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Nitrogen addition promotes
early-stage and inhibits
late-stage decomposition
of fine roots in Pinus
massoniana plantation

Lijun Wang1, Yafei Shen1,2, Ruimei Cheng1,2*, Wenfa Xiao1,2,
Lixiong Zeng1,2, Pengfei Sun1, Tian Chen1 and Meng Zhang1

1Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland
Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry,
Beijing, China, 2Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry
University, Nanjing, China
Increasing atmospheric nitrogen (N) deposition has a profound impact on the

ecosystem functions and processes. Fine root decomposition is an important

pathway for the reentry of nutrients into the soil. However, the effect of N

addition on root decomposition and its potential mechanism is not well

understood with respect to root branch orders. In this study, we conducted a

30-month decomposition experiment of fine roots under different

concentrations of N addition treatments (0, 30, 60, and 90 kg N ha-1 year-1,

respectively) in a typical Pinus massoniana plantation in the Three Gorges

Reservoir Area of China. In the early stage of decomposition (0−18 months), N

addition at all concentrations promoted the decomposition of fine roots, and

the average decomposition rates of order 1–2, order 3–4, order 5–6 fine roots

were increased by 13.54%, 6.15% and 7.96% respectively. In the late stage of

decomposition (18−30 months), high N addition inhibited the decomposition

of fine root, and the average decomposition rates of order 1–2, order 3–4,

order 5–6 fine roots were decreased by 58.35%, 35.43% and 47.56%

respectively. At the same time, N addition promoted the release of lignin,

carbon (C), N, and phosphorus (P) in the early-stage, whereas high N addition

inhibited the release of lignin, C, N, and the activities of lignin-degrading

enzyme (peroxidase and polyphenol oxidase) in the late-stage. The

decomposition constant (k) was significantly correlated with the initial

chemical quality of the fine roots and lignin-degrading enzyme activities. The

higher-order (order 3–4 and order 5–6) fine roots decomposed faster than

lower-order (order 1–2) fine roots due to higher initial cellulose, starch, sugar,

C concentrations and higher C/N, C/P, lignin/N ratios and lower N, P

concentrations. In addition, low N (30 kg N ha-1 year-1) treatments decreased

soil organic matter content, whereas high N (90 kg N ha-1 year-1) treatment had

the opposite effect. All the N treatments reduced soil pH and total P content,

indicating that increased N deposition may led to soil acidification. Our findings

indicated that the effect of N addition on decomposition varied with the
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decomposition stages. The decomposition difference between the lower-

order and higher-order fine roots were controlled strongly by the initial

chemical quality of the fine roots. This study provides new insights into

understanding and predicting possible changes in plant root decomposition

and soil properties in the future atmospheric N deposition increase scenarios.
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Introduction

Over the past century, food and energy production and other

human activities have increased the release of reactive nitrogen

(N) into the atmosphere by 3–5-fold (IPCC, 2007). China has

become the third-largest N depositor globally, with an average

annual total deposition of approximately 21.1 kg N ha-1 year-1,

which is expected to increase further (Liu et al., 2013). Increasing

atmospheric N deposition has a profound impact on the

functions and nutrient cycling processes of ecosystem (Van

Groenigen et al., 2017; Liu et al., 2019; Yu et al., 2021; Wu

et al., 2022).

Fine root decomposition plays an irreplaceable role in

subterranean ecosystems (Dong et al., 2020). Nitrogen,

phosphorus (P), and other nutrients released during fine root

decomposition affect plant growth and soil biological activity.

The organic matter entering the soil through fine root

decomposition accounts for 14% ~ 86.8% of the total input

(Usman et al., 2000; Parton et al., 2007). The carbon (C)

returned to soil from fine roots is 4–5 fold that of from the

aboveground litter. Therefore, fine root decomposition is an

important pathway for the reentry of nutrients into the soil

(Fahey and Arthur, 1994; Steinaker and Wilson, 2005; Xu et al.,

2022). It is important to clarify the effects of increased N

deposition on fine root decomposition and the ecosystem C

balance (Reay et al., 2008; Kou et al., 2015; Sun et al., 2016; Song

et al., 2016).

Numerous previous studies on the effect of elevated N

deposition on fine root decomposition have made some

progress, but the results are controversial (Berg and Matzner,

1997; Kou et al., 2015; Tu et al., 2015; Song et al., 2016; Dong

et al., 2020). For example, some studies found that adding N

significantly decreased the decomposition rate due to the

increase of lignin concentration and the combination of

inorganic N ions with acid nonhydrolyzable residues or the

change of soil environment (Tu et al., 2014; Kou et al., 2015; Xia

et al., 2017). On the contrary, a study in temperate

grasslands found that N addition, in either organic or

inorganic forms, stimulated the decomposition rate of fine
02
roots (Dong et al., 2020). In addition, Song et al. (2015); Song

et al. (2016) suggested that low-level (30 kg N ha-1 year-1) N

addition promoted fine root decomposition rate and nutrient

elements release, whereas high N (≥60 kg N ha-1 year-1) addition

had the opposite effects. Other studies found that N addition

promoted the early stage of decomposition due to the higher C

concentrations and lower N concentrations, while inhibited the

later stage of decomposition due to the increase of lignin

concentration and the decrease of lignin degrading enzyme

activity (Berg and Matzner, 1997; Hobbie et al., 2012). A

meta-analysis found that the effect of N addition on litter

decomposition depends on the initial quality of substrate,

nitrogen deposition rate in environment and the concentration

and rate of nitrogen application (Knorr et al., 2005). Overall, the

above studies have proposed some hypotheses to explore the

potential mechanisms of N addition on fine roots

decomposition, but there appears to be mixed and sometimes

even conflicting findings.

Nearly half a century ago, most studies considered fine roots

a homogeneous system, which holds that the root of all less than

2 mm are basically the same in structure and physiology.

However, recent studies have shown that a single diameter

class definition ignores the heterogeneity of internal structure

and function of the fine root systems (Pregitzer et al., 2002; Guo

et al., 2004; Yang et al., 2019). The root system is composed of

different branching levels (Guo et al., 2004), and there are

significant differences in the physiological processes of

different orders fine roots. These differences in root function

affect the histochemical composition, including the C/N ratio

and concentrations of non-structural carbohydrates, calcium,

phenolic compounds, and lignin (Guo et al., 2004; Goebel et al.,

2011). Therefore, the differences in chemical composition

between different root branch orders may affect their

decomposition rate. A few studies on root decomposition have

found that the decomposition rate of the lower-order fine roots

was slower than that of the higher-order fine roots (Kou et al.,

2015; Yang et al., 2019). These studies suggested that the lower-

order fine roots are more easily colonized by ectomycorrhizal

(EM) mycorrhizal fungi and the chitin rich mycorrhizal sheath
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may reduce the decomposition of the fine roots (Langley et al.,

2003a; Langley and Hungate, 2003b; Guo et al., 2008). Other

studies suggested that the slow decomposition of lower-order

fine roots is mainly driven by their high content of acid-insoluble

substances (Parton et al., 2007; Xiong et al., 2013; Liu et al.,

2019), which is unrelated to the initial N concentration (Sun

et al., 2013; Xiong et al., 2013). Yang et al. (2019) indicated that

the slow decomposition of the lower-order roots is due to the

combined effects of higher initial N content and lower C content.

However, Shen et al. (2017) has the opposite conclusion that the

lower-order fine roots decomposed faster due to the higher C/N

ratio and the lower N concentration during the decomposition

process and the higher sensitivity to soil temperature, moisture,

Ca concentration. The findings regarding fine root

decomposition are controversial, and the potential mechanism

is unclear; therefore, more experiments are required for

better understanding.

As China’s key sensitive ecological area and the ecological

barrier between the middle and lower reaches of the Yangtze

River, the Three Gorges Reservoir area has an atmospheric N

deposition flux of approximately 30 kg N ha-1 year-1 which is

quite high (Zheng et al., 2014). Pinus massoniana plantations are

widely distributed and contribute substantially to both the

economic and ecological value in the Three Gorges Reservoir

area of China (Zeng et al., 2018). The effect of increased nitrogen

deposition on root decomposition of Pinus massoniana is bound

to change the soil carbon pools of local forest ecosystems.

Therefore, in this study, we conducted the decomposition

experiments of three orders fine roots under the condition of

different concentration N treatments for 30 months in a typical

Pinus massoniana plantation. Our aim was to clarify the effect of

nitrogen addition on different order fine root decomposition and

the reasons for the differences. We proposed the following

hypotheses: (1) N addition promotes fine root decomposition

in the early decomposition stages but inhibits decomposition in

the late stages due to the inhibition of lignin degradation. (2) The

higher-order fine roots decompose faster than the lower-order

fine roots due to the difference in initial chemical quality.
Materials and methods

Site description

The study was conducted in Shuangshan (30° 46′N, 110° 55′ E)
of Zigui County, Hubei Province, China, at an elevation of

approximately 825 m. The site has a subtropical continental

monsoon climate with an annual average temperature of 14 to

22°C. The average yearly rainfall is 1400 mm, concentrated from

April to September. The Pinus massoniana plantation was

established by air sowing in the 1980s. The average height,

diameter at breast height and density of the tree were 16.96 m,

18.3cm, 675 trees ha-1, respectively. Yellow-brown and purple are
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themain soil types, with a depth of approximately 40 cm. The initial

soil organic matter content (g/kg) and pH was 22.30 ± 5.9, 4.93 ±

0.06 (mean values ± standard error) at 0−20 cm depth. The nutrient

concentration (mg/kg) was 544.03 ± 0.93, 138.68 ± 29.36, 3728.39 ±

89.80, 39.93 ± 0.91, and 68.40 ± 12.78 for total N, P, potassium (K),

zinc (Zn), and calcium (Ca), respectively. The main associated

shrubs are Camellia sinensis, Eurya nitida, Viburnum erosum, and

herbs are Dryopteris fuscipes, Houttuynia cordata, Senecio scandens.
Experimental design

In February 2019, based on the local atmospheric N

deposition background value (30 kg N ha-1 year-1), 12 plots

(2 m × 2 m) were established at the experimental site with four N

treatments: control (CK, 0 kg N ha-1 year-1), low N (LN, 30 kg

N ha-1 year-1), medium N (MN, 60 kg N ha-1 year-1), and high N

(HN, 90 kg N ha-1 year-1). Each treatment was replicated three

times. The plots were separated by a 10 m wide buffer zone and

isolated with polyvinyl chloride plates inserted into 20 cm depth

soil. The forms of nitrogen deposition include dry deposition

and wet deposition. The dry deposition is mainly composed of

gaseous nitrogen containing pollutants, while the wet deposition

is mainly composed of granular ammonium salt and nitrate. In

China, ammonium deposition accounts for 68% of the total

nitrogen deposition and nitrate deposition accounts for 32%

(Zheng et al., 2014; Sun et al., 2016). Therefore, ammonium

nitrate (NH4NO3) was selected as the N source in this study. The

annual application amount of NH4NO3 was evenly divided into

12 equal parts. An appropriate amount of NH4NO3 was

dissolved in 2 L of water and sprayed uniformly in the quadrat

at the beginning of each month, starting from February 2019.

Precisely the same amount of plain water was sprayed in the

control group.
Decomposition and sampling

In early January 2019, taproots were found at the base of the

P. massoniana trunk (outside the N addition site). We looked for

root order branches approximately 2 m outward along the lateral

roots on the taproots. Then, the root system was carefully

separated from the soil particles, ensuring that the smallest root

tip at the root end was intact. According to the method described

by Pregitzer et al. (2002), the roots were divided into different

branching orders: order 1-2 (the lower-order fine roots), order 3–4

and order 5–6 (were grouped as the higher-order roots).

All the fine roots of the same order class were mixed, and a

1.0 g sample of each root order class was placed in a nylon 150-

mesh litterbag (10 cm ×10 cm). In February 2019, litterbags were

randomly placed in the soil of each plot with a depth of 10 cm.

Five samplings were conducted during the 30-month

decomposition in May, August, November (2019), and August
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(2020 and 2021). A total of 1260 litterbags were collected in this

fine root’s decomposition experiment (4 treatments × 3

replicates × 3 root orders × 5 samplings ×7 replicates). On

each harvest date, soil samples (at 0−20 cm depth) from the 12

plots and 7 replicate litterbags for each root order were collected

and quickly transferred to the laboratory. The roots were

carefully separated from the soil particles, dried in an oven (65

°C for 48 h), and weighed to calculate the dry mass. Some soil

samples were screened with a 2 mm mesh and placed in a 4 °C

refrigerator to measure soil enzyme activity, whereas others were

air-dried indoors and passed 2 mm and 0.149 mm mesh for

measuring soil pH and the content of soil organic matter, total

nitrogen, and total phosphorus (P).
Chemical analysis

Subsamples of fine roots and soil were analyzed as follows.

The concentrations of cellulose, starch and soluble sugar in fine

roots were determined by anthrone colorimetry (Ververis et al.,

2004; Guo et al., 2022). Lignin concentrations were determined

using the acid detergent fiber (ADF) method (Rowland and

Roberts, 1994). Total C and organic matter were determined by

the potassium dichromate oxidation method (Nelson and

Sommers, 1982). Total N, total P and pH-value were

determined by the Kjeldahl method, molybdenum antimony

colorimetric method and electrode method, respectively (Zhu

et al., 2014; Wang et al., 2021). L-3,4-dihydroxyphenylalanine

(25000 mmol L-1) was used as the substrate to mark the activities

of polyphenol oxidase and peroxidase according to Saiya-Cork

et al. (2002), and a multifunctional microplate fluorometer

(SpectraMax i3x, Molecular Devices, Beckman Coulter, CA,

USA) was used to measure the absorbance.
Statistical analysis

The residual mass rate (MR) of the fine roots at each stage was

calculated using equation (1). The percent chemical remaining
Frontiers in Plant Science 04
mass (E) was expressed using equation (2) (Fu et al., 2021). An

exponential decay model is used to fit the change process of the

remaining mass with time (Olson, 1963) (3).

MR = (Xt=X0)� 100% (1)

E( % ) = (Ct � Xt)=(C0 � X0)½ � � 100% (2)

Xt=X0 = ae−kt (3)

Here, X0(g) is the initial litter mass, Xt(g) is the mass

remaining after t years of decomposition, C0 is the initial

nutrient concentration, and Ct is the nutrient concentration at

time t, k is decomposition coefficient (Song et al., 2015). All

statistical analyses of the data were performed using SPSS 24.0

software (SPSS Inc., Chicago, IL, USA). One-way ANOVA and

Duncan’s method were used to analyze variance and multiple

comparisons (P < 0.05 used as threshold), and the interactions

among N addition, root order classes, and decomposition time

were studied by three-way ANOVA. Pearson correlation analysis

was used to explore the correlation between fine root

decomposition coefficient, nutrient concentration and soil

characteristics. Excel 2016 was used for data statistics and plotting.

Results

Initial substrate chemistry

The initial nutrient and C fraction concentrations were

significantly (P < 0.05) different among the three root orders

before their placement in the litterbags (Table 1). The initial N

and P concentrations of the lower-order fine roots were

significantly higher than those of higher-order fine roots (P <

0.05). The concentrations of cellulose, soluble sugar, and starch

were significantly lower than those of the higher-order fine roots

(P < 0.05, Table 1). No significant differences were found in the

C and lignin concentrations. The contrasting concentrations of

N and P among the three root orders also led to an opposing

gradient in C/N, C/P, and lignin/N ratio, with significant (P <
TABLE 1 Initial chemistry of the fine roots in Pinus massoniana.

Root
Class

Root C Fraction (％) Root Nutriment (mg/g) Ratios

Lignin Cellulose Soluble
sugar

Starch C N P C/N C/P Lignin/N

Order 1–2 20.49 ±
0.61a

27.1 ± 1.28c 4.48 ± 0.11b 5.16 ±
0.26c

425.50 ±
6.88a

3.85 ±
0.29a

0.53 ±
0.02a

110.92 ±
6.68b

803.16 ± 12.03c 53.53 ±
5.38b

Order 3–4 20.59 ±
1.47a

32.06 ±
1.02b

5.52 ± 0.04a 6.89 ±
0.32a

433.20 ±
3.41a

2.86 ±
0.12b

0.39 ±
0.02b

151.85 ±
7.84a

1121.3 ± 56.02b 72.31 ±
7.91a

Order 5–6 22.58 ±
1.32a

34.92 ±
0.50a

5.58 ± 0.10a 6.31 ±
0.26b

436.92 ±
6.24a

2.72 ±
0.06b

0.29 ±
0.04c

160.5 ± 2.69a 1528.61 ±
194.97a

82.95 ±
5.00a
fro
Values are means ± SE (n=3). Different letters indicate significant differences among the three order fine roots (P < 0.05).
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0.05) differences among the root orders, with order 1–2 < order

3–4 < order 5–6 (Table 1).
Fine root mass loss and
decomposition rate

The mass remaining of fine roots decreased rapidly in the

first 6 months of decomposition and decreased slowly in the

6−30 months of decomposition (Figure 1). The root data of the

initial mass remaining in each treatment fitted well with the

single exponential model (R2 range 0.846–0.946; Table 2). The

ANOVA showed that N addition, root order, decomposition

time, and the interactions with each other have significant effects

on mass remaining (mostly P < 0.001; Table 3). In the 0−18

months of decomposition, all N addition treatments significantly

promoted the decomposition of fine roots (P < 0.05), and the

average decomposition rates of order 1–2, order 3–4, order 5–6

fine roots were increased by 13.54%, 6.15% and 7.96%

respectively. After 30 months of decomposition, low N

treatment promoted the decomposition of fine roots in all

orders, whereas high N addition inhibited the decomposition

of fine roots, and the average decomposition rates of order 1–2,

order 3–4, order 5–6 fine roots were decreased by 58.35%,

35.43% and 47.56% respectively. (Figure 1, Table 2). The

lower-order fine roots (order 1–2) decomposed slower than

the higher-order fine roots (order 3–4 and order 5–6). The

average decomposition constant (k) of the order 1–2 fine roots

(0.272) was less than that of the order 3–4 (0.300) and order 5–6

fine roots (0.307) (Table 2, P < 0.05).
Root nutrient dynamics during
root decomposition

Residual C and P in all orders fine roots decreased rapidly in

the first 6 months but increased slowly in the 6−9 months period
Frontiers in Plant Science 05
and then decreased in the 9−30 months (Figures 2A–C, G–I).

The variation trends of residual N in the different root orders

were dissimilar. Residual N in the lower-order fine roots

decreased with time (Figure 2D), while N fixation occurred in

the higher-order fine roots in the first 9 months of

decomposition, and then decreased in the late decomposition

stage (Figures 2E, F). The ANOVA showed that N addition, root

order, and decomposition time, and the interaction between root

orders and time had significant effects on C, N, and P residue

rates (mostly P < 0.001, Table 3). After 30 months of

decomposition, LN treatment promoted the release of C, N,

while HN treatment has opposite effects. All the N addition

treatments promoted P release.

The N concentration in the fine roots increased continuously

in the rapid stage of decomposition and then decreased gradually

in the slow stage but was always higher than the initial

N concentration (Figures 2J–L). After 30 months of

decomposition, the absolute concentrations of N and P in the

lower-order roots were significantly (P < 0.05) higher than those

in the higher-order roots (Figures 3B, C), but C concentration

was lower than that in the higher-order roots (Figure 3A). The

two-way ANOVA showed that root order affected C, N, and P

concentrations, while N addition only affected the final P

concentration, resulting in a significant decrease (P <

0.01) (Figure 3).
Root C fraction dynamics during
root decomposition

Residual lignin decreased rapidly in the first 6 months of

decomposition, increased in the following 6−9 months, and then

decreased in 9−30 months (Figures 4A–C). Residual cellulose

decreased rapidly by 50.61% ~ 67.33% in the first 18 months of

decomposition, while it decreased very slowly in 18−30 months

of decomposition (Figures 4D–F). The residue rates of soluble

sugar and starch decreased rapidly in the first 3 months of
B CA

FIGURE 1

Residual percentages of the initial mass during the 30-month fine root decomposition of Pinus massoniana in different N addition treatments.
Values are means ± SE. The different colors denote CK (0 kg ha-1 year-1), LN (30 kg ha-1 year-1), MN (60 kg ha-1 year-1), and HN (90 kg ha-1 year-1).
(A–C) represent the mass remaining of order 1-2, order 3-4 and order 5-6 fine roots, respectively.
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decomposition, fluctuated in the following 3−18 months, and

remained stable in the 18−30 months period (Figures 4G–L).

The ANOVA showed that N treatment had a significant (P <

0.001) effect on lignin residue rate, but no significant effect on

the cellulose, starch, and sucrose residue (Table 3). After 30

months of decomposition, LN treatment promoted lignin

release, whereas HN treatment inhibited lignin release

(Figures 4A–C).
Soil properties and enzyme activities
under N addition treatments

After 30 months of decomposition, LN treatment decreased

the contents of soil organic matter and total N, whereas HN

treatment had the opposite effect. All N treatments decreased
Frontiers in Plant Science 06
soil pH, total P content, and polyphenol oxidase and peroxidase

activities (Figure 5).
Relationships between fine root
decomposition and nutrient elements
and soil characteristics

After 30 months of decomposition, the decomposition

constant (k) is closely related to the concentration of nutrient

elements (Table 4). For example, the k-value was significantly

positively correlated with the initial concentrations of cellulose,

starch, soluble sugar, C and the ratio of C/N, C/P, and lignin/N

(P < 0.01), and significantly negatively correlated with the initial

and final concentration of N, P (P < 0.01). In addition, the k-

value was also significantly positively correlated with soil
TABLE 3 Effects of N treatment, root order, decomposition time and their interaction on the residual rate of fine root decomposition.

Index N Treatment Order Time N*Time Order*Time N*Order N*Order*Time R2

Mass remaining *** *** *** *** *** * *** 0.998

Lignin *** *** *** ** *** ns ns 0.978

Cellulose ns *** *** ns ns ** ns 0.958

Soluble sugar ns ns *** ns ns ns ns 0.982

Starch ns *** *** ** *** ns ns 0.993

C * *** *** ns *** ns ns 0.970

N ** *** *** * *** * ns 0.882

P *** *** *** * *** ns * 0.879

C/N * *** *** ns *** ns ns 0.714

C/P *** *** *** * ** ns ns 0.549

Lignin/N ns *** *** ns ** ns ns 0.914
frontiersi
*P < 0.05, ** P < 0.01, ***P < 0.001, ns, not significant
TABLE 2 Mean decomposition rates (k) of the three orders of roots in different N addition treatments.

Order Treatment Decomposition period (a) and constant k (a-1)

0-1.5 R2 P 0-2.5 R2 P

1-2 CK 0.313 ± 0.037Bb 0.846 0.000 0.269 ± 0.02Cb 0.919 0.000

LN 0.390 ± 0.035Aa 0.907 0.000 0.297 ± 0.023Ba 0.910 0.000

MN 0.366 ± 0.037Ba 0.885 0.000 0.267 ± 0.024Bb 0.882 0.000

HN 0.375 ± 0.039Ba 0.879 0.000 0.257 ± 0.027Bc 0.846 0.000

3-4 CK 0.362 ± 0.034Ab 0.898 0.000 0.295 ± 0.020Bb 0.930 0.000

LN 0.394 ± 0.033Aa 0.914 0.000 0.309 ± 0.022Ba 0.926 0.000

MN 0.371 ± 0.037Bab 0.885 0.000 0.311 ± 0.021Aa 0.932 0.000

HN 0.388 ± 0.040Bab 0.881 0.000 0.284 ± 0.026Ab 0.880 0.000

5-6 CK 0.369 ± 0.035Ab 0.897 0.000 0.303 ± 0.021Ab 0.931 0.000

LN 0.397 ± 0.033Aab 0.918 0.000 0.332 ± 0.020Aa 0.946 0.000

MN 0.415 ± 0.036Aab 0.912 0.000 0.300 ± 0.026Ab 0.890 0.000

HN 0.430 ± 0.037Aa 0.912 0.000 0.292 ± 0.029Ab 0.860 0.000
Values represent mean ± SE (n = 3). Different capital letters indicate significant differences among different root orders under the same N addition treatment. Different lowercase letters
indicate significant differences among N addition treatments under the same root order (P < 0.05).
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FIGURE 2

Residual percentages of C, N, and P and absolute concentrations of N during the 30-month fine root decomposition of Pinus massoniana in
different N addition treatments. Values are means ± SE. The different colors denote CK (0 kg ha-1 year-1), LN (30 kg ha-1 year-1), MN (60 kg ha-1

year-1), and HN (90 kg ha-1 year-1). (A–I) represent the residual percentages of C, N, and P in order 1-2, order 3-4 and order 5-6 fine roots,
respectively. (J–L) represent the absolute concentrations of N in order 1-2, order 3-4 and order 5-6 fine roots, respectively.
B CA

FIGURE 3

Absolute concentrations of C, N, and P in the decomposing roots in each treatment after 30 months of decomposition. Different capital letters
indicate significant differences among different root orders under the same N addition treatment, and different lowercase letters indicate
significant differences among the N addition treatments under the same root order (P < 0.05). **P < 0.01, ***P < 0.001, ns, no significant. CK:
0 kg ha-1 year-1; LN: 30 kg ha-1 year-1; MN: 60 kg ha-1 year-1; HN: 90 kg ha-1 year-1. (A–C) represent the absolute concentrations of C, N, and P
in fine roots, respectively.
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peroxidase and polyphenol oxidase activities, and significantly

negatively correlated with soil organic matter content (Table 5,

P < 0.05). There was a significant positive linear correlation

between residual mass and residual lignin and nitrogen during

the 30-month decomposition process (Figure 6, P < 0.001).
Discussion

Effect of N addition on fine root
decomposition

The main factors affecting the decomposition rate of the

fine roots varied depending on the decomposition phase. The

early decomposition stage was dominated by the degradation

of soluble and relatively unstable compounds in the litter,

including the initial total non-structural carbohydrates. The
Frontiers in Plant Science 08
degradation of cellulose followed this, and finally, the acid-

insoluble substances and lignin degradation became dominant

(Berg and McClaugherty, 2008; Tu et al., 2014). In our study,

two stages of decomposition with different mass-loss rates were

observed. In the first 6 months of decomposition, the mass

remaining of fine roots decreased rapidly with an average loss

of 30.60% of the initial mass, whereas slower decomposition

rates were observed in the following 6−30 months, with an

average loss of 25.01% (Figure 1). Consistent with many

previous studies (Yang et al., 2004; Berg and McClaugherty,

2008; Tu et al., 2015), we observed the degradation of starch

and soluble sugar first, followed by a rapid decline in cellulose

(Figures 4D−L). During 18−30 months of decomposition, the

above nutrient residue rate remained unchanged, and the

lignin residue rate continued to decline (Figures 4A−C),

indicating that lignin decomposition was dominant in the

late stage of decomposition.
B C

D E F

G H I

J K L

A

FIGURE 4

Residual percentages of lignin, cellulose, soluble sugar, and starch during the 30-month fine root decomposition of Pinus massoniana in
different N addition treatments. Values are means ± SE. The different colors denote CK (0 kg ha-1 year-1), LN (30 kg ha-1 year-1), MN (60 kg ha-1

year-1), and HN (90 kg ha-1 year-1). (A–L) represent the lignin, cellulose, soluble sugar, and starch remaining in order 1-2, order 3-4 and order 5-
6 fine roots, respectively.
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Our first hypothesis was confirmed as we found that all

concentrations of N addition promoted the decomposition rate of

the fine roots in the early stage of decomposition (0−18 months),

whereas HN treatment inhibited the degradation of the fine roots in

the late stage of decomposition (18−30 months) (Table 2). The

stimulating effect of N addition on the decomposition rates in the

early stages may be partly explained by the altered soil enzyme

activities that were involved in polysaccharide breakdown due to

increased N inputs (Sun et al., 2016). Our previous research showed

that N addition increased the activities of hydrolases (b-1-4
glucosidase, N-acetylglucosaminosidase, and acid phosphatase)

and oxidase (polyphenol oxidase and peroxidase) after 9 months

of decomposition (Wang et al., 2021). The increase in hydrolase and

oxidase activities promoted soluble sugar, cellulose, and
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hemicellulose degradation in the early decomposition stage (Li

et al., 2011; Sun et al., 2016; Dong et al., 2019). As our study

found that nitrogen addition promoted the release of C, N, P, and

lignin in the early decomposition stage (Figures 2, 4). These results

were largely consistent with those of studies showing that

exogenous nitrogen stimulated the initial decomposition rate in

the N-fertilizer experiment (Hobbie et al., 2012; Sun et al., 2016; Gill

et al., 2021). With the progress of fine root decomposition, lignin

decomposition became dominant in the late stage of decomposition

(Berg and McClaugherty, 2008; Tu et al., 2015). There was a

significant positive linear correlation between residual lignin and

residual mass, which explained 76.13% of the variation in the

residual mass (Figure 6). We observed that HN treatment

inhibited the degradation of lignin (Figures 4A−C), which may be
B C

D E F

A

FIGURE 5

Soil properties and enzyme activities in the different treatments after 30 months of decomposition. Values represent the means ± SE (n = 3).
Different capital letters indicate significant differences among different N addition treatments (P < 0.05). CK (0 kg ha-1 year-1), LN (30 kg ha-1

year-1), MN (60 kg ha-1 year-1), and HN (90 kg ha-1 year-1). (A–C) represent the content of soil organic matter, total N, total P, respectively. (D–F)
represent the soil pH and the activity of polyphenol oxidase and peroxidase, respectively.
TABLE 4 Correlation between the decomposition constant (k) and nutrient concentration of fine roots.

Index Lignin Cellulose Soluble sugar Starch C N P C:N C:P Lignin:N

Initial Concentration 0.597 .938** .970** .802** .709* -.943** -.932** .968** .865** .945**

Final Concentration 0.273 0.290 0.352 0.217 0.229 -.515** -.552** .492** .450** .431**
fro
*P < 0.05, ** P < 0.01.
TABLE 5 Correlation between the decomposition constant (k) and soil characteristics.

Index pH Soil N Soil P Organic matter Peroxidase Polyphenol oxidase

k 0.480 -0.119 0.407 -.612* 0.331 0.545*
*P < 0.05.
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the main reason for the slow decomposition of fine roots caused by

nitrogen addition. The inhibition of nitrogen addition on lignin

decomposition may be related to the following mechanisms.

Firstly, a high-N environment may inhibit the synthesis of

lignin-decomposing enzymes. The range of soil pH was 4.45−4.69

after 30 months of N addition (Figure 5D). However, the optimum

pH ranges for the growth of Basidiomycetes and Ascomycetes

related to lignin decomposition are 4.0−5.0 and 6.0−7.5, respectively

(Sinsabaugh, 2010). Therefore, Basidiomycetes might be the leading

lignin-degrading fungal community in this ecosystem. A previous

study reported that Basidiomycetes do not synthesize lignin-

degrading enzymes in the presence of ammonium or other low

molecular weight N-rich compounds such as amino acids (Keyser

et al., 1978). In addition, we found that N addition inhibited the

activities of peroxidase and polyphenol oxidase related to the lignin

degradation in the soil after 30 months of nitrogen addition

experiment (Figure 5). As a matter of fact, many previous studies

have found that N additions inhibited the activities of lignin-

degrading enzymes in the later stages of fine root decomposition

(Manzoni et al., 2010; Tu et al., 2014; Xia et al., 2018; Dong et al.,

2022). Secondly, the added N reacts with the secondary compounds

(mostly polyphenols) produced during lignin decomposition and is

fixed into the fine roots, resulting in the continuous accumulation of

anti-decomposition substances and N in fine roots, which further

slows down the decomposition rate of the fine roots (Hansen et al.,

2009; Hobbie et al., 2012). In the present study, the higher residual

N (46.90% ~ 65.90%) in the fine roots observed after 30 months of

decomposition may be due to the interaction between exogenous

inorganic N addition and residual lignin (Figures 2D−F). Some

studies have found that exogenous inorganic N ions will be

adsorbed by acidic non hydrolyzable residues in the substrates to

form new insoluble substances, and directly polymerize with lignin
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to produce more refractory humus, thus inhibiting fine root

decomposition (Preston et al., 2009; Berg et al., 2013; Kou et al.,

2018). By contrast, other studies showed that nitrogen addition had

no significant effect on the activity of lignin decomposing enzymes

in litter layer or soil (Hobbie, 2008; Keeler et al., 2009). In addition,

some studies have also found that the effect of nitrogen addition on

oxidase activity depends on the availability of nitrogen in the

environment, and even get opposite results in different forest

types. For example, a study found that the activity of polyphenol

oxidase decreased in the black oak-white oak mixed forest but

increased in the mixed forest of sugar maple-red oak and sugar

maple-basswood mixed forest after one year of nitrogen application

(Waldrop et al., 2004). Therefore, the mechanism of inhibition of N

addition on late-stage decomposition may vary depending on

specific litter types and/or forest sites (Keeler et al., 2009).

In general, the distribution of C from plant to soil is mainly

completed through plant fine roots in forest ecosystems (Van

Groenigen et al., 2006; Song et al., 2016). C input primarily exists

in the form of active rhizosphere sediments (Boddy et al., 2007).

Recent findings show that the transformation of root-derived

matters into stable soil organic matter components is greater

than that of leaf litter (Bird et al., 2008; Mambelli et al., 2011).

Therefore, the variation of root decomposition may affect the

accumulation of soil organic matter in forest ecosystem. Tu et al.

(2015) found that the later stage of root decomposition (the stage

when mass loss tends to be stable) is mainly the stage of humus

formation. N addition may promote the accumulation of stable

C components in the soil by inhibiting the later stages of fine

root decomposition. After 30 months of N addition, we observed

that low N treatment promoted fine root decomposition and

decreased the soil organic matter content, whereas high N

inhibited fine root decomposition and increased soil organic
FIGURE 6

Relationship between residual mass and residual lignin after 30 months of decomposition.
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matter content (Figure 5A). This is consistent with the previous

conclusion that low nitrogen (30 kg N ha−1 year−1) reduces soil C

storage and high nitrogen (≥90 kg N ha−1 year−1) has the

opposite effect (Song et al., 2016). In fact, many previous

studies have shown that the increase of soil organic matter is

generally related to the slower decomposition of plant residues

rather than the more significant litter input (Zak et al., 2008;

Janssens et al., 2010; Xia et al., 2018). N addition can increase soil

carbon storage by inhibiting heterotrophic respiration, reducing

microbial biomass and altering microbial community

composition and carbon degrading enzyme activity (Xia et al.,

2018; Dong et al., 2022). Correlation analysis showed that soil

organic matter content was significantly negatively correlated

with fine roots decomposition coefficient (k) (Table 4).

Therefore, we suggested that the inhibition of N addition on

the late decomposition stage of fine roots may partly explain the

increase of soil organic matter under high N deposition. In

addition, a previous study showed that long-term simulated N

deposition accelerated soil acidification (Yu et al., 2021). Our

previous studies found that the soil pH and total P content

decreased after 9 months of N addition (Wang et al., 2021). This

phenomenon recurred after 30 months of N addition, indicating

that increasing N deposition will lead to soil acidification. Due to

the low solubility of P compounds at low pH, N deposition-

induced acidification may limit the release of P radicals (Chapin

et al., 2011). Furthermore, N inputs can enhance phosphatase

production and consequently cause some ecosystems to shift

from relative N limitation to P limitation (Marklein and

Houlton, 2012). Our study also found that N addition

enhanced acid phosphatase activity (Figure S1), indicating that

the soil needs more enzyme hydrolysis to obtain the

required phosphorus.
Differences in fine root decomposition in
the different order classes

Studies have shown significant differences in the

physiological functions of different root orders (Guo et al.,

2004; Kou et al., 2015). For example, the higher-order roots

mainly perform the functions of transportation, storage, and

structural support, while the lower-order roots are used

primarily to obtain nutrients and absorb water. These

differences in root function are reflected in the histochemical

composition and decomposition rate (Fan and Guo, 2010; Wang

et al., 2014; McCormack et al., 2015).

Our second hypothesis was confirmed as we found that the

decomposition rate of the higher-order roots was faster than that

of the lower-order roots during the 30−month decomposition

(Table 1, Figure 1). This is consistent with many previous

conclusions (Sun et al., 2013; Yang et al., 2019). The

mycorrhizal hypothesis suggests that EM mycorrhizal fungi

are more likely to infect lower-order fine roots during
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decomposition, and mycorrhizal sheaths are rich in chitin. The

high chitin content may reduce the decomposition of fine roots,

resulting in slower decomposition of the lower-order fine roots

than the higher-order fine roots (Langley et al., 2003a; Langley

and Hungate 2003b; Guo et al., 2008). In addition, a previous

study has shown that microbial decomposition will slow down

due to the limitation of carbon quality (Moorhead and

Sinsabaugh, 2006). The low decomposition rate of the lower-

order fine roots may be due to the combined effect of high

nitrogen concentration and low carbon concentration (Yang

et al., 2019). In our study, we observed that the higher-order

roots contained higher concentrations of initial cellulose and

soluble sugars, starch, C and higher C/N, C/P, and lignin/N

ratios (Table 1). Correlation analysis showed that the

decomposition constant (k) was significantly positively

correlated with the above indicators, and significantly

negatively correlated with the initial and final N and P

concentrations (Table 4). After 30 months of decomposition,

the absolute concentrations of N and P in the higher-order roots

were significantly slower than those in the lower-order roots

(Figures 3B, C). Therefore, the higher-order fine roots

decomposed faster than the lower-order fine roots due to

higher initial concentrations of cellulose, starch, soluble sugars,

C and higher C/N, C/P, and lignin/N ratios and lower N and P

concentrations. Same as our conclusion, a 23-month

decomposition experiment also found that the litter

decomposition rate was controlled strongly by the initial

nutrient content and C/N, C/P ratios (Zhang et al., 2021).

Previous research showed that the global reserves of litter

estimated by the short-term decomposition coefficient is

underestimated by at least one-third (Harmon et al., 2009;

Moore et al., 2017). Our study observed that the fine root

system retained a considerable part of the initial mass (40.29%~

48.46%) after 30 months of decomposition. In the first 18 months

of this study, the root decomposition coefficient was significantly

greater than that in the entire decomposition stage (Table 2),

indicating that the short-term root decomposition coefficient

would overestimate the root decomposition rate. These studies

show that root decomposition is a long-term process and long-

termwork is needed to fully understand the effects of N deposition

on decomposition.
Conclusion

The effect of nitrogen addition on decomposition varied with

decomposition stages. N addition promotes early-stage and

inhibits late-stage decomposition of fine roots. The inhibition

of lignin-degrading enzyme activity by N addition may be the

mechanism of the observed negative effect on the late

decomposition stage. The decomposition difference between

the lower-order and higher-order fine roots were controlled

strongly by the initial chemical quality of the fine roots. High N
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addition increased soil organic matter content and decreased soil

pH and P content, indicating that increasing N deposition would

increase soil C sequestration, but also lead to soil acidification in

Pinus massoniana plantations. This study provides new insights

into understanding and predicting possible changes in plant root

decomposition and soil properties in the future atmospheric N

deposition increase scenarios. However, due to the fine root

system retained a considerable part of the initial mass (40.29%~

48.46%) after 30 months of decomposition, short-term root

decomposition coefficient would overestimate the root

decomposition rate. Thus, long-term work is needed to fully

understand the effects of N deposition on decomposition.
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