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Cowpea aphid (Aphis craccivora Koch) is a plant pest that causes serious

damage to vegetable crops. Extensive use of synthetic chemical pesticides

causes deleterious effects on consumers as well as the environment. Hence,

the search for environmentally friendly insecticides in the management of

cowpea aphids is required. The present work aims to investigate the aphicidal

activity of pomelo seed oil (PSO) on cowpea aphids, the possible insecticidal

mechanisms, its chemical constituent profile, as well as the toxicity of its

primary compounds. The results of the toxicity assay showed that PSO had

significant insecticidal activity against aphids with a 72-hour LC50 value of 0.09

mg/aphid and 3.96 mg/mL in the contact and residual toxicity assay,

respectively. The enzymatic activity of both glutathione S-transferase (GST)

and acetyl cholinesterase (AChE) significantly decreased, as well as the total

protein content, after PSO treatment, which suggested that the reduction of

AChE, GST, and the total protein content in aphids treated with PSO might be

responsible for the mortality of A. craccivora. The GC-MS analysis revealed that

PSO contained limonene (22.86%), (9Z,12Z)-9,12-octadecadienoic acid

(20.21%), n-hexadecanoic acid (15.79%), (2E,4E)-2,4-decadienal (12.40%), and

(2E,4Z)-2,4-decadienal (7.77%) as its five major compounds. Furthermore,

(9Z,12Z)-9,12-octadecadienoic acid showed higher toxicity to aphids than

both PSO and thiamethoxam (positive control). This study emphasized the

potential of PSO as a natural plant-derived insecticide in controlling cowpea

aphids and also provided a novel approach for the value-added utilization of

pomelo seed.
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Introduction

Pest causes extensive damage to the crops like grains and

vegetables by directly consuming the plant parts like shoots,

seeds, flowers, and plant sap (Wielkopolan et al., 2021), and

creates huge economic losses to the farmers in terms of loss of

yield and low-quality food products which cannot be

commercialized in the market (Mburu et al., 2020). In

addition, its waste excretion is deleterious to plants and

humans who consume the plants. It has been reported that

every year almost 5-30% of total global agricultural yield is

affected by pest infestation (Prusky, 2011). Aphis craccivora

Koch (Homoptera: Aphididae) commonly known as cowpea

aphid, is distributed worldwide, but particularly rampant in

warm temperate and tropical regions (Dolma et al., 2021).

Cowpea aphid is a polyphagous pest since it feeds on over 80

plant families with a preference for the family Fabaceae. It sucks

plant juice with sharp mouthparts, resulting in the deterioration

of plant nutrition and even defoliation (Arcaya et al., 2017).

Apart from that, it produces a large amount of honeydew, which

encourages the formation of sooty mold and slows the growth of

the plant (Paul and Das, 2021). Additionally, Aphid acts as a

vector of about 30 plant viruses including the Tobacco Etch

Virus (TEV) and the Papaya Ring Spot Virus (PRSV), both of

which exclusively damage the vegetative and edible crops (Wang

et al., 2006).

The most successful method of preventing cowpea aphid

infestations is the administration of chemical synthetic

pesticides. However, the continued use of this type of pesticide

harms the ecosystem and promotes the emergence of mutants

that are resistant to it (Slater et al., 2012; Richardson et al., 2022).

In addition, the majority of synthetic pesticides are not

biodegradable, so when rains wash them away, they could

contaminate both freshwater bodies and groundwater

(Gavrilescu, 2005; Baran et al., 2022). Thus, there is a need to

search for alternatives that have limited adverse effects on the

environment and are effective against target pests. One such

option is the use of botanical pesticides, which have exhibited

some control of crop pests (Opolot et al., 2006; Tembo et al.,

2018; Ngegba et al., 2022). Essential oils from aromatic plants

and their major constituents, were considered to be alternatives

to conventional synthetic pesticides for controlling many pests,

due to several advantages including rapid degradation, low

residual, and versatile mechanism of action (Czerniewicz et al.,

2018; Mostafiz et al., 2020; Zhou et al., 2021). For example, it was

reported that the essential oil of Hemizygia petiolata Ashby

containing high levels (>70%) of the sesquiterpene (E)-b-
farnesene, significantly reduced the numbers of pea aphid

(Acyrthosiphon pisum) in the field-plot experiment (Bruce

et al., 2005). In addition to essential oils, many other

secondary metabolites such as alkaloids, triterpenoids, steroids

and flavonoids present in plants were found showing insecticidal
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effects as well (Rattan, 2010; Boulogne et al., 2012; Vite-Vallejo

et al., 2018). Worthy of note, the crude alkaloid obtained from

Sophora flavescens was registered as a commercial botanical

pesticide in China, which not only can efficiently control

aphids, caterpillars and other pests on the tomato plant, but

also can improve the growth and development of this plant

(Xiong et al., 2016).

The essential oil obtained from pomelo peel is generally

recognized as safe and is rich in aromatic substances that can be

used as flavor and fragrance material in the food flavoring,

beverage, pharmaceutical, and cosmetic industries (Liu et al.,

2017). In addition, the essential oil from pomelo peel has been

reported to possess a broad spectrum of bioactivities, such as

anti-inflammatory, antioxidant, and antimicrobial effects (Uysal

et al., 2011; Xiao et al., 2021), and contain monoterpenoid

involving limonene, b-myrcene and b-pinene as its major

chemical compositions (Uysal et al., 2011; He et al., 2019).

However, the chemical composition and biological activity of

pomelo seed oil (PSO) are largely unknown. Most recently, Pu

et al. (2022) reported that theMajia pomelo seed oil had 39.32%

lipid mainly composed of linoleic acid and oleic acid, and was

not toxic to normal liver LO2 cells. In one of our previous

studies, the ethyl acetate extract from pomelo seed was found to

exhibit good antioxidant and herbicidal activities and contain

naringin, deacetylnomilin, limonin, nomilin, and obacunone as

its main components (Ling et al., 2021).

The present study is aimed to evaluate the insecticidal

activity of pomelo seed oil (PSO) against cowpea aphids and

its possible mechanism of action. Meanwhile, the chemical

composition of PSO is investigated by GC-MS analysis and the

primary compounds in PSO were then evaluated for aphicidal

effect. Since pomelo seed is generally considered a waste product

of the agriculture industry, the present study provided a novel

approach to the value-added utilization of pomelo seed.
Materials and methods

Chemical reagents

All chemicals used are of analytical grade. Bovine serum

albumin, 1-chloro-2,4-dinitrobenzene (CDNB), disodium

phosphate, Coomassie brilliant blue (G-250), acetylthiocholine

iodide (ATChI), and L-glutathione reduced (GSH) were

obtained from Macklin Biochemical Co. Ltd (Shanghai,

China). 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB),

phosphate buffer saline (PBS) buffer, and C7-C40 n-alkane

mixture were acquired from Sigma-Aldrich China Co. Ltd

(Shanghai, China). Limonene, (9Z,12Z)-9,12-octadecadienoic

acid, n-hexadecanoic acid, and (2E,4E)-2,4-decadienal were

purchased from Solarbio Science and Technology Co., Ltd.

(Beijing, China).
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The cultivation of cowpea aphids

Cowpea aphids (A. craccivora) adults were picked from the

farm yard nearby Gannan Normal University, China. The

aphids were collected from the infested and pesticides-

unsprayed cowpea plants. The aphids were reared on fresh

green cowpea plants and maintained in a greenhouse at 25 ±

2°C with 70 ± 5% relative humidity and 14:10 h (L:D)

photoperiod by using the method reported previously (Yeo

et al., 2003). Uniform-aged nymphs of aphids (4d old) were

selected for all subsequent experiments.
The preparation of pomelo seed oil

Commercially mature Shatian pomelos were harvested from

an orchard in Nankang, Jiangxi province, China. The fruits were

identified as Shatian pomelos (Citrus grandisOsbeck cv. shatian)

by Prof. Balian Zhong. The pomelo seeds were obtained from the

fresh fruits by hand and then dried at 50°C in an oven until

maintained constant weight. A voucher specimen of this dry PS

(NPR-201808) was deposited in the School of Life Science,

Gannan Normal University, China. Before extraction, the dry

seeds were cut into small pieces by scissors. The PSO was

prepared by heat extraction according to a previous method

with some modifications (Beveridge et al., 2005). Briefly, dried

and chopped pomelo seeds (2 kg), were extracted two times by

refluxing with 95% ethanol at 80°C, 2 h for each time, and then

concentrated at reduced pressure to obtain crude extract (250 g).

1.0 L of distilled water was added to suspend the crude extract

and then extracted two times with petroleum ether (1.0 L x 2).

The combined petroleum ether extract is concentrated by

vacuum concentration at 30°C to give PSO (68.08 g) with a

yield of 3.4% based on the weight of the dry seed. PSO is

immediately stored at 4°C in the refrigerator until use.
Residual toxicity assay

Residual toxicity was assessed using the methodology

reported previously with some modifications (Dolma et al.,

2021). The sample was dissolved in a 1% Tween-80 aqueous

solution to prepare a stock solution (80 mg/mL), which was then

subjected to two-fold dilution with distilled water to give

different concentrations (40, 20, 10, 5, and 2.5 mg/mL) of test

solutions. Freshly harvested green cowpea pods (Vigna

unguiculata L.) were washed with distilled water and cut into

4 cm-long pieces, which were then immersed in the test solutions

for 5 s. After that, the treated cowpea pods were taken out, dried

naturally at room temperature for 1 h, and then placed in a Petri

dish (12.5 cm in diameter) lined with moistened filter paper. The

cowpea aphids starved for 12 h were then put into the Petri dish.
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pods pretreated with samples. The Petri dishes were placed in a

light incubator with a temperature of 25 ± 2°C, relative humidity

of 70 ± 5%, and a light time of L: D = 14:10 h. The death of

cowpea aphid was recorded at 12, 24, 36, and 72 h after the

treatment. The cowpea aphid body was smoothly touched with a

soft brush under the dissecting microscope, and those who

responded to touching were considered to be alive. All the

assays were performed in triplicate, and the means ± SD

(standard deviation) were calculated. The 1% Tween-80

aqueous solution was used as a blank control. The mortality

was calculated as follows:

Mortality( % )

= (number of dead aphids=numberofallaphids tested) � 100

All mortality data were corrected by Abbott’s formula and

subjected to log-probit analysis to calculate LC50 values which

were expressed as the concentration (mg/mL) causing 50%

mortality of aphids.
Contact toxicity assay

The contact toxicity of samples on cowpea aphids was

assessed by following the methodology reported previously

(Zhou et al., 2016), with slight modifications. The sample was

dissolved in a 1% Tween-80 aqueous solution to prepare a stock

solution (80 mg/mL), which was then subjected to two-fold

dilution with distilled water to give different concentrations (40,

20, 10, 5, and 2.5 mg/mL) of test samples. Each test solution

(0.05 mL) was then topically applied on the pronotum of cowpea

aphids with a topical applicator (Model- PAX100-2, Burkard

Scientific, UK). 30 cowpea aphids were used for each

concentration tested. After the treatment, a soft brush was

used to transfer the cowpea aphids to a Petri dish (12.5 cm in

diameter) lined with moistened filter paper and containing fresh

cowpea pods. The Petri dish was then placed in a light incubator

with a temperature of 25 ± 2°C, relative humidity of 70 ± 5%,

and a light time of L: D = 14:10 h. The death of cowpea aphid

was recorded at 12, 24, 36, and 72 h after the treatment. The

cowpea aphid was smoothly touched with a soft brush under the

dissecting microscope, and those who responded to touching

were considered to be alive. All the assays were performed in

triplicate, and the means ± SD (standard deviation) were

calculated. The 1% Tween-80 aqueous solution and

thiamethoxam were used as a blank and positive control,

respectively. The corrected mortality and LC50 were calculated

by the same method as that on the residual toxicity assay. The

LC50 values were expressed as the amount per aphid received

(mg/aphid) which caused 50% mortality of aphids (Ma

et al., 2018).
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Preparation of tissue samples of aphids

The preparation of tissue samples of aphids for biochemical

assays was done following the methodology reported previously

with minor modifications (Czerniewicz et al., 2018). In brief, 50

cowpea aphids treated with PSO at the amounts of 0.56 mg/aphid
(the 24-hour LC30 in contact toxicity assay) or 1.28 mg/aphid
(the 24-hour LC50 in the contact toxicity assay), were transfer to

a Petri dish (12.5 cm in diameter) lined with moistened filter

paper and containing fresh cowpea pods. The petri dish was then

placed in a light incubator with a temperature of 25 ± 2°C,

relative humidity of 70 ± 5%, and a light time of L: D = 14:10 h.

After 4, 8, 12, and 24 h of treatment, 10.0 mg of aphids were then

taken out and homogenized in 1 mL of PBS buffer (0.04 M, pH =

7.4) at 0°C. The resultant homogenate was subjected to

centrifugation at 1500×g for 10 min at 4°C, and the

supernatant was collected and used to determine the total

protein contents, GST, and AChE activities. All the

experiments were conducted in triplicate and the aphids

treated with 1% Tween-80 aqueous solution were used as

blank control.
Determination of total protein contents

The total protein contents of cowpea aphids after PSO

exposure were measured according to the previous method

(Elbanhawy et al., 2019). The reaction solution contained 10

mL of the supernatant obtained above and 270 mL of Coomassie

brilliant blue (G-250). After the mixture was incubated for 5 min

at 25°C, the OD (optical density) was immediately recorded by

using a Tecan Spark® 10M microplate reader (Männedorf,

Switzerland) at 595 nm. The total protein content was

calculated based on an albumin standard curve and expressed

as mg per gram of aphid (mg/g). All the assays were performed

in triplicate, and the means ± SD (standard deviation)

were calculated.
Determination of GST activity

The glutathione S-transferase (GST) activity was tested

following the method reported previously with some

modifications (Vontas et al., 2001). To a well of 96-well plate,

the enzyme solution (10 mL) was added, followed by the addition
of GSH (100 mL, 6 mM in PBS) and CDNB (100 mL, 1.2 mM in

1% ethanol/PBS (v/v)) in sequence. The OD value at 340 nm was

immediately recorded at regular intervals of 30 s for 40 min by

using a Tecan Spark® 10M microplate reader (Männedorf,

Switzerland). For the blank control, 10 mL of PBS buffer (0.04

M, pH = 7.4) was used instead of enzyme solution. The relative

enzymatic activity of GST was expressed as the change of OD
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time versus OD value. All the experiments were conducted

in triplicate.
Determination of AChE activity

The acetyl cholinesterase (AChE) activity was analyzed

following the methodology reported previously with slight

modifications (Bezerra da Silva et al., 2016). In brief, To a well

of 96-well plate, the enzyme solution (50 mL) was added,

followed by the addition of ATChI (150 mL, 20 mM in PBS)

and DTNB (50 mL, 1.0 mM in PBS) in sequence. The OD value at

415 nm was immediately recorded by using a Tecan Spark® 10M

microplate reader (Männedorf, Switzerland), at regular intervals

of 30 s for 40 min at 30°C. For the blank control, 50 mL of PBS

buffer (0.04 M, pH = 7.4) was used instead of enzyme solution.

The relative enzymatic activity of AChE was expressed as the

change of OD value per 20 min (DOD/20 min) in the linear part

of the curve of time versus OD value. All the experiments were

conducted in triplicate.
Chemical composition analysis of PSO
by GC-MS

The chemical composition of PSO was analysed by gas

chromatography-mass spectrometry (GC-MS) using a previous

method with minor modifications (Zhang et al., 2022). The

Agilent 7890B gas chromatography coupling with an Agilent

mass spectrometer detector (Agilent Technologies, Santa Clara,

CA, USA) was used. The non-polar column HP-5 (30.00 m ×

0.25 mm × 0.25 μm) was employed with high-purity helium as

the carrier gas. The inlet temperature was 280°C and the carrier

gas flow rate was 1 mL/min. The column oven temperature was

programmed to increase at the rate of 4°C/min from 80 to 280°C,

where the temperature was held for an additional 7 min. The

ionization energy was 70 eV and the acquisition mass range was

40-550m/z. A mixture of C7–C40 n-alkane was added to the PSO

and analyzed under the same conditions mentioned above to

calculate the retention indices (RI) of the constituents. The

chemical components of PSO were identified by the

comparison of their RIs with literature values reported at the

website (http://www.flavornet.org/flavornet.html) and mass

spectra with the National Institute of Standards and

Technology (NIST) database. The four primary volatiles were

further determined by comparing with the commercially

available standard compounds. The relative amount of

individual components in PSO was calculated in peak areas

using the normalization method without correction factors, and

expressed as a percentage of total peak areas.
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Statistical analysis

Data were expressed as means ± standard deviation (SD) of

three replicates. One-way analysis of variance (ANOVA) and

Tukey’s test were used for data analysis at a significance level of

p < 0.05 by SPSS 23 (IBM Corporation, Armonk, NY, USA).

SigmaPlot software (version 14.0, San Jose, CA, USA) was

employed to create figures.
Results

Residual and contact toxic effects of PSO

The present study revealed that PSO had excellent toxicity

on cowpea aphids ingesting the PSO-treated diet. As shown in

Table 1, the LC50 values were 51.53, 38.19, 4.36, and 3.96 mg/mL

for 12, 24, 36, and 72 h of exposure time in the residual toxicity

assay, respectively. In the meantime, the toxic effect of PSO on

cowpea aphids assessed by contact toxicity method revealed that

the LC50 values were 2.73, 1.28, 0.40, and 0.09 mg/aphid at the

treatment period of 12, 24, 36, and 72 h, respectively (Table 2).

The mortality was high when the treatment period was

prolonged and the dose of PSO increased. These results

suggested that the aphids could be exposed to toxicity by

means of contacting PSO or ingesting PSO-contaminated

food materials.
Effect of PSO on AChE, GST activities,
and total protein contents of aphids

The current finding suggested that PSO treatment

considerably decreased aphid AChE activity. At 4, 8, 12, and

24 hours after exposure, Figure 1A demonstrated that the

control group had considerably higher AChE activity than the

group that had received 0.56 or 1.28 mg/aphid of PSO.

Meanwhile, the AChE activity of aphids exposed to PSO

steadily increased during the first 12 hours, and then it

reduced subsequently, according to the current study.

GST enzyme is involved in the detoxification process of

insects when they are exposed to toxic exogenous compounds,

and it is also highly related to the development of insecticide
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that PSO significantly decreased the GST activity in both doses

(0.56 and 1.28 mg/aphid) treatment groups when compared to

the control group (Figure 1B) (p < 0.05). In the low dose (0.56

mg/aphid) treatment group, the variation of GST activity

displayed a trend toward a decrease at the initial stage (first 8

h), followed by an increase during the late period. However, in

the high dose (1.28 mg/aphid) treatment group, the GST activity

gradually increased during the first 12 h of exposure time, and

then significantly decreased afterward.

Protein synthesis is an important biological function in all cells

and living organisms since it is the building block of tissues (Avila

et al., 2011). The present result indicated that the total protein

content in aphids treated with PSO significantly decreased in

comparison with the control group (Figure 1C). The protein

content of aphids in the control group ranged around 47.36-50.94

mg/g, which was significantly (p < 0.05) higher than that of the

PSO-treated groups, being 29.25-45.01 (0.56 mg/aphid treatment),

and 23.20-40.15 mg/g (1.28 mg/aphid treatment), respectively. The

lowest protein content was recorded as 23.20 mg/g at the dose of

1.28 mg/aphid after 24 h of treatment, whereas the corresponding

control group was 49.35 mg/g.
Gas chromatography and mass
spectrometry analysis of PSO

Limonene (22.86%), (9Z,12Z)-9,12-octadecadienoic acid

(20.21%), n-hexadecanoic acid (15.79%), (2E,4E)-2,4-decadienal

(12.40%), and (2E,4Z)-2,4-decadienal (7.77%) are the five most

prevalent compositions among the 18 primary compounds found

in PSO by GC-MS analysis (Figure S1 in Supplementary material).

Additionally, the GC-MS data showed that long-chain fatty acid

(ester) (40.58%) was the main category of ingredients in PSO,

followed by monoterpene (27.71%), aldehyde (21.35%), long-chain

alkene (4.11%), and ketone (1.89%). (Table 3).
Contact toxicity of four primary
compounds in PSO

Four primary and commercially available PSO compounds,

including limonene, (9Z,12Z)-9,12-octadecadienoic acid, n-
TABLE 1 The residual toxicity of PSO (pomelo seed oil) against Aphis craccivora.

Time (h) LC50 (95% CI) (mg/mL) Slope ± S.E. c2 (d.f.) P-value

12 51.53 (37.21-63.83) 1.82 ± 0.22 5.54 (13) 0.96

24 38.19 (25.14-48.86) 1.18 ± 0.17 10.27 (13) 0.67

36 4.36 (2.38-6.56) 1.19 ± 0.17 12.65 (13) 0.47

72 3.96 (2.49-5.24) 1.57 ± 0.20 9.35 (13) 0.36
front
LC50 value was determined by log-probit analysis; 95% CI, confidence interval at 95%; S.E., standard errors; c2, chi square; d.f., degrees of freedom.
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hexadecanoic acid, and (2E,4E)-2,4-decadienal, were tested for

aphicidal activity using contact toxicity assay to further identify

the compounds underlying the insecticidal effect of PSO. As

shown in Table 4, among all the compounds tested, (9Z,12Z)-

9,12-octadecadienoic acid exhibited the best aphicidal activity

with an LC50 value of 0.58 mg/aphid after 24 h of exposure time,

which was more potent than the positive control thiamethoxam

(LC50 = 1.55 mg/aphid) and PSO (LC50 = 1.28 mg/aphid). The
compound (2E,4E)-2,4-decadienal also demonstrated potent

toxicity toward aphids with an LC50 value of 5.28 mg/aphid,
while slightly lower potential in comparison with PSO. However,

neither limonene (LC50 = 150.78 mg/aphid) nor n-hexadecanoic
acid (LC50 = 22.91 mg/aphid) displayed considerable contact

toxicity toward aphids.
Discussion

An eco-friendly and biocontrol approach for pest

management by using plant secondary metabolites as

insecticides (repellents, anti-feedants, and toxicants) has been

increasingly popular in recent years (Tlak and Dar, 2021). In the

present study, pomelo seed oil (PSO) was assessed for

insecticidal activity against the pest cowpea aphid (A.

craccivora) by using both residual and contact toxicities assays.

Meanwhile, the influence of PSO on AChE, GST activity, and the

total protein contents of aphids was also evaluated. Furthermore,

the chemical compositions of PSO were analyzed by GC-MS

studies and the four primary compounds present in PSO were
Frontiers in Plant Science 06
tested for aphicidal activity as well. Laboratory studies on

essential oils (EOs) and their components for use in

eradicating pests have risen recently. According to a review of

the literature, several recent studies have examined how EOs

affect aphids and pests that live on stored products (Abdelaal

et al., 2021; Al-Harbi et al., 2021; Sayed et al., 2022), but few

research has specifically examined the aphicidal efficacy of citrus

EOs. Most recently, Alotaibi et al. (2022) discovered that Citrus

aurantium L. EO had greater toxicity against pomegranate and

grapevine aphids, with LC50 of 0.37 and 0.82 mL/mL,

respectively, after 48 h of application.

The present result revealed that PSO exhibited excellent

residual toxicity to A. craccivora with a 72-hour LC50 of 3.96 mg/

mL, which was in agreement with the findings of several

previous studies. Dolma et al. (2021) reported that the 96-hour

LC50 of crude extract of Trillium govanianum was 3709.1 mg/L

against A. craccivora. The n-hexane fraction of Eupatorium

adenophorum and Ageratum houstonianum showed good

residual toxicity to A. craccivora with an LC50 being 2881 and

2590 mg/L, respectively, after 96 h of treatment (Adebisi et al.,

2019). In another similar study, the saponins clematoside S (72-

hour LC50 = 2.3 mg/mL) and clematograveolenoside A (72-hour

LC50 = 3.2 mg/mL), isolated from Clematis graveolens were

found highly effective against A. craccivora (Rattan et al., 2015).

In our present research, the contact toxicity assay also revealed

that PSO exhibited significant toxicity to aphids, with an LC50 of

0.09 mg/aphid after 72 h of treatment. Similarly, in a previous

study, the total crude alkaloids in Sophoraalo pecuroides L.

exhibited excellent contact toxicity to aphids with an LC50 of
TABLE 2 The contact toxicity of PSO (pomelo seed oil) against Aphis craccivora.

Time (h) LC50 (95% CI) (mg/aphid) Slope ± S.E. c2 (d.f.) P-value

12 2.73 (1.87-4.800) 1.65 ± 0.20 14.54 (13) 0.33

24 1.28 (0.92-1.99) 1.55 ± 0.17 19.59 (13) 0.11

36 0.40 (0.21-0.59) 1.63 ± 0.18 3.67 (13) 0.99

72 0.09 (0.01-0.22) 1.37 ± 0.23 6.83 (13) 0.91
front
LC50 value was determined by log-probit analysis; 95% CI, confidence interval at 95%; S.E., standard errors; c2, chi square; d.f., degrees of freedom.
B CA

FIGURE 1

Effect of PSO (pomelo seed oil) at the dose of 0.56 mg/aphid (LC30) or 1.28 mg/aphid (LC50) on some biochemical properties of Aphis craccivora,
(A): In vivo AChE activity; (B): In vivo GST activity; (C): Total protein content. The different lowercase letters within the same treatment group
indicate significant difference (p < 0.05). The * indicates significant difference (p < 0.05) compared to the corresponding blank control group at
the same time interval.
iersin.org
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0.02 mg/aphid against A. craccivora, 0.093 mg/aphid against A.

citricola, and 0.117 mg/aphid against A. sp, after 24h of treatment

(Ma et al., 2018). Consistent with the present study, essential oil

from the fresh leaf of Citrus hystrix proved toxic to A. gossypii

Glover, resulting in 50.4%mortality at the concentration of 3 mL/
L air after 24 h of fumigation (Pumnuan et al., 2017).

The mode of action for most insecticides can be classified into

three categories, namely, neurotoxins, growth regulators, and

respiratory inhibitors (Song and Scharf, 2008). To determine the

possible insecticidal mechanism of PSO, the influence of PSO on

both AChE and GST enzymes was evaluated in the present study.

The result indicated that PSO caused a pronounced reduction in the
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activity of these two enzymes. Similarly, the activities of these two

enzymes (AChE and GST) in the aphid Myzus persicae were

significantly inhibited at the initial stage, and then induced to

restore to some extent with prolonged processing time after being

treated with extracts from Illicium verum fruit (Zhou et al., 2016).

AChE is essential for normal signal transduction, it influences the

neural impulses by catalytic hydrolysis of acetylcholine (Bezerra da

Silva et al., 2016). In the present study, PSO caused a significant

reduction in AChE activity at the dose of both 0.56 mg/aphid (LC30)

and 1.28 mg/aphid (LC50) during the whole treatment period.

Therefore, PSO probably had neurotoxic effects on aphids (A.

craccivora). In line with the present results, many botanical
TABLE 4 The contact toxicity of primary compounds in PSO (pomelo seed oil) against Aphis. craccivora Koch after 24h treatment.

Compounds LC50 (95% CI) (mg/aphid) Slope ± S.E. c2 (d.f.) P-value

Limonene 150.78 (82.35-750.21) 0.45 ± 0.08 1.97 (13) 0.99

(2E,4E)-2,4-Decadienal 5.28 (2.36-8.64) 0.78 ± 0.07 4.92 (13) 0.97

n-Hexadecanoic acid 22.91 (14.20-46.84) 0.97 ± 0.10 3.14 (13) 0.99

(9Z,12Z)-9,12-Octadecadienoic acid 0.58 (0.49-0.78) 1.09 ± 0.07 4.04 (13) 0.98

Thiamethoxam (positive control) 1.55 (1.24-1.99) 1.22 ± 0.08 5.86 (13) 0.95
front
LC50 value was determined by log-probit analysis; 95% CI, confidence interval at 95%; S.E., standard errors; c2, chi square; d.f., degrees of freedom.
TABLE 3 Chemical compositions of PSO (pomelo seed oil) by GC-MS.

No RTa (min) Compositions Percentage (%)(%) RIb RIc RId

1 5.47 Limonene 22.86 ± 0.32 1028 1030 1031

2 12.961 (E)-2-Decenal 1.18 ± 0.07 1262 1260

3 14.039 (2E,4Z)-2,4-Decadienal 7.77 ± 0.11 1294 1291

4 14.814 (2E,4E)-2,4-Decadienal 12.40 ± 0.15 1317 1317 1320

5 17.151 Tetradecene 0.64 ± 0.02 1389 1381

6 18.061 Caryophyllene 1.47 ± 0.03 1417 1417

7 20.369 Eremophilene 3.38 ± 0.12 1491 1486

8 23.242 Cetene 0.65 ± 0.03 1588 1587

9 25.416 (6Z,9E)-Heptadecadiene 1.28 ± 0.09 1665 1667

10 25.626 8-Heptadecene 0.83 ± 0.04 1672 1670

11 28.727 1-Octadecene 0.71 ± 0.05 1787 1788

12 29.193 Nootkatone 1.18 ± 0.05 1805 1805

13 30.091 6,10,14-Trimethyl-2-pentadecanone 0.71 ± 0.02 1835 1835

14 32.125 n-Hexadecanoic acid methyl ester 1.11 ± 0.06 1922 1920

15 33.326 n-Hexadecanoic acid 15.79 ± 0.29 1971 1971 1972

16 33.763 n-Hexadecanoic acid ethyl ester 2.42 ± 0.12 1989 1993

17 36.124 (9Z,12Z)-9,12-Octadecadienoic acid methyl ester 1.05 ± 0.03 2091 2092

18 37.26 (9Z,12Z)-9,12-Octadecadienoic acid 20.21 ± 0.39 2142 2144 2142

Monoterpene 27.71 ± 0.42

Aldehyde 21.35 ± 0.46

Long chain alkene 4.11 ± 0.12

Ketone 1.89 ± 0.05

Long chain fatty acid (ester) 40.58 ± 0.58

Total 95.64 ± 0.69
iersin
a, Retention time; b, Retention indices (RI) observed in experiment; c, RI reference data obtained from the website http://www.flavornet.org/flavornet.html; d, Retention indices (RI) observed
from the standard compounds.
.org
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aphicides were reported to exert their insecticidal effects by targeting

AChE enzyme (Zhou et al., 2016; Li et al., 2022). In particularly, lots

of aphicidal EOs or their primary components were AChE

inhibitors, for example, the EOs derived from Asteraceae family

plants exhibited insecticidal activity to aphid Myzus persicae by

inhibiting the activity of the AChE enzyme (Czerniewicz et al.,

2018). In addition, methyl benzoate (MB), a volatile compound

reported in several plants extracts, was determined to be toxic to

cotton aphids (A. gossypii Glover) by decreasing the AChE activity

up to 65% (Mostafiz et al., 2020).

GST exerts a pivotal part in the detoxification of insecticides in

insects, which can combine with insecticidal molecules via

chelation, or remove the lipid metabolites induced by insecticidal

material, thus protecting tissues from oxidative damage (Zhang

et al., 2013). Similar to the effect on AChE, PSO treatment

significantly decreased GST activity. The present results suggested

that the reduction of GST and AChE activities in A. craccivoramay

be responsible for the aphids mortality caused by PSO treatment,

supportive of the potent application of PSO as a natural aphicide. In

agreement with the present study, the activities of both AChE and

GST in the aphid Myzus persicae and Sitophilus zeamais were

notably decreased by the treatment of fruit extracts of Illicium

verum, as compared with the control (Li et al., 2013; Zhou et al.,

2016). Elbanhawy et al. (2019) reported that the methanol extract of

Purpureocillium lilacinum greatly reduced the GST enzyme activity

inA. gossypii, thus influencing its growth andmetabolism. Contrary

to the present study, the GST activity in the aphid Myzus persicae

increased after the treatment with essential oils from

Santolinachamae cyparissus and Achillea millefolium (Czerniewicz

et al., 2018). Similarly, GST activity and the total proteins in the

grain aphid Sitobio navenae significantly increased with the

treatment of catechol and gramine, both of which were

deleterious to aphids (Zhang et al., 2013). This apparent

discrepancy might be due to the different dose treated and the

exposure time. It was reported that the GST activity of Varroa

destructor changed depending on the dosage of the oil treated. The

GST activity of Varroa destructor increased significantly at a low

dosage (0.1 mL) when exposed to clove oil, but decreased at a higher
dosage (1.0 mL) (Li et al., 2017). Worthy of note, in addition to GST,

two other major detoxification enzymes involving cytochrome P450

oxidase (P450) and carboxylesterase (CarE), play critical roles in

insecticide metabolism as well (Sharma et al., 2018). In this study,

only the effect on GST was investigated. Therefore, further study is

required to determine whether the PSO affects the enzymatic

activities of both P450 and CarE, to achieve a more complete

understanding of the response of A. gossypii to PSO.

Growth and metamorphism in insects are highly influenced by

the ecdysone hormone as well as protein level in tissues (Avila et al.,

2011). The total protein content of A. craccivora highly decreased

after being treated with PSO according to our current study. This

reduction might be attributable to the insect adaptation to reduce

the stress obtained or response to the treatment of PSO by down-

regulating the expression of some protein-related genes. Similar
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results were obtained in aphid A. gossypii treated with methanolic

extracts of Cladosporium cladosporioides and Purpureocillium

lilacinum (Elbanhawy et al., 2019). In the present study, PSO

caused a significant reduction in the activity of AChE and GST.

This reduction might be related to the decrease of the total protein

content in A. craccivora. Similarly, Elbanhawy et al. (2019) reported

that the remarkable reduction in the activity of a- and b-esterase
enzymes was associated with the decrease of enzyme amount in A.

gossypii treated with the extracts of Purpureocillium lilacinum.

Therefore, we assumed that the PSO might down-regulate the

expression of some genes related to both AChE and GST proteins,

or inhibit the catalytic ability of these two enzymes, thus resulting in

the reduction of enzymatic activity of these two enzymes.

As per the literature review, there are very few studies

investigating the chemical composition of pomelo seed oil. Wan

and Xiao (2008) reported that the pomelo seed oil contained more

than 90% of fatty acids mainly involving linolenic acid, linoleic acid,

oleic acid and palmitic acid. However, the chemical compositions of

essential oil from pomelo peel were comprehensively investigated

previously. For instance, limonene (55.92%), b-myrcene (31.17%),

and b-pinene (3.16%) were reported as the primary components of

essential oil from pomelo cv. Guan Xi (He et al., 2019). Meanwhile,

limonene was observed as the dominant (88.6%) component,

followed by b-Pinene (1.2%), linalool (0.7%), and a-terpinene
(1.0%) in the essential oil obtained by hydrodistillation from the

peel of grapefruit (Citrus Paradisi. L) (Uysal et al., 2011). In the

present study, 18 major compounds were identified in PSO for

the first time, including limonene (22.86%), (9Z,12Z)-9,12-

octadecadienoic acid (20.21%), n-hexadecanoic acid (15.79%),

(2E,4E)-2,4-decadienal (12.40%), and (2E,4Z)-2,4-decadienal

(7.77%) as the five most abundant compounds.

Limonene is an aromatic compound present in all citrus fruit

which is widely used as a fragrant agent in many cosmetics and also

displays herbicidal and insecticidal effects (Karr and Coats, 1988;

Kim et al., 2013). However, the present results revealed that

limonene (LC50 = 150.78 mg/aphid) was not a potent aphicide.

(9Z,12Z)-9,12-octadecadienoic acid and n-hexadecanoic acid are

long-chain fatty acids, both of which were highly toxic to whiteflies

and mites (Wagan et al., 2018). Furthermore, n-hexadecanoic acid

is toxic to the fourth larval stage of Aedes aegypti, Culex

quinquefasciatus, and Anopheles stephensi, with LC50 values of

57.23, 129.24, and 79.58 ppm, respectively (Rahuman et al., 2000).

Our results are consistent with these previous reports. In the present

research, (9Z,12Z)-9,12-octadecadienoic acid (LC50 = 0.58 mg/
aphid) containing two unsaturated double bonds exhibited

significantly higher aphicidal activity than n-hexadecanoic acid

(LC50 = 22.91 mg/aphid), suggesting that the presence of

unsaturated double bond in long-chain fatty acid might be crucial

for the toxicity obtained. 2,4-decadienal, another major constituent

in PSO, was previously reported to show significant nematicidal

activity againstMeloidogyne javanica, with an EC50 being 11.7 mg/L

after 1 day of the treatment (Caboni et al., 2012). Similarly, the

present results also identified (2E,4E)-2,4-decadienal (LC50 = 5.28
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mg/aphid) as a potent aphicide despite weaker than both PSO (LC50

= 1.28 mg/aphid) and positive control thiamethoxam (LC50 = 1.55

mg/aphid). (9Z,12Z)-9,12-octadecadienoic acid occupied the second
largest percentage (20.21%) in PSO, and displayed excellent and

much more potent toxicity to aphids in comparison with other

major compounds, which might largely underlie the aphicidal

activity of PSO. However, more future work should be performed

to evaluate the aphicidal activity of other minor compounds in PSO

and the synergistic effects among them. Numerous previous studies

have demonstrated that the overall biological effects of botanical

extracts can be the result of combinations of substances with

synergistic, additive, or antagonistic activity (Stermitz et al., 2000;

Wagner and Ulrich-Merzenich, 2009; Junio et al., 2011).
Conclusion

In the progress of our search for eco-friendly insecticides from

natural resources, we investigated the aphicidal activity and

chemical compositions of PSO for the first time. The present

study revealed that PSO has significant residual and contact toxic

effects against A. craccivora. The reduction of AChE, GST, and the

total protein content in aphids treated with PSO might be

responsible for the mortality of A. craccivora. GC-MS chemical

composition analysis depicted that PSO contained long-chain

fatty acid (ester), monoterpene, aldehyde, long-chain alkene,

and ketone as the main categories of constituents. In addition,

as the second abundant compound in PSO, (9Z,12Z)-9,12-

octadecadienoic acid demonstrated excellent and more potent

aphicidal activity than PSO, which might be a key compound

toxic to aphids in PSO. However, further experimental research

should be put forth to assess the aphicidal activity of other minor

constituents in PSO, their synergistic effects, and the insecticidal

spectrum of PSO. Meanwhile, the field trials, the effects on other

enzymes like P450 and CarE, and the transcriptome-based

investigation will be helpful to commercialize the PSO as a

biocontrol agent against aphids.
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