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model for screening tea
germplasm resources with
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Drought tolerance and quality stability are important indicators to evaluate the

stress tolerance of tea germplasm resources. The traditional screening method

of drought resistant germplasm is mainly to evaluate by detecting physiological

and biochemical indicators of tea plants under drought stresses. However, the

methods are not only time consuming but also destructive. In this study,

hyperspectral images of tea drought phenotypes were obtained and

modeled with related physiological indicators. The results showed that: (1)

the information contents of malondialdehyde, soluble sugar and total

polyphenol were 0.21, 0.209 and 0.227 respectively, and the drought

tolerance coefficient (DTC) index of each tea variety was between 0.069 and

0.81; (2) the comprehensive drought tolerance of different varieties were (from

strong to weak): QN36, SCZ, ZC108, JX, JGY, XY10, QN1, MS9, QN38, and

QN21; (3) by using SVM, RF and PLSR to model DTC (drought tolerance

coefficient) data, the best prediction model was selected as MSC-2D-UVE-

SVM (R2 = 0.77, RMSE = 0.073, MAPE = 0.16) for drought tolerance of tea

germplasm resources, named Tea-DTCmodel. Therefore, the Tea-DTCmodel

based on hyperspectral machine-learning technology can be used as a new

screening method for evaluating tea germplasm resources with

drought tolerance.

KEYWORDS

tea germplasm resources, hyperspectral imaging, machine learning, nondestructive
testing, drought tolerance
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1 Introduction

With global warming, drought has become one of the major

natural disasters (Sharma and Kumar, 2005). This problem is

becoming more and more serious (Farooq et al., 2012). It is

reported that drought reduced tea production by 14-33%,

resulting in 6-19% plant death (Cheruiyot et al., 2010). Under

drought stress, the yield and quality of tea plants will decline,

seriously restricting tea production. At present, the cultivation of

drought-resistant tea varieties by traditional methods is not only

long in a cycle, low in efficiency, but also large in investment,

which limits the cultivation speed of new varieties. Therefore, it

is urgent to find a short cycle, high efficiency, and comprehensive

evaluation method to speed up the selection of drought-resistant

tea varieties.

Cultivating drought resistant tea variety is one of the

effective ways to deal with drought stress. At present, the

traditional method of cultivating drought resistant tea varieties

not only has a long period, low efficiency, but also has a large

investment, which limits the cultivation speed of new varieties.

Therefore, it is urgent to find a method with short cycle, high

efficiency and comprehensive evaluation to speed up the

selection of drought resistant tea germplasm resources and the

breeding of new drought resistant tea varieties. In order to

evaluate the drought tolerance of tea germplasm resources, our

research team used three machine learning models (Sizhou et al.,

2021), SVM, RF and PLS, to model malondialdehyde (MDA),

electrolyte leakage (EL), maximum efficiency of light system (Fv/

Fm), soluble sugar (SS) and drought damage degree (DDD) of

tea. The results showed that the CARS-PLS model of MDA was

the best among the four physiological and biochemical

indicators (Rcal=0.96, Rp=0.92, RPD=3.51). UVE-SVM model

performs best in DDD (Rcal=0.97, Rp=0.95, RPD=4.28).

Therefore, by using hyperspectral imaging technology to

establish a machine learning model, the drought degree of tea

seedlings under drought stress can be monitored. This method is

not only fast and accurate, but also nondestructive.

In the past few years, many studies have recorded and

explained the physiological and biochemical reactions of plants

under drought conditions. Under drought stress, the content of

soluble sugar in tea will slowly increase, making osmotic

pressure increase, so as to improve the water holding capacity

of cells (Palta et al., 2012). Drought stress will cause tea to

produce too many active oxygen species and their derivatives

(Impa et al., 2012), such as malondialdehyde. The increase of its

content will lead to changes in cell membrane permeability,

leading to plant senescence and death. The growth of tea plants

is slow and often stops. The quality indicators of tea plants, such

as the synthesis of tea polyphenols, will be affected, and their

contents will gradually decrease (Upadhyaya et al., 2012). In the

process of rehydration, the physiological activity of plants will

tend to be normal or even better. Our research team’s previous

research results show that MDA and SS can largely reflect the
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degree of stress on tea plants, and are positively correlated with

the degree of stress. In this experiment, the factor of tea tree

quality stability under drought stress was added. Because tea tree

contains high content of polyphenols, its content changes with

the change of stress degree. After comparing several indicators, it

is believed that polyphenols are representative components of

quality, and its content is negatively correlated with the degree of

stress. This phenomenon has also been confirmed in the results

of this experiment. Therefore, we choose the MDA, SS and total

polyphenol as indicators to evaluate the drought tolerance of

tea plants.

In this study, hyperspectral imaging technology was used to

comprehensively evaluate the drought tolerance of different tea

germplasm resources, including drought tolerance, post-stress

recovery, and quality maintenance. CRITICAL method is based

on the contrast strength of evaluation indicators and the conflict

between indicators to comprehensively measure the objective

weight of indicators, so we used the method to analyze the

information expression of different types of physiological and

biochemical data in the overall performance, and the three indexes

of malondialdehyde, soluble sugar, and total polyphenol contents

were weighted respectively to calculate the drought tolerance

coefficient (DTC) of tea plants. MSC, SNV, 1D, 2D, S-G and

other methods were used to preprocess hyperspectral data, and

multiple feature band filtering algorithms such as UVE, CARS and

SPA were used to extract feature bands. SVM, PLSR, RF and other

modeling algorithms were used to model the characteristic band

and stress tolerance index, and used to screen tea drought resistant

germplasm resources.
2 Materials and methods

2.1 Experimental design

The experiment was conducted at the scientific research

greenhouse of Qingdao Agricultural University. The

temperature of the greenhouse was 30° C during the day, the

lighting time was 12 hours, the average light intensity was

10.6klus, and the temperature at night was 24° C, without

light. There were ten tea varieties, including SCZ, ZC 108, MS

9, QN 1, QN 21, QN 36, QN 38, JGY, JX, and XY 10. The age of

seedlings is three-year-old. There are 28 plants for each variety,

with a total of 280 experimental seedlings. The test soil is mixed

(40% subsoil, 40%matrix soil, 10% vermiculite, and 10% perlite).

Tea seedlings were sterilized and planted in pots. The pre-culture

stage was from November 24, 2021, to December 8, 2021, during

which the soil moisture was maintained at 60% ~ 80%, the air

humidity was maintained at 50%, and the greenhouse was

ventilated for 2 ~ 4 hours every day. After the pre-culture

stage, to simulate the natural water loss of tea plants under

drought conditions, all water supply was stopped, and other

conditions remained unchanged. The sampling started on
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December 9, 2021, with a sampling interval of 3 days. The

sampling time was from 10:00 to 14:00 during the day when the

physiological activity of tea plants is relatively significant. Four

canopy samples were taken for each variety, with a total of 40

samples (Wei et al., 2009; Cao et al., 2015). The samplings were

repeated five times during the drought stress. On December 28,

2021, the drought stress test was stopped and the rehydration test

was started. The culture conditions were the same as those in the

pre-culture stage, and the sampling interval was 3 days. Four

canopy samples were collected for each variety, with a total of 40

samples. These samplings were repeated twice in the rehydration

stage, and the test deadline was January 7, 2022. Two hundred and

eighty samples were collected in this test. We used PMS710 soil

moisture meter to measure and record the sample soil moisture

during the test. Figure 1 shows the average soil relative humidity

of the sample plants measured at each sampling.
2.2 Data acquisition

2.2.1 Acquisition and correction of
hyperspectral data

Hyperspectral image acquisition system equipment mainly

includes GaiaField Pro-V10 HSI camera (Jiangsu Dualix

Imaging Technology Co., Ltd, China), Light source (color

temperature light source is 3000 K, Hsia-ls-t-200w, China),

supporting computer, darkroom and other components.

Camera parameter settings: the exposure time is 22ms, the

built-in lens pushing speed is 15s/cube, the spectral scanning

range is 400 ~ 1000nm, the spectral interval is 1.667nm, the

number of scanning bands is 360 bands, the image spatial

resolution is 960 * 1040 (2X), the collected data size is 960 *

1101 * 360, the camera field of view angle is 22°, and the
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maximum DN value is 65552. Use the above equipment to

collect the hyperspectral images of the tea tree canopy. The

object distance is 20cm. Before and after the shooting, take the

whiteboard and the black background respectively for later

calibration. Specview (Jiangsu Dualix Imaging Technology Co.,

Ltd, China) is used to process and correct the original

hyperspectral images sampled each time to obtain accurate

hyperspectral image reflectance (between 0 and 1). In the

software envi5.3 (Research Systems Inc., Boulder Co., United

States), the mask method is used to extract the average spectral

data of each hyperspectral image (Figure 2), and a 280 * 360

spectral matrix is obtained to facilitate subsequent processing.

Leaf samples taken by hyperspectral camera will be used as

samples for physiological and biochemical tests.

2.2.2 Acquisition and analysis of physiological
and biochemical indexes

To obtainmore accurate data, the physiological and biochemical

indexes of the samples were measured immediately after the

hyperspectral images of the top view of the samples were collected.

During thedetermination, each samplehas3 technical replicates, and

the average value is taken as the test measurement value.

Determinationofmalondialdehyde content: themalondialdehyde

content of the leaves corresponding to the hyperspectral images was

determined using the malondialdehyde content Kit (Suzhou Grace

Biotechnology Co., Ltd, Suzhou, China).

Determination of soluble sugar content: the soluble sugar

content of the leaves corresponding to the hyperspectral images

was determined by using the soluble sugar content Kit (Suzhou

grace Biotechnology Co., Ltd, Suzhou, China).

Determination of total phenol: the total phenol content of the

whole canopy was determined using the total phenol method Kit

(Suzhou grace Biotechnology Co., Ltd, Suzhou, China). The content
FIGURE 1

Value and trend of soil relative water content during the stress test.
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data of physiological and biochemical components of tea leaves

measured with the kit are shown in supplementary Table 1

2.2.3 Acquisition of DTC index of tea
germplasm resources

To more intuitively understand the performance of different

tea varieties at different stages, after obtaining the above

physiological and biochemical data, the Tukey HSD method in

SPSS software was used to analyze the significance of the data

(P< 0.05), and different indicators were used to evaluate the

difference of tea germplasm resources under water stress. The

contribution degree of three indicators in drought evaluation is

analyzed by using the CRITICAL objective weighting method,
Frontiers in Plant Science 04
and the information amount and weight of different indicators

were compared and obtained a comprehensive indicator DTC

(Drought Tolerance Coefficient) which can comprehensively

evaluate the drought tolerance, recovery ability and quality

maintenance ability of tea plants.
2.3 Preprocessing of spectral data

To eliminate the influence of surface scattering, different

scattering levels, and optical path changes on the diffuse

reflection spectrum, improve the signal-to-noise ratio of

spectral data, eliminate the baseline shift of spectral data
FIGURE 2

Flowchart of spectral data extraction.
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caused by environmental interference, and diffuse reflection and

spectrum overlap, we used standard normal variable

transformation (SNV) (Sandak et al., 2016), multivariate

scattering correction (MSC) (Zhao et al., 2005; Shao et al.,

2012), S-G smoothing (Lu et al., 2019)(Savitzky-Golay). The

first-order differential (Tian et al., 2005) (1D) and the second-

order (Chu, 2004) differential (2D) preprocess the extracted

spectral data in different combinations. The relevant formula is

as follows:

S tan dard normal transformation :XSNV =
x − �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

k=1
xk−�xð Þ2

m−1ð Þ

r

Where �x = om
k=1

xk
m , m is the number of wavelength points, k =

1, 2, …, m

Multiple scattering correction :X(i) = o
n
i=1x(i)

n

X(i) = m(i)*x(i) + b(i)

X(i) mscð Þ =
x(i) − b(i)

m(i)

Where X is the original spectral matrix of the sample, X(i),m

(i), b(i), X(i)(msc)is the average value of the surface original

spectrum, the regression constant, the regression coefficient,

and the MSC correction spectrum of the i the sample.

S − G smoothing :X*i = oj=−rXi +Wj

or
j=−rWj

Where X*i , Xi is the spectral data point before and after S-G

smoothing, Wj is a weight factor obtained by smoothly moving

the window using the window width 2R + 1.

First derivative :
dy
dl

=
yi+1 − yi
Dl

Second derivative :
d2y
dl2

=
yi+1 − 2yi + yi−1

Dl2
2.4 Selection of characteristic
wavelength

To improve the operational efficiency and accuracy of the

model, we used three algorithms, namely continuous projection

algorithm (SPA), competitive adaptive reweighted sampling

(CARS), and uninformative variable elimination (UVE), to

screen the whole bands (Chen and Chen, 2005; Wu et al.,

2009; Shi et al., 2018), and obtain the characteristic bands with

the strongest correlation with the dependent variable as the

input of the model.
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2.5 Model establishment and evaluation

In this study, a total of 280 data sets of tea canopy were

collected, and each data set was composed of average

hyperspectral data and DTC. The data set was divided into

training sets (210) and validation sets (70) according to the ratio

of 3:1. After the spectral data were processed in the above

process, the corresponding prediction models were established

by using support vector machine (SVM), random forest (RF)

and partial least squares regression (PLSR) (Vapnik, 1998;

Carrascal et al., 2010; Dong and Huang, 2013; Li, 2013; Zhou,

2016). The stability and accuracy of the model were evaluated by

the determination coefficient (R2), root means square error

(RMSE), and mean absolute percentage error (MAPE) (Dodge,

2006; Aptula et al., 2010; Alam Akbar and Subiakto, 2013). R2,

RMSE, and MAPE are calculated as follows:

R2 = o
n
i=1 ŷ i − �yið Þ2

on
i=1 yi − �yið Þ2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 ŷ i − yið Þ2

r

MAPE =
100%
n o

n

i=1

ŷ i − yi
yi

����
����

Where n is the number of samples, yi is the true value of the

sample target variable, ŷ i is the target variable value predicted

using the regression model.
3 Results and analysis

3.1 Comprehensive analysis of tea
germplasm resources with drought
tolerance and establishment of DTC

It can be seen from Figure 3 that the index difference among

different treatments is high, in which the content of

malondialdehyde and soluble sugar was positively correlated

with the stress time, and the content of total phenol is negatively

correlated. The physiological indexes of different varieties of tea

plants changed during drought stress. The contents of

malondialdehyde and soluble sugar of all varieties increased

first and then decreased, and reached a peak from 13 to 17 days

of drought. Among them, the MDA content of ‘JX’ reached the

highest value of 19.18nmol/g on the 13th day of drought, and the

soluble sugar of ‘XY 10’ reached the highest value of 40.15mg/g

on the 17th day of drought. The content of total phenol

decreased first and then increased, and reached the lowest

level on the 17th day of the drought. Among them, the

content of ‘ZC 108’ was the lowest, 2.15mg/g. Under the same

stress treatment, the difference in component content among
frontiersin.org
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varieties decreased with the increase of stress time. On the first

day of drought stress, the highest MDA content of ‘JGY’ was

37.06% higher than that of ‘QN 38’. On the 17th day of drought

stress, the highest MDA content of ‘QN 38’ was 36.68% higher

than that of Xinyang 10. On the first day of drought stress, the

highest SS content of ‘MS 9’ was 56.94% higher than that of

Xinyang 10. On the 17th day of drought stress, the highest SS

content of ‘XY 10’ was 29.32% higher than that of ‘QN 1’, with a

relative decrease of 17.62%. On the first day of drought stress, the

highest TP content of ‘JGY’ was 56.12% higher than that of ‘JX’.

On the 17th day of drought stress, the highest TP content of ‘QN

1’ was 55.69% higher than that of ‘JX’. To better understand the

relationship between drought tolerance and water stress of

different varieties, we statistically analyzed the content changes

of physiological and biochemical indexes of tea varieties in

different periods. The fluctuation range of indexes is shown in
Frontiers in Plant Science 06
Figure 4, and the descriptive statistical results are shown

in Table 1.

Through the analysis of the change trend chart and

descriptive data of malondialdehyde content, it is known that

the average value and dispersion coefficient of ‘MS 9’, ‘QN 1’,

‘QN 36’, ‘QN 38’, and ‘XY 10’ are low, and the oxidative

metabolic activity is low during the water stress period, and

the comprehensive performance is good. Through the analysis of

the change trend chart of soluble sugar content and descriptive

data, it is known that the average value and dispersion coefficient

of ‘ZC 108’, ‘MS 9’, ‘QN 1’, ‘QN 21’, and ‘QN 36’ were low, the

osmotic pressure was maintained well, and the comprehensive

performance is good. According to the analysis of the change

trend chart of total phenol content and descriptive data, the total

phenol content of ‘ZC 108’, ‘QN 1’, ‘QN 36’, ‘JX’, and ‘XY 10’

remained at a high level and the dispersion coefficient was small,
FIGURE 3

Statistical analysis of physiological and biochemical indexes (malondialdehyde, soluble sugar and total polyphenol content) data of tea
germplasm resources in different periods. MDA, malondialdehyde; SS, soluble sugar; TP, total phenol.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1048442
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2022.1048442
and the quality retention ability was strong during the stress

period. However, the above assessments are all identification of

single indicators and do not meet the conditions for

comprehensive assessment and identification (Liang et al., 2014).

To further more comprehensively and directly identify the

tea germplasm resources with drought tolerance, we used the

CRITICAL objective weighting method to analyze the content of

malondialdehyde, soluble sugar, and total polyphenols. It was

found that the information contents of MDA, SS, and TP were

0.21, 0.209, and 0.227 respectively, accounting for 32.57%,

32.32%, and 35.11% respectively. We used the range method

to make the data of physiological and biochemical indexes

positively correlated with stress time. After weighted
Frontiers in Plant Science 07
calculation for all individuals, we obtained the DTC index of

each tea individual. The higher the DTC index, the stronger the

drought tolerance ability, the lower the DTC index, and the

weaker the drought tolerance ability. The DTC distribution of

each variety is shown in Figure 5.

It can be seen from Figure 5 that in the distribution with

small dispersion, ‘QN1’, ‘QN 21’, and ‘MS 9’ account for a high

proportion. As shown in Table 2, by comparing the percentages

of different varieties in the overall median and the overall

average, the comprehensive drought tolerance of all varieties is

ranked. The ranking results from high to low are: QN 36, SCZ,

ZC 108, JX, JGY, XY 10, QN 1, MS 9, QN 38 and QN 21. Among

them, ‘QN 38’ and ‘QN 21’ had good drought tolerance, but their
FIGURE 4

Change trend of physiological indexes (malondialdehyde, soluble sugar and tea polyphenol content) of tea germplasm resources.
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quality stability is poor. The reason may be that the polyphenol

content of these two varieties is lower than that of other varieties

during drought stress or water sufficiency period, so the

comprehensive score is low.

In the traditional methods, the destructive detection is time-

consuming and laborious, and the manual observation of tea

seedlings has a certain delay error and subjective error.

Therefore, we recorded not only the spectral data, but also the

phenotypic change data of the samples during the test to ensure

that there was no obvious change in the aboveground part of the

samples during the test. As shown in Figure 6, in this

experiment, there was little difference in the phenotype of the

aboveground tissues of various tea varieties before and after

stress, at the end of stress, and the end of rehydration. On the

contrary, the root system of the underground part of tea

seedlings developed and grew. Therefore, it is difficult to select
Frontiers in Plant Science 08
varieties and individuals with both drought tolerance and quality

maintenance ability by observing the difference in the

aboveground part of tea germplasm resources during drought

stress. Hyperspectral imaging technology has changed the

traditional methods of germplasm resource identification and

can speed up the selection process of tea drought-resistant

varieties in terms of time and efficiency.
3.2 Processing results of hyperspectral
data

To improve the reliability of spectral data, the preprocessing

visualization data of average spectral data of all samples are

shown in Figure 7. Compared with the original data, the spectral

data after MSC correction enhances the correlation between the
TABLE 1 Changes of physiological and biochemical data of tea germplasm resources in different periods.

Index Varieties Drought for
1 day

Drought for
5 days

Drought for
9 days

Drought for
13 days

Drought for
17 days

Rehydration for
4 days

Rehydration for
8 days

MDA ‘SCZ’ 8.23 ± 0.36 12.52 ± 0.66 11.51 ± 0.32 18.93 ± 1.28 17.98 ± 0.41 11.69 ± 0.39 8.99 ± 0.22

‘ZC 108’ 8.54 ± 0.52 11.45 ± 0.81 11.38 ± 0.48 15.03 ± 0.58 17.13 ± 0.37 13.18 ± 0.65 8.48 ± 0.39

‘MS 9’ 8.97 ± 0.31 11.56 ± 0.54 11.92 ± 0.49 12.56 ± 0.92 16.56 ± 0.74 11.94 ± 0.67 10.16 ± 1.47

‘QN 1’ 8.83 ± 0.62 8.61 ± 0.61 11.87 ± 0.99 13.53 ± 0.82 17.09 ± 0.86 10.83 ± 0.42 10.21 ± 1.39

‘QN 21’ 9.44 ± 0.47 10.07 ± 0.87 10.98 ± 0.60 15.25 ± 1.12 16.64 ± 0.43 13.43 ± 0.68 9.82 ± 0.57

‘QN 36’ 8.58 ± 0.43 9.26 ± 0.82 10.72 ± 0.38 13.72 ± 0.75 16.97 ± 1.26 10.65 ± 0.31 10.41 ± 0.55

‘QN 38’ 7.77 ± 0.27 9.31 ± 0.44 9.59 ± 0.56 15.33 ± 1.71 18.07 ± 0.89 12.62 ± 0.49 11.54 ± 0.25

‘JGY’ 10.65 ± 0.87 8.98 ± 0.76 12.24 ± 0.85 14.77 ± 1.31 15.40 ± 0.59 14.49 ± 0.89 13.51 ± 0.88

‘JX’ 9.07 ± 0.64 9.83 ± 0.55 13.95 ± 1.33 19.18 ± 2.10 14.74 ± 0.63 13.14 ± 1.07 12.01 ± 0.96

‘XY 10’ 8.50 ± 0.35 15.87 ± 1.07 10.11 ± 0.23 13.72 ± 0.70 13.22 ± 0.59 11.83 ± 0.85 11.79 ± 0.46

SS ‘SCZ’ 17.21 ± 1.74 10.32 ± 0.56 12.58 ± 0.63 21.02 ± 1.71 35.12 ± 3.99 24.07 ± 1.68 15.76 ± 0.75

‘ZC 108’ 17.81 ± 3.33 14.77 ± 0.97 24.59 ± 1.94 28.99 ± 2.47 29.60 ± 1.12 22.38 ± 1.63 20.34 ± 3.35

‘MS 9’ 18.51 ± 0.99 21.534 ± 0.99 23.95 ± 1.46 35.93 ± 1.19 29.01 ± 1.28 28.79 ± 3.24 23.76 ± 2.81

‘QN 1’ 16.54 ± 0.89 25.68 ± 0.74 25.07 ± 2.39 32.11 ± 1.09 28.63 ± 0.75 22.73 ± 1.59 24.97 ± 0.89

‘QN 21’ 18.11 ± 2.09 22.47 ± 1.24 18.43 ± 0.48 36.58 ± 1.42 29.92 ± 0.92 22.38 ± 0.22 21.04 ± 1.71

‘QN 36’ 14.85 ± 0.64 23.91 ± 1.01 21.66 ± 0.57 32.99 ± 2.06 32.99 ± 1.77 25.29 ± 0.91 21.36 ± 3.05

‘QN 38’ 13.44 ± 1.92 25.38 ± 0.84 16.86 ± 1.54 31.70 ± 0.74 35.20 ± 0.72 21.04 ± 1.63 23.39 ± 2.11

‘JGY’ 10.96 ± 1.13 18.45 ± 2.18 18.08 ± 1.61 33.04 ± 2.89 34.61 ± 3.39 17.21 ± 1.24 16.41 ± 2.77

‘JX’ 11.28 ± 1.19 19.81 ± 2.16 18.98 ± 1.57 30.84 ± 1.03 38.11 ± 2.19 19.58 ± 1.49 14.91 ± 1.39

‘XY 10’ 8.27 ± 0.76 23.784 ± 1.96 22.08 ± 1.93 32.94 ± 1.56 40.51 ± 2.17 19.47 ± 1.01 21.74 ± 2.97

TP ‘SCZ’ 5.48 ± 0.41 4.94 ± 0.25 4.14 ± 0.32 3.99 ± 0.19 3.86 ± 0.15 4.69 ± 0.18 6.59 ± 0.28

‘ZC 108’ 7.950.15 7.02 ± 0.29 5.07 ± 0.14 3.42 ± 0.11 2.15 ± 0.13 6.23 ± 0.33 6.58 ± 0.53

‘MS 9’ 5.13 ± 0.36 4.04 ± 0.13 2.12 ± 0.23 3.34 ± 0.29 2.62 ± 0.31 6.44 ± 0.89 7.37 ± 0.41

‘QN 1’ 4.13 ± 0.44 1.96 ± 0.19 5.81 ± 0.32 3.86 ± 0.29 5.01 ± 0.36 4.31 ± 0.11 6.81 ± 0.47

‘QN 21’ 6.25 ± 0.19 3.69 ± 0.23 2.08 ± 0.36 3.38 ± 0.29 2.75 ± 0.34 3.92 ± 0.26 4.57 ± 0.32

‘QN 36’ 6.18 ± 0.31 5.01 ± 0.09 4.76 ± 0.13 4.69 ± 0.39 4.12 ± 0.09 4.78 ± 0.28 7.59 ± 0.46

‘QN 38’ 6.95 ± 0.44 4.35 ± 0.07 2.94 ± 0.23 2.53 ± 0.29 3.06 ± 0.39 3.95 ± 0.18 4.13 ± 0.31

‘JGY’ 8.57 ± 0.23 8.09 ± 0.35 4.79 ± 0.28 3.51 ± 0.43 2.83 ± 0.27 5.72 ± 0.38 5.37 ± 0.49

‘JX’ 3.76 ± 0.15 5.11 ± 0.29 4.97 ± 0.11 2.96 ± 0.11 2.22 ± 0.21 4.67 ± 0.25 6.11 ± 0.38

‘XY 10’ 5.91 ± 0.26 4.85 ± 0.26 4.44 ± 0.04 4.01 ± 0.17 3.91 ± 0.09 5.59 ± 0.21 6.89 ± 0.32
The data in the table are the mean of three repetitions ± standard error of mean.
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spectral data. SNV expand the upper and lower limits of the data

and eliminated the diffuse reflection of most of the data. To

enhance the stability of the data and improve the signal-to-noise

ratio, we subsequently used the optimal S-G smoothing and

differentiation method to process the hyperspectral data. The

data after the S-G smoothing and differentiation method were

smoother in distribution and has convexity. The data

visualization is shown in Figure 7 (d). After the later

evaluation of the model, we found that such processing is

more conducive to the later feature filtering algorithm to

extract feature bands.

For the preprocessed average spectral data and dependent

variable data set, SPA, CARS, and UVE algorithms were used to
Frontiers in Plant Science 09
screen the characteristic bands. The variable screening results of

the three algorithms are shown in Figure 8. The optimal

characteristic bands screened by SPA, CARS, and UVE

algorithms are 95, 42, and 63 respectively. The characteristic

bands screened by the SPA algorithm are sparsely distributed

between 500 ~ 800nm, the characteristic bands screened by the

CARS algorithm are sparsely distributed within 600 ~ 800, the

characteristic bands screened by the UVE algorithm are

distributed around 550nm and 600nm, and between 700 ~

800nm. The characteristic bands screened by the three

algorithms are mainly distributed between 391 ~ 440nm and

800 ~ 1000nm. This may be because, in the visible light range of

400-700nm (Wang et al., 2018), tea absorbs a large amount of
FIGURE 5

Statistical analysis results and distribution of DTC of different tea germplasm resources.
TABLE 2 Proportion of DTC of different tea germplasm resources in all tested individuals.

Number of samples less than the overall DTC
average (0.4487)

Percentage
(%)

Number of samples less than the overall DTC
median (0.4344)

Percentage
(%)

‘SCZ’ 18 6.43% 18 6.43%

‘ZC
108’

19 6.79% 17 6.07%

‘MS
9’

12 4.29% 11 3.93%

‘QN
1’

14 5% 12 4.29%

‘QN
21’

9 3.21% 8 2.86%

‘QN
36’

19 6.79% 18 6.43%

‘QN
38’

13 4.64% 9 3.21%

‘JGY’ 17 6.07% 16 5.71%

‘JX’ 18 6.43% 16 5.71%

‘XY
10’

16 5.71% 15 5.36%
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visible light. However, under drought stress, tea photosynthesis

weakens visible light reflection increases and the original spectral

reflectance of the canopy increases. In the near-infrared range of

700-1000 nm, the changes in the internal structure of the leaves

affected the spectral reflectance of the canopy (Mu et al., 2012;

Xu et al., 2017). We will continue to study the relationship

between this band interval and tea phenotype.

The original band data set, the spectral data set with different

preprocessing, and the optimal characteristic band data set were

respectively input into SVM, RF, and PLSR algorithms. The

model evaluation results of different treatment methods are

shown in Figure 9. Table 3 records more detailed model data.

It can be seen from the scatter plot that the models established

based on the original spectral data set have the worst effect, such

as None-SVM, None-PLSR, and None-RF models, among them,

the PLSR model (R2
te = 0:7, RMSEte = 0.84, MAPEte = 0.19)

based on the original spectrum performs best and has a good

prediction effect, but the prediction error is not meeting

expectations. To further reduce the prediction error, we

established a model based on scattering correction. But these

models have poor prediction accuracy and a long calculation

time, among them, the MSC-PLSR model (R2
te = 0:66, RMSEte =

0.09, MAPEte = 0.19) performs best. The prediction effect of this

model performs quite ordinary, but the prediction error is small.
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To further improve the prediction effect and reduce the

prediction error, we established a model based on scattering

correction and mathematical transformation processing (1D,

2D, and S-G). Among them, the MSC-2D (5)-PLSR model

(R2
te = 0:75, RMSEte = 0.076, MAPEte = 0.16) performs best.

The prediction effect and prediction error of this model are

excellent. To improve the operation speed of the model and

improve the prediction accuracy of the model, we established a

model based on scattering correction. Among the models of

mathematical transformation processing and feature filtering

algorithm, the MSC-2D (3)-UVE-SVM model (R2
te = 0:77,

RMSEte = 0.073, MAPEte = 0.16) is the best. The prediction

accuracy and prediction error of this model are the best among

all models, which improves the accuracy of prediction and

reduces the calculation time of model prediction. This shows

that, the accuracy of the model established based on a variety of

algorithms has been greatly improved, which may be because a

variety of preprocessing algorithms have improved the signal-to-

noise ratio of spectral data, increased the analysis and regression

ability of linear and nonlinear data, and provided a more

diversified calculation method for the model (Zhang et al.,

2019). Through the comparison of all the above prediction

models, it can be found that: the prediction accuracy of the

PLSR model is moderate, and the prediction error is larger than
FIGURE 6

Phenotypic changes of ten tea germplasm resources in three experimental stages (drought for 1day, drought for17days and rehydration
for 8days).
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that of the RF model and SVM model. The model established by

the RF algorithm is mediocre in prediction accuracy and

prediction error, and the SVM model is better than the former

in prediction accuracy and prediction error.

After comparing the accuracy and error of all prediction

models, we screened three models for horizontal comparison.

These three models are MSC-2D (3)-UVE-SVM, MSC-2D (3)-
Frontiers in Plant Science 11
UVE-RF and SNV-2D (5)-UVE-PLSR. Figure 10 shows the

prediction and regression diagrams of SVM, RF and PLSR

respectively. According to the regression degree and prediction

trend shown in Figure 10, it can be seen that in this experiment,

the various indexes of this SVM model are slightly better than

those of RF and PLSR models, so the optimal prediction model

combination of drought-resistant tea germplasm DTC is MSC-
FIGURE 8

The characteristic bands screened by SPA, CARS and UVE algorithms.
A B

DC

FIGURE 7

Changes of spectral data under different pretreatment methods. (A) Original bands image; (B) Bands image after MSC processing; (C) Bands
image after SNV processing; (D) Bands image after second-order differential and S-G method processing.
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FIGURE 9

Visualization of evaluation index of all modeling methods.
TABLE 3 Evaluation results of different prediction models.

Pretreatment
1

Pretreatment
2

Pretreatment
3

Feature extraction
algorithm

Modeling
method

Training set Testing set

R2 RMSE MAPE R2 RMSE MAPE

None None None None SVM 0.034 0.081 13.04% 0.034 0.15 39.09%

None None None None RF 0.64 0.097 20.50% 0.32 0.13 31.12%

None None None None PLSR 0.76 0.11 16.82% 0.7 0.08 18.60%

MSC None None None SVM 0.78 0.076 12.45% 0.53 0.11 22.41%

SNV None None None RF 0.86 0.06 12.80% 0.54 0.11 28.38%

MSC None None None PLSR 0.76 0.11 16.37% 0.66 0.1 19.12%

(Continued)
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TABLE 3 Continued

Pretreatment
1

Pretreatment
2

Pretreatment
3

Feature extraction
algorithm

Modeling
method

Training set Testing set

R2 RMSE MAPE R2 RMSE MAPE

MSC 2D S-G (7) None SVM 0.83 0.067 11.30% 0.71 0.083 18.31%

SNV 2D S-G (3) None RF 0.92 0.045 9.62% 0.73 0.08 20.36%

MSC 2D S-G (5) None PLSR 0.8 0.1 15.28% 0.76 0.076 16.44%

MSC 2D S-G (3) UVE SVM 0.9 0.05 7.83% 0.75 0.078 17.07%

MSC 2D S-G (3) UVE RF 0.91 0.048 10.30% 0.75 0.077 20.49%

SNV 2 S-G (5) UVE PLSR 0.8 0.1 15.01% 0.74 0.079 16.15%

MSC 2 S-G (3) CARS SVM 0.9 0.05 7.83% 0.75 0.078 17.07%

MSC 2D S-G (3) CARS RF 0.91 0.049 10.65% 0.73 0.08 21.21%

SNV 2D S-G (11) CARS PLSR 0.79 0.11 15.38% 0.68 0.087 18.25%

SNV 2D S-G (3) SPA SVM 0.87 0.059 9.62% 0.74 0.078 18.34%

SNV 1D S-G (11) SPA RF 0.91 0.048 10.43% 0.75 0.077 19.32%

SNV 2D S-G (5) SPA PLSR 0.8 0.1 15.28% 0.76 0.076 16.43%
Frontiers in Plant
 Science
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FIGURE 10

Modeling results and regression graphs of the three optimal algorithms (Top down are SVM, RF and PLSR).
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2D (3)-UVE-SVM model (R2
te = 0:77, RMSEte = 0.073, MAPEte

= 0.16).
4 Conclusion

In this experiment, drought and rehydration experiments

were conducted on several tea germplasm resources,

physiological, biochemical, and hyperspectral data were

collected, the weights of different physiological and

biochemical indexes in evaluating the drought tolerance of tea

plants were analyzed, and the original spectral data were cut and

processed by different algorithms, and the corresponding DTC

prediction model was established, and the feasibility and

advantages of this method were analyzed. The results of

physiological and biochemical detection and analysis showed

that the tea germplasm resources with drought tolerance from

strong to weak were: QN 36, SCZ, ZC 108, JX, JGY, XY 10, QN1,

MS 9, QN 38, and QN 21, and the best tea germplasm resource

with drought tolerance model established in this experiment was

MSC-2D (3)-UVE-SVM model (R2
te = 0:77, RMSEte = 0.073,

MAPEte = 0.16), this means that the screening of tea germplasm

resources with drought tolerance can be completed before there

is no obvious phenotypic change in the aboveground part of tea

germplasm resources. Therefore, using the hyperspectral camera

to screen tea germplasm resources with drought tolerance is an

efficient method. The model not only achieves the expected effect

but also has high prediction accuracy. Through the research and

application of this model, the identification and evaluation of tea

germplasm resources with long seedling stage and small

phenotypic change can be realized, so as to accelerate the

artificial breeding process of drought resistant tea

germplasm resources.
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