriculture has been linked to causing numerous issues such as the

development of resistance in pathogen populations, detrimental

impacts on human health, loss of beneficial soil microbes, the

introduction of leftover harmful material into the food chain, and

decreased in biodiversity of microorganisms (Sindhu et al., 2016).

Efforts to find alternatives to chemical treatments have been bolstered

by the understanding that this method of treating plant diseases is

suboptimal at best or prohibited by regulation. In addition, due to the

growing demand for safety and quality of food production, the search

to find alternatives with an eco-friendlier approach has become a

priority. The widespread use of agrochemicals can be replaced with a

method that is less hazardous. Thanks to the development of

microbial biocontrol agents. The term “biological control” refers to

the practice of reducing the prevalence of plant disease through the

application of naturally occurring organisms, such as beneficial

microorganisms or their by-products or extracts from plants or

animals (Sundin et al., 2016). Their mechanisms of action toward

the target pathogen can be varying either directly or indirectly, such as

competition, predation, antibiosis, induced host resistance, or by the

activity of lytic enzymes. Over the past decades, numerous research

has been published on the potential application of beneficial

microorganisms as biological control agents (BCAs) against plant

pathogenic bacteria, and strains from the genera Pseudomonas,

Burkholderia, Streptomyces, Bacillus, and Trichoderma are very well-

known for their antimicrobial capability and synthesis of a wide range

of bioactive compounds (Alexander and Phin, 2014; Haryadi et al.,

2019; Lim et al., 2019; Alexander et al., 2021).

Interest in lactic acid bacteria (LAB) research as another class of

potentially useful microorganisms against phytopathogens has

increased in recent years. The application of LAB for plant

protection and plant growth stimulation first appeared in the 1980s

by Visser et al. (1986) and Higa and Kinjo (1989). It has been

demonstrated that LAB has the ability to produce compounds that

are effective in the management of a wide range of bacterial and fungal

phytopathogens (Gajbhiye and Kapadnis, 2016; Daranas et al., 2019;

Duha and Abdullah, 2021). Moreover, its long and widespread use

history in food processing allows researchers to understand the

physiological processes and bioactive substances being produced.
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This resulted in its being given the generally regarded as safe

(GRAS) status with few exceptions (Goldstein et al., 2015), meaning

that its use in edible crop cultivation poses no health concerns to

humans. This paper will review the available information on the

antagonistic and plant-promoting capabilities of LAB and its

mechanisms of action as well as its limitation as BCA. This review

aimed at underlining the benefits and inputs from LAB as potential

alternatives to chemical usage in sustaining crop productivity.
2 Lactic acid bacteria

LAB is a group of Gram-positive, catalase-negative, non-

sporulating, facultatively anaerobic, rod-shaped (bacilli) or spherical

(cocci) bacteria that include 6 families and 38 genera in the

Lactobacillales order (Holzapfel and Wood, 2014). It produces lactic

acid (LA) as the primary end product of saccharolytic metabolism

(Hayek and Ibrahim, 2013) and has been classified into

homofermentative and heterofermentative strains based on their

lactic acid (LA) production. Homofermentative LAB converts

sugars to lactic acid, while heterofermentative LAB produces lactic

acid, ethanol or acetic acid, and carbon dioxide. The most prevalent

species include Lactobacillus , Lactococcus , Enterococcus ,

Streptococcus , Pediococcus , Leuconostoc , Weissel la , and

Bifidobacterium (Abubakr and Al-Adiwish, 2017). Studies on LAB

identification was done long time ago because it was important to

know their properties and ensure that the strains were safe to use.

Phenotypic and chemical approaches were formerly used to identify

LAB. Different types of LAB activity, such as carbohydrate

fermentation, hetero- or homofermentative, gas production,

motility, and spore production, form the basis for these techniques

(Ashmaig et al., 2009). However, LAB identification based on

carbohydrate fermentation profiles is imprecise and insufficient to

identify closely related strains due to their similar nutritional

requirements (Perricone et al., 2014). Therefore, genomic

sequencing is the most reliable way to accurately identify bacteria.

Rapid advances in molecular biology in recent years have had far-

reaching effects on the discipline of microbiology allowing the use of

16S rDNA gene sequencing techniques for the identification of

bacteria, including LAB. These conserved genes exhibit sufficient

variation to be regarded as excellent phylogenetic markers, which

can be used for identifying organisms down to the genus and species

level (Chong et al., 2013; Lo and Chong, 2020). The development of

whole genome sequencing (WGS) technology in recent years has also

substantially accelerated the development and application

of LAB resources. It enables researchers to systematically and

comprehensively understand the metabolic characteristics, potential

beneficial functions, and application directions of the strains based on

the information contained in the whole genomes of LAB (Buron-

Moles et al., 2019). In addition, WGS allows the determination of the

genetic evolution and classification of LAB in a more accurate manner

(Huang et al., 2020). The first complete LAB genome sequence was

published in 2001 for the species Lactococcus lactis IL1403 (Bolotin

et al., 2001). Since then, 7,055 species of LAB that includes

Lactobacillus, Lactococcus, Bifidobacterium, and Streptococcus

thermophilus have had genomic data (comprising whole genomes

and framework genomes of varying degrees) deposited in the
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GenBank (Yanwei et al., 2022) enabling for a comprehensive

understanding of the industrial application and metabolic

characteristics of LAB. Whole genome information can reflect the

safety of LAB strains by assessing genes related to drug resistance,

virulence, and pathogenicity and determining whether the related

genes can be transmitted horizontally (Rodrıǵuez-Serrano et al., 2018;

Toropov et al., 2020; Zhou et al., 2021). Furthermore, the genome-

scale metabolic model (GSMM) can be reconstructed from whole-

genome data to simulate and anticipate how bacteria will behave in

each environment and to systematically direct metabolic engineering

efforts. The first GSMM of LAB was generated using the genome

sequence of Lactococcus lactis IL1403, which effectively predicted and

confirmed the minimum medium for strain development and steered

the metabolism to enhance diacetyl production (Oliveira et al., 2005).

Other successful examples of GSMM in guiding metabolic

engineering of microbial improvement in LAB have also been

documented (Vinay-Lara et al., 2014; Xu et al., 2015; Kristjansdottir

et al., 2019).
2.1 Diversity, abundance, and plant
colonization attributes of LAB in
plant microbiome

Lactic acid bacteria (LAB) are found virtually everywhere in the

natural world, including in the phyllosphere, endosphere, and

rhizosphere (Liu et al., 2014). Their abundance varies greatly from

one environment to another. The genomic variation in LAB strains is

largely attributable to the selective pressure exerted by these settings

(McAuliffe, 2018). LAB in the phyllosphere microbiota was

discovered to make up a relatively small percentage of the total

bacteria detected on plant tissues, ranging between 102 and 104

CFU/g (di Cagno et al., 2013). It has been acknowledged that LAB

may live as an endophyte in a variety of crop plants (Suzzi et al., 2018;

Filannino et al., 2019) and that it can survive in seeds (Taha et al.,

2019). In the rhizosphere, several LAB strains were discovered to

exhibit antimicrobial properties (Fhoula et al., 2013). Carbon-richness

is a major determinant of LAB abundance and variety in soils

(Yanagida et al., 2006; Reyes-Escogido et al., 2010; Ain et al., 2017).

Soil acidity may also play a role in the recovery of several halotolerant

LAB, which are known to survive and even thrives in arid settings.

Among the commonly found genera of the LAB families from plant

microbiomes includes Enterococcus, Lactococcus, Lactobacillus,

Leuconostoc, Streptococcus, and Weissella (Yu et al., 2020).

Plants are usually thought to be difficult settings for many

microbes. The phyllosphere, for instance, is subject to fast shifts in

water supply, UV radiation, oxidative stress, and temperature, and

can have low nutrient contents. However, many types of plant-

associated bacteria such as LAB have adapted to live and thrive on

plant microbiomes despite these stressors. Some properties of LAB

suggest that these bacteria could also be successful plant colonists.

LAB prefers glucose, fructose, and sucrose as carbon sources for

fermentative development. These sugars are found in the

phyllosphere and can amount up to 12.5 mg g−1 leaf or 38 g/100 ml

of floral nectar (Canto and Herrera, 2012). LAB are not known to

metabolize hemicellulose, yet genes associated in hemicellulose

breakdown such as a-glucuronidase (algA), polysaccharide
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deacetylase (pda), endoxylanase/endoglucanase (llkf_1370), and

acetylesterase (llkf_1374), were found to be upregulated in L. lactis

KF147 grown in a lysate of Arabidopsis thaliana leaves (Golomb and

Marco, 2015). LAB also produces metabolites that have a direct

impact on plant development (e.g. 2,3-butanediol and acetoin)

(Sharifi and Ryu, 2018). This was demonstrated for L. plantarum

WCFS1, which was found to produce plant hormone-like compounds

that interfered with plant root development when incubated under

slow growth, substrate-limited conditions (Goffin et al., 2010). These

findings imply that, even in the absence of measurable levels of plant

growth, LAB may be an important modifier of plant physiology.

A great number of LAB are also able to survive in aerobic

(aerotolerant) and low water activity (osmotolerant) environments.

They have the ability to eliminate reactive oxygen species (ROS)

through the synthesis of NADH oxidases, superoxide dismutase,

cytochrome d oxidase or nonenzymatic dismutation of hydrogen

peroxide (H2O2) by Mn2+ (Papadimitriou et al. , 2016).

Osmotolerance in LAB is mostly connected with enhanced

transport of compatible solutes and elevated synthesis of protease,

chaperones, and peptidoglycan. Exopolysaccharides (EPS) synthesis is

also linked to LAB’s ability to survive in environments with limited

water (Nwodo et al., 2012). In addition, the ability of LAB to generate

antimicrobial substances may also aid in its colonization in the plant

microbiomes. Intra-specific genetic and phenotypic variations among

LAB also provide more evidence that certain LAB strains are better

adapted to plant environments than others (Strafella et al., 2021).

Ayad et al. (1999) reported that plant-isolated Lactococcus lactis was

discovered to have lower amino acid needs for growth compared to L.

lactis isolated from other sources. Comparative genomic analysis of

the L. lactis strains KF147 (isolated from mung bean sprouts) and

IL1403 (isolated from cheese) revealed that the KF147 genome

contains more genes encoding for carbohydrate metabolism (xylan

and arabinose degradation), EPS biosynthesis, bacterial defense (nisin

biosynthesis), and stress response (Siezen et al., 2010). L. lactis KF147

also grew faster and had a greater final cell density than IL1403 when

cultured in Arabidopsis thaliana leaf lysate (Golomb and

Marco, 2015).
3 Mechanism of action of LAB in
controlling disease and stimulating
plant growth

The properties of some LAB species made them the potential

candidate for biological control agent (BCA) (Tsuda et al., 2016;

Daranas et al., 2019). Despite not having the same reputation as other

groups of BCA like Pseudomonas, Burkholderia, Streptomyces,

Bacillus, and Trichoderma, several LAB species were reported for

the ability to suppress the action of phytopathogens and were also

found to stimulate plant growth (Jaini et al., 2022). As illustrated in

Figure 1, LAB can help directly with plant disease control and plant

growth by modulating the uptake of important nutrients like

phosphorus and potassium, fixing nitrogen, and the production of

plant hormones and siderophores. Indirectly, LAB could aid in the

biocontrol of phytopathogens through the production of a wide range

of antimicrobial compounds including diketopiperazines, hydroxy
frontiersin.org
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derivatives of fatty acids, 3-phenyllactate; antibacterial bacteriocins

and bacteriocin-like inhibitory substances (BLIS) organic acids,

hydrogen peroxide, pyrrolidone-5-carboxylic acid, diacetyl, and

reuterin (Lamont et al., 2017), modulating defense mechanism by

creating systemic resistance, and decreasing pathogen iron

availability. It has also been proposed that multiple mechanisms of

action might be involved in the attack of LAB against phytopathogens

(Sangmanee and Hongpattarakere, 2014).
3.1 Direct mechanisms

3.1.1 Modulating the intake of nutrients and the
fixation of nitrogen

Some strains of LAB can boost the availability of nutrients derived

from compost and other forms of organic or inorganic matter to

plants (Lamont et al., 2017). Phosphorus (P), the major

macronutrient for plant growth, is mostly stored in the soil either

as an organic compound or as an inorganic precipitate. Similarly, a

deficit in potassium (K) which is predominantly contained in fixed

form, has detrimental effects on the overall growth and yield of a

plant. It was suggested by de Lacerda et al. (2016) that the presence of

gene sequences encoding for two types of alkaline phosphatase—the

enzymes that catalyze phosphate mineralization—allows L. lactis to

solubilize several sources of phosphorus compound. The acidity

induced by LAB, which is caused by the synthesis of organic acids,

is also responsible for the solubilization of P and K, which then makes

these elements available for the plant to absorb. Apart from LAB

capabilities to dissolve phosphate, Giassi et al. (2016) reported that

some strains of the LAB were also able to fix atmospheric nitrogen for

plant consumption. Biological nitrogen fixation (BNF) is a process in

which atmospheric N2 is transformed into ammonia and nitrate with

the help of the nitrogenase enzyme complex. Higdon et al. (2020)

reported that L. lactis isolated from mucilage microbiota of Sierra

Mixe maize were recently found as diazotrophs capable of BNF.

Molecular functions associated with polysaccharide catabolism,

glycan-mediated host adhesion, iron/siderophore utilisation, FeMo

cofactor biosynthesis (NifB), and novel oxidoreductase activities were
Frontiers in Plant Science 04
discovered through protein domain analysis of the identified

unknown genes in L. lactis, indicating their importance for the

BNF trait.

3.1.2 Phytohormones production
Plants and bacteria both generate phytohormones in very low

concentrations that can influence plant growth. These

phytohormones enhance root hair length and surface area, which

improves plant root nutrition and water uptake (Kumar et al., 2022).

The increased metabolic activity caused by phytohormones

production aids in defence, normal cell function, and abiotic stress

management (Khan et al., 2020). Several LAB species are capable of

secreting phytohormones such as gibberellin (GA) and auxins such as

indole-3-acetic acid (IAA) which play various functions in plant

growth promotion (Lamont et al., 2017). According to Turaeva

et al. (2021), GA4 and GA7 were detected from the culture fluid of

L. plantarum which enhances the plant growth and development of

wheat coleoptiles through the usage of HPLC-MS. However, there is

still a lack of clarity behind the mechanisms of action.
3.2 Indirect mechanisms

3.2.1 Organic acids
Organic acids have been implicated in several studies as a major

mechanism by which LAB exerts its antimicrobial activity against a

wide variety of target microorganisms (Tofalo et al., 2016). Lactic

acid is the most common LAB metabolite, however other acids such

as acetic, propionic, formic, benzoic, and PLA acids are also

produced. The antibacterial impact of lactic acid is commonly

believed by interfering the membrane functions of the pathogen,

inhibition of active transport, reduction of intracellular pH, and

inhibition of several metabolic activities, thus killing the target

microorganism (Rattanachaikunsopon and Phumkhachorn, 2010).

However, the generation of lactic acid and its pH lowering effect are

affected by species or strain, culture mix, and growth conditions

(Olaoye and Onilude, 2011). Many bacteria, fungi, and yeasts are

killed off by the presence of lactic acid in its undissociated form at
FIGURE 1

LAB mechanisms of biological control and plant-growth promoting for plant health.
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low pH. The degree to which various microbes are affected by lactic

acid can vary widely.
3.2.2 Hydrogen peroxide
Hydrogen peroxide (H2O2) is a reactive oxygen species that is also

generated by LAB in the presence of oxygen. Hydrogen peroxide has a

powerful oxidizing effect on microbial cells, causing irreparable

damage to the fundamental molecular structures of protein

involved in cellular metabolism (Sunil and Narayana, 2008). H2O2,

once generated, can inhibit the development of both psychotropic and

pathogenic microorganisms. Newer research, however, suggests the

antimicrobial activity of H2O2 is probably limited, as bacteria only

create a small amount, and that its effects are largely in conjunction

with other antifungals substances (le Lay et al., 2016).
3.2.3 Bacteriocin
Bacteriocins are ribosomal generated antimicrobial peptides

produced by bacteria, can kill or inhibit related or unrelated

bacterial strains without harming the bacteria themselves (Yang

et al., 2012). Their antimicrobial modes of action are multiples

including interference with cell wall development, disruption of the

cytoplasmic membrane, suppression of protein synthesis, interference

with the replication and transcription of DNA, and interference with

the septum formation (Ahmad et al., 2017). Certain members of LAB

produce bacteriocins and bacteriocin-like inhibitory substances

(BLIS). The majority of LAB bacteriocins are small thermostable or

large thermolabile proteins or protein complexes with antibacterial

activity against other microbes, although producer cells are immune

to their own bacteriocin(s) (Zacharof and Lovitt, 2012). The pH,

nutrition sources, and incubation temperature have a significant

impact on bacteriocin synthesis. Based on biochemical and genetic

characterization, four distinct classes of LAB bacteriocins have been

identified: lantibiotics (class 1); small, heat-stable nonlanthionine

peptides (class 2); large heat-labile proteins (class 3) and complex

bacteriocins with chemical moieties such as lipid and carbohydrate

(class 4) (Hernández et al., 2005). The management of bacterial

infections in economically important crops may be possible via

bacteriocin-mediated resistance in plants, according to recent

research by Rooney et al. (2020a); Rooney et al. (2020b).

3.2.4 Reuterin
Several lactobacilli have been demonstrated to produce the glycerol-

derived antimicrobial compound reuterin, and its production is

stimulated directly or indirectly by the presence of glycerol in

anaerobic conditions. LAB do not have an oxidative pathway that

would allow them to use glycerol as their primary carbon source.

Consequently, LAB must utilize an alternate carbon source in order to

breakdown glycerol (Bergsma et al., 2022). Reuterin is a strong inhibitory

chemical with broad spectrum activity that is pH independent. It is

resistant to proteolytic and lipolytic enzymes and inhibits DNA

replication (Singh, 2018). Reuterin has been proven to be effective

against a variety of fungus, including several species of Fusarium,

Penicillium, and Aspergillus (Vimont et al., 2019), and has been linked

to the prevention of mycotoxin development in fermented foods. It also

inhibits the growth of gram-positive and gram-negative bacteria, as well

as enteropathogens, yeast, fungi, protozoa, and viruses. (Nes et al., 2011).
Frontiers in Plant Science 05
3.2.5 Cyclic dipeptides
Cyclic dipeptides or cyclodipeptides (CDPs), also known as 2, 5-

diketopiperazines, are the smallest cyclic peptides, and existing data

indicate that bacteria produce nearly 90% of CDPs (Mishra et al.,

2017). Among the cyclic dipeptides extracted from LAB with known

antimicrobial properties are cyclo(Gly-Leu), cyclo(Phe-Pro), cyclo

(Phe-OH-Pro), and cyclo(Phe-OH-Pro) (Leu-Leu) (Silpa and

Rupachandra, 2022). Due to their stability in many environments

(pH, heat, and enzymes), cyclic peptides have received a lot of

interest. Cyclo(Gly-Leu) from Lb. plantarum VTT E-78076 was

discovered to be an antifungal chemical with antifungal activity

against plant fungal pathogens Fusarium avenaceum (Zhao et al.,

2017). In spite of its antimicrobial potential, significant research is

necessary to know its mode of action and range of uses.

3.2.6 Fatty acids
Antimicrobial effects of hydroxy fatty acids (FAs) have been

observed by (Hou and Forman, 2000; Granér et al., 2003), and they

are found in a wide variety of organisms, including mammals and

plants. 3-OH-FAs are found in bacteria as lipopolysaccharides or

poly-hydroxyalkanoic acids. The lipopolysaccharides and

polyhydroxyalkanoic acids of LAB have not been reported. Over

90% of all cellular FAs in LAB are saturated and monounsaturated

FAs, and these are the ones that have been utilized for classification of

distinct LAB. However, Lee et al. (1996) found that various

Leuconostoc strains contained 2-hydroxyhexadecanoic acid and 3-

hydroxyheptadecanoic acid. Unsaturated FAs can be converted into

OH-FAs by LAB (Wanikawa et al., 2002), suggesting metabolic

pathways for hydroxylation of FAs, albeit the precise function of 3-

OH-FAs in LAB metabolism has yet to be determined. A study by

(Sjögren et al., 2003) suggested that the antimicrobial effect of 4 OH-

FAs extracted from L. plantarum MiLAB 14 is owing to the

compounds’ detergent-like characteristics, which disrupt the

structure of the target organisms’ cell membranes. A molecule

comparable to the 3-OH-FAs discovered here, cis-9-heptadecenoic

acid, partitions efficiently into the lipid bilayers of fungal membranes.

This finally causes the cytoplasmic disintegration of fungal cells by

increasing membrane permeability and the release of intracellular

electrolytes and proteins.
4 Potential role of LAB in plant
stress tolerance

4.1 Defending plant against biotic stress

The increase in biotic and abiotic stressors poses a threat to the

productivity of crops. Extreme occurrences such as the advent of plant

diseases and pests and the effect of climate change are becoming more

common around the world. LABs have demonstrated the ability to

improve crop development and productivity by developing tolerance

traits to various types of stress. These bacteria have a wide range of

functional characteristics and can colonize themselves in plant tissues,

positively influencing plant development and survival. Numerous

studies have looked into the potentiality of LAB in controlling

bacterial and fungal phytopathogens from causing destruction to
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crops (Table 1). For instance, Lactobacillus plantarum and

Leuconostoc mesenteroides strains were successfully screened by

using in vitro and in planta assays against three bacterial pathogens

affecting three different crops, namely Pseudomonas syringae in

kiwifruit, Xanthomonas arboricola in Prunus, and Xanthomonas

fragariae in strawberry (Daranas et al., 2019). They were selected

due to their broad-spectrum activity in preventing all 3 pathogens

from infecting their plant hosts. Also, in both semi-field and field

studies, the biocontrol performance of the L. plantarum strains was

on par with reference controls. The generation of lactic acid and a

decrease in pH was partially responsible for the inhibitory mechanism

observed in vitro and both strains had comparable rates of survival

when placed on leaf surfaces. Similar broad-spectrum inhibition was

observed by the species L. paracasei and L. plantarum isolated from

wine fermentations (López-Seijas et al., 2019). The LAB strains were

not only able to inhibit several food spoilage Gram-positive bacteria

but in vitro studies also showed that the LAB strains had a 55-76%

effect in preventing the growth of Fusarium oxysporum sp. lycopersici,

a phytopathogenic fungus that causes disease in tomatoes. The

efficacy of these malolactic LAB strains was very competitive when

compared to the previous studies of L. plantarum isolated from

different sources (Rouse et al., 2008; Dalié et al., 2010). It has also

been shown that the plant-derived Weissella confusa and Pediococcus

pentosaceous strains both have broad-range inhibitory action against

fungal diseases of fruit crops. (Crowley et al., 2012a; Crowley

et al., 2012b).

Steglińska et al. (2022) reported LAB screening of ten

phytopathogens related to potato including Pectobacterium

carotovorum, Fusarium oxysporum and Rhizoctonia solani, showed

a 40-90% disease reduction except for Fusarium oxysporum and

Fusarium sambucinum which were not inhibited by the LAB,

Lactiplantibacillus plantarum KB2 LAB 03. In the metabolic profiles

of the LAB strains, the most abundant compounds were found to be

from organic acids and ethanol. Zebboudj et al. (2020) indicated that

L. lactis subsp. diacetylactis were able to inhibit Fusarium species of

tomato crown and root rot up to 62.42% on MRS agar medium.

Another in vitro assessment done by Valencia-Hernandez et al.

(2021) showed biomass fraction of Lactobacillus plantarum isolated

from yellow pithaya inhibit Fusarium fujikuroi growth by 100% over

48 hr of fermentation. In another finding by Lin et al. (2020),

Lactobacillus pentosus and Leuconostoc fallax recovered from

fermented vegetables in combination with chitosan present a

powerful inhibitory effect against three cruciferous vegetable

diseases, including cabbage black spot caused by Alternaria

brassicicola, black rot caused by Xanthomonas campestris, and soft

rot caused by Pectobacterium caratovorum. The LAB/chitosan

mixture is also antagonistic against Colletotrichum higginsianum,

Sclerotium rolfsii, and Fusarium oxysporum f. rapae, suggesting a

broad-spectrum activity of LAB/chitosan. Futhemore, as indicating by

the experiment numerous applications are more successful than a

single application. A considerable reduction in the severity of the

papaya dieback disease was seen after the application of the LAB

combination, Weisella cibaria and Lactococcus lactis in nurseries

(Taha et al., 2019). Lactobacillus acidophilus which was isolated

from mango (Mangifera indica L.) had an inhibitory action of more

than 40% against post-harvest anthracnose caused by C.

gloeosporioides. Evaluation in vitro demonstrated that the isolates
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produced antifungal chemicals as well as lytic enzymes as a

mechanism of antagonism against the fungus (Fenta and

Kibret, 2021).

LAB has been demonstrated in studies to have a variety of plant

growth-stimulating properties to enhance the availability of nutrients

to its host plants (Table 1), allowing them to deal with stress and

inhibit plant nematodes (Amprayn et al., 2016; Ibrahim et al., 2022).

According to research by Strafella et al. (2021), sixteen LAB strains

evaluated in experimental settings were able to solubilize a significant

amount of phosphate, and the findings corresponded to strains of

Enterococcus sp. isolated by Mussa et al. (2018). Plant development

can be promoted directly by increasing mineral and nutrient intake or

indirectly by modulating plant hormones such as indole-3-acetic acid

(IAA), cytokinin, and ethylene. In this case, LAB has also been

demonstrated to produce indole-3-acetic acid (IAA), plant

hormones that stimulate the rapid development of plants (Mohite,

2013). Three isolates from the aerial sections of the pomegranate

plant that were identified as Leuconostoc sp. and Lactobacillus sp.

were tested for plant growth-boosting properties by Abhyankar et al.

(2022). Besides demonstrating antifungal activity against Fusarium

sp., isolates of Lactobacillus sp. also exhibited 1-Aminocyclopropane

1-carboxylic acid (ACC) deaminase activity, with LAB isolate GYP3

exhibiting the highest level. This enzyme is necessary to reduce

ethylene to non-toxic levels in order to protect the plants. It was

also discovered that the isolate GYP3 produced indole-3-acetic acid

(IAA) and Gibberellin, both of which aid in root elongation and

flowering. Exopolysaccharide (EPS) was also produced by all three

isolates. An oriental melon (Cucumis melo L.) rhizosphere LAB strain,

Enterococcus faecium LKE12, was investigated in gibberellin (GA)-

deficient rice dwarf mutant (waito-C) and a normal GA biosynthetic

rice cultivar for its plant growth-promoting capacity (Hwayongbyeo)

(Lee et al., 2015). Both regular and dwarf rice cultivars benefited

greatly from E. faecium LKE12’s ability to secrete a wide variety of GA

and IAA, which increased the shoot length and biomass of the plants,

indicating a beneficial interaction between E. faecium LKE12 and

plants. Isolates of Lactobacillus spp. L5, L3, and L2N found in

traditional Vietnamese Nem chua exhibited Indole-acetic acid

(IAA) synthesis, P-solubilization, and biofilm development (Nguyen

et al., 2021). Peanut seed treatment with the same mixed bacterial

cultures improved seed germination and vigor index when compared

to untreated control seeds and those treated with fungicide. Those

that were treated with LAB grew in both height and total fresh weight

by 22.4% and 99.6%. Greenhouse and field evaluation by Shrestha

et al. (2014) reported that due to its ability to secrete a significant

amount of IAA, LAB strains KLF01 and KPD03 outperformed LAB

strain KLC02 in terms of growth promotion, whereas KLC02

outperformed KLF01 and KPD03 in the field. Environmental

conditions, root colonization, competition, and the synthesis of

antagonistic metabolites are just some of the abiotic and biotic

elements that could explain why greenhouse and field testing

produce different results. Growth-promoting effects of several other

LABs were also observed on cucumber and tomato seedlings (Lutz

et al., 2012).

Effective Microorganisms (EM) consortiums are known to consist

yeast, mould fungus, LAB, photosynthetic bacteria, actinomycetes,

and other microorganisms. Compost incorporated with EM has been

found to boost yields and nutrient uptake in a variety of crops (Javaid,
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TABLE 1 Selected lactic acid bacteria with biological control and biostimulant properties

Strain Source Pathogen/Crop Mechanism/Effect References

(i) Biocontrol

Lactobacillus
plantarum

Cucumber pickle Pseudomonas campestris, Ralstonia solanacearum,
Xanthomonas campestris pv. vesicatoria,
Pectobacterium carotovorum

Organic acids Visser et al.,
1986

Lactobacillus sp. Tomato rhizosphere Ralstonia solanacearum, Xanthomonas
axonopodis pv. citri, X. campestris pv.
vesicatoria, Erwinia pyrifoliae,
Pectobacterium carotovorum

None Shrestha et al.,
2009a; Shrestha
et al., 2009b

Lactobacillus
plantarum

Kimchi Aspergillus flavus 3,6-bis(2-methylpropyl)-2,5-
piperazinedion

Yang & Chang,
2010

Lactobacillus sp. Dairy products Fusarium oxysporum SAR, antifungal metabolites Hamed et al.,
2011

Lactobacillus
plantarum

Fermented mare milk Botrytis cinerea, Alternaria solani, Phytophthora
drechsleri, Fusarium
oxysporum and Glomerella cingulate

Proteinaceous and non-
proteinaceous antifungal
compounds

Wang et al.,
2011

L. fermentum Fermented food, dairy products A. niger, Fusarium graminearum, A. oryzae Proteinaceous, PLA Muhialdin
et al., 2011;
Gerez et al.,

2013

Lactobacillus
plantarum

Durian fruit Colletotrichum capsici, broad spectrum Unknown El-Mabrok
et al., 2012

Lactobacillus
plantarum

Ginger root Colletotrichum capsici, broad spectrum Unknown El-Mabrok
et al., 2012

Lactobacillus
paracasei

Tomato, soil Ralstonia solanacearum Unknown Murthy et al.,
2012

W.
paramesenteroides

Fermented wax gourd Rhizopus stolonifera, Sclerotium oryzae,
Rhizoctonia solani, Botrytis cinerea, Sclerotinia
minor, Rhodotorula sp.

Organic acids Lan et al., 2012;
Sathe et al.,

2007

Lactobacillus
acidophilus

Chicken intestine Fusarium sp., Alternaria alternata, P. paneum,
Cladosporium sp., Rhizopus oryzae

Organic acids Oliveira et al.,
2014; Schnürer

and
Magnusson,

2005

Lactobacillus
paracasei

Tomato, soil Ralstonia solanacearum SAR Konappa et al.,
2016

Weisella cibaria,
Lactococcus lactis
subsp. lactis

Papaya seed Erwinia mallotivora Organic acids, hydrogen peroxide Taha et al.,
2019

L. pentosus Fruit, fermented food A.oryzae, A. niger, Fusarium sp. PLA Ouiddir et al.,
2019

Lactobacillus
pentosus,
Leuconostoc fallax

Fermented vegetables Alternaria brassicicola, Xanthomonas campestris
pv. campestris, Pectobacterium caratovorum

Unknown Lin et al., 2020

Lactobacillus
plantarum

Yellow pithaya Fusarium fujikuroi Unknown Valencia-
Hernandez
et al., 2021

Lactobacillus
acidophilus

Mango C. gloeosporioides Antifungal compound, lytic enzyme Ranjith et al.,
2021

Lactiplantibacillus
plantarum

Collection of Pure Cultures of
Industrial Microorganisms ŁOCK at
the Lodz University of Technology,
pickled vegetables, milk

Pectobacterium carotovorum, Streptomyces scabiei,
Alternaria solani, Alternaria tenuissima, Alternaria
alternata, Phoma exigua, Rhizoctonia solani,
Colletotrichum coccodes

Organic acids Steglińska et al.,
2022

(Continued)
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2011; Lamont et al., 2017). Fermented compost products based on

lactic acid bacteria also improve soil fertility, soil structure, and

aeration, neutralize alkalinity, and enhance moisture retention.

Bokashi fertilizer, a traditional type of fertilizer often used in Japan,

is an example of this EM-inoculated compost. Maki et al. (2021)

identified 3-phenyllactic acid (PLA), a root-promoting compound

from Bokashi fertilizer. PLA is a significant organic acid generated by

many bacteria, particularly LAB, as a catabolic result of phenylalanine

via phenylpyruvic acid (PPA) and has been shown to be biologically

active as a plant root promoter. Recent study by Maki et al. (2022)

found that PLA stimulated the auxin signalling system and influenced

root development in Arabidopsis. PLA promoted lateral root density

while decreasing primary root growth in Arabidopsis and elevated the

expression of the auxin response marker gene IAA19 in roots. PLA’s

auxin-like activity was clearly reduced in the auxin signalling mutant,
Frontiers in Plant Science 08
tir1-1 afb2, indicating that PLA regulates root development via the

auxin signalling pathway. In a pot experiment by Javaid (2011),

adding lactic acid bacteria to farmyard manure boosted rice (Oryza

sativa L.) root and shoot growth, but not in NPK-amended soil.

Lactococcus lactis isolated from organic soil was also found to

promote plant growth in cabbage. (Somers et al., 2007). Previously,

it was believed that LAB had almost minimal iron (Fe) requirement

and did not produce siderophores. However, the genomes of two

vegetable-isolated Lactococcus lactis strains isolated by Shrestha et al.

(2014) revealed non-ribosomal peptide pathways, indicating the

ability of LABs to produce siderophores. Further research by Jaini

et al. (2022) revealed the synthesis of ammonia and siderophores, as

well as the solubilization of phosphate, resulting in an increase in the

dry weight of the shoot and root of papaya plants by the endophytic

LAB identified in the work of Taha et al. (2019).
TABLE 1 Continued

Strain Source Pathogen/Crop Mechanism/Effect References

(ii) Biostimulant

Lactobacillus sp. Rhizosphere soil of tomato Pepper IAA, phosphate solubilization, and
biocontrol property
Increased root and shoot length,
root fresh weight and chlorophyll
content

Steglińska et al.,
2022

Enterococcus
faecium

Rhizosphere soil of oriental melon
(Cucumis melo L.)

Rice Phytohormones (GA, IAA), mineral
solubilization, and biocontrol
property
-Increased shoot and root length,
plant fresh weight, chlorophyll
content, nutrient uptake

Lee et al., 2015

L. plantarum PGPR Corp. (Korea) Cucumber Succinic acid, lactic acid
increased growth, nutrient
availability and amino acid content

Kang et al.,
2015

Lactobacillus sp. Sugarcane fermentation Citrus seedling Nitrogen fixation, phosphate
solubilization
increased height, stem diameter,
root and shoot weight

Giassi et al.,
2016

Enterococcus sp. Rhizosphere soil of grass pea Fusarium oxysporum f. sp. lentis IAA, phosphate solubilization, stress
response and biocontrol property

Mussa et al.,
2018

E. faecium LB5,
L. lactis LB6,
LB7, and LB9

Rhizosphere soil of wheat Fusarium graminearum -Phosphate solubilization and
biocontrol property

Strafella et al.,
2021

Lactobacillus sp. Vietnamese traditional Nem chua Peanut seed IAA, phosphate solubilization, and
biofilm formation
-Increased seed germination, vigor
index, plant length, and total fresh
weight

Nguyen et al.,
2021

Lactobacillus sp. Silage and rhizosphere soil Adzuki bean (Vigna angularis), Arabidopsis 3-phenyllactic acid (PLA)
-Root promoting activity in Adzuki
bean, promote auxin signaling
pathway – increased lateral root
density in Arabidopsis

Maki et al.,
2021, 2022

Weisella cibaria,
Lactococcus lactis
subsp. lactis

Papaya seed Papaya Synthesis of ammonia, siderophores,
and phosphate solubilization
- increased the dry weight of the
shoot and root of papaya plants

Jaini et al., 2022

Lactobacillus sp. The aerial part of pomegranate plants Fusarium sp. Phytohormones (GA, IAA) and
biocontrol property
-

Abhyankar
et al., 2022
frontiersin.org

https://doi.org/10.3389/fpls.2022.1047945
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jaffar et al. 10.3389/fpls.2022.1047945
4.2 Alleviating abiotic stress in plant

Plant development can be stunted by a variety of abiotic stresses,

such as flooding, dehydration, high temperatures or salt levels, the

presence of toxic metals, and exposure to organic pollutants. Under

abiotic stimuli, the intracellular redox balance of plants is upset which

results in the production of reactive oxygen species (ROS). As a result,

the plant’s enzymatic and non-enzymatic antioxidants are activated to

withdraw the effects of ROS. In a condition of drought or

dehydration, plant biosynthesis of nitric oxide (NO) increases in

order to reduce the effects of oxidative stress. It has been observed that

root treatment of wheat seedlings with L. plantarum 8P-A3 managed

to alleviate oxidative stress during dehydration (Yarullina et al., 2014).

Increases in total integral antioxidant capacity (IAC) and catalase

activity indicate that NO has a role in the stress-limiting activities of

lactobacilli by mitigating the deleterious effects of dehydration.

Excessive salt in the soil causes ion imbalance and toxicity in

plants. Plants respond to salinity stress by synthesizing polyamines

and osmolytes, activating defense systems, blocking the deposition of

reactive oxygen species, and controlling the transfer of ions. To

counter salt-induced oxidative stress, Swertia chirayita inoculated

with L. plantarum demonstrates better salinity stress tolerance by

adopting more energy-efficient defensive mechanisms and efficiently

partitioning carbon flow between primary and secondary metabolism

(Phoboo et al., 2016). Despite the complexity of plant stress response

networks still not being fully understood, LAB treatment can

somehow manage to improve the stress response of plant.
5 Limitations, challenges, and the
way forward

Similar to other types of BCAs, LAB also has its limitations and

challenges when it comes to application. Currently, evidence linking

LAB antagonism in vitro to actual pathogen control in the field is still

scarce. Its basic limitation of use in agricultural applications, as with

other kinds of BCA, is the capacity to survive and produce sufficient

amounts of bioactive compounds in suitable circumstances. This

could be overcome by selecting or designing strains through

biotechnology that can flourish in the phytomicrobiome, enhacing

cultures with necessary nutrients or protective carriers, and

reapplying cultures to maintain a large number of viable cells.

Anyhow, these methods are complicated and will take a long time.

Transgenic strains with diverse modes of action can be developed

using biotechnology to improve strains with desirable features such as

simplicity of formulation, stability, or extraordinary suitability for

plant colonization. Another alternative is to use a LAB strain more

often in places that are better for its growth, like fruits, flowers, and

soils with a lot of organic matter. This strategy has been effective in

preventing and eradicating floral diseases that affect rosaceous tree

crops (Bonaterra et al., 2014) and has promising results against

postharvest infections as well (Trias et al., 2008).

The production of bioactive substances could also be

accomplished through the use of LAB that has been grown in

bioreactors under optimum conditions. Previous studies by Omer
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et al. (2009) and Limanska et al. (2015a); Limanska et al., 2015b) have

shown that the metabolites produced by LABs are responsible for

their activity, and the method of isolating and purifying this

metabolite has been successfully applied (Maki et al., 2021). Even

though LAB can endure a wide range of environmental stresses, they

have specific dietary needs to thrive. Researchers have looked into

how sugar beet and sweet potato processing wastes can be used to

make industrial LAB media (Krzywonos and Eberhard, 2011; Hayek

et al., 2013), but more consistent LAB medium is still needed to make

industrial LAB culture last longer. It is also important to take

precautions when planning the establishment of mixed consortia

LAB with other PGPM groups to prevent incompatibilities.

Nanomaterials, which have been effectively used in industries like

energy, medicine, and electronics, are a newer avenue of

nanotechnology being investigated and implemented in agriculture

(Cruz-Luna et al., 2021). Successful applications of metal

nanoparticles (M-NPs) such as silver (Ag), iron (Fe), copper (Cu),

zinc (Zn), and selenium (Se) have been reported in the suppression of

several phytopathogens as well as promoting plant growth in

agriculture (Consolo et al., 2020; Akpinar et al., 2021). However,

the chemical and physical processes utilized to create M-NPs can be

both expensive and potentially hazardous to human health and the

environment. As a result, ‘green’ synthesis is leading the way in this

emerging discipline by exploring the viability of microorganisms and

plants as nanofactories. Green synthesis of M-NPs has the benefits of

being environmentally friendly, cost-effective, non-toxic, quick and

reliable, stable and sustainable, with low polydispersity, scalability,

and biocompatibility. Several studies have recently brought attention

to the promising nanobiotechnological applications of LAB in the

synthesis of intracellular and extracellular M-NPs (Alam et al., 2020;

Aziz Mousavi et al., 2020; Ghosh et al., 2022). This will pave the way

for further research into the role of this bacterial group in facilitating

plant growth and controlling phytopathogens.

Despite its history of safe usage and “GRAS” status, the safety of

the chosen LAB must be assured before industrial application to

prevent having an impact on the biodiversity of the ecosystem or

causing diseases in humans, animals, or plants. For example, Linares-

Morales et al. (2020) reported encouraging results of E. faecium

against post-harvest pathogens, however, further evaluation of the

strains’ safety is necessary as some of the Enterococcus strains can

potentially carry harmful genes (Venegas-Ortega et al., 2020). The

increased efficiency of genome analysis over the past decade allows

screening on the safety of LAB strains by assessing genes related to

drug resistance, virulence, and pathogenicity and determining

whether the related genes can be transmitted horizontally

(Rodrı ́guez-Serrano et al., 2018; Toropov et al., 2020; Zhou

et al., 2021).
6 Conclusion

LAB strains can stimulate crop production in a number of ways,

including functioning as a BCA, increasing the availability of

nutrients, mitigating the effects of biotic and abiotic stressors, and

stimulating plant growth directly. Its GRAS status and extensive

history in food research make them ideal for use in crop protection.
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Although LABs are ubiquitous in the phytomicrobiome, their

potential roles as BCAs and promoters of plant development have

been generally disregarded. Evidence from the past and present points

to the fact that LAB has the ability to serve as renewable and safe

agricultural inputs that can aid in the control of plant diseases and the

promotion of plant growth. However, more LAB studies are needed

and should focus on its biocontrol efficiency under field conditions as

well as LAB bioproduction and formulations. The integration of LAB

as biocontrol agents that could be used with other biocontrol

techniques in an integrated control program would be a viable way

to increase efficacy against phytopathogens and help solve the

challenges to achieving sustainable food security.
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