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Genome-wide association
studies of five free amino
acid levels in rice

Liqiang He1*†, Huixian Wang1†, Yao Sui1†, Yuanyuan Miao1,2,
Cheng Jin1,2 and Jie Luo1,2*

1College of Tropical Crops, Hainan University, Haikou, China, 2Sanya Nanfan Research Institute of
Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
Rice (Oryza sativa L.) is one of the important staple foods for human consumption

and livestock use. As a complex quality trait, free amino acid (FAA) content in rice is of

nutritional importance. To dissect the genetic mechanism of FAA level, five amino

acids’ (Val, Leu, Ile, Arg, and Trp) content and 4,325,832 high-quality SNPs of 448 rice

accessions were used to conduct genome-wide association studies (GWAS) with

nine different methods. Of these methods, one single-locus method (GEMMA),

seven multi-locus methods (mrMLM, pLARmEB, FASTmrEMMA, pKWmEB,

FASTmrMLM, ISIS EM-BLASSO, and FarmCPU), and the recent released 3VmrMLM

were adopted for methodological comparison of quantitative trait nucleotide (QTN)

detection and identification of stable quantitative trait nucleotide loci (QTLs). As a

result, 987 QTNs were identified by eight multi-locus GWAS methods;

FASTmrEMMA detected the most QTNs (245), followed by 3VmrMLM (160), and

GEMMA detected the least QTNs (0). Among 88 stable QTLs identified by the above

methods, 3VmrMLM has some advantages, such as the most common QTNs, the

highest LOD score, and the highest proportion of all detected stable QTLs. Around

these stable QTLs, candidate genes were found in the GO classification to be

involved in the primary metabolic process, biosynthetic process, and catalytic

activity, and shown in KEGG analysis to have participated in metabolic pathways,

biosynthesis of amino acids, and tryptophan metabolism. Natural variations of

candidate genes resulting in the content alteration of five FAAs were identified in

this association panel. In addition, 95 QTN-by-environment interactions (QEIs) of

five FAA levels were detected by 3VmrMLM only. GO classification showed that the

candidate genes got involved in the primary metabolic process, transport, and

catalytic activity. Candidate genes of QEIs played important roles in valine, leucine,

and isoleucine degradation (QEI_09_03978551 and candidate gene

LOC_Os09g07830 in the Leu dataset), tryptophan metabolism (QEI_01_00617184

and candidate gene LOC_Os01g02020 in the Trp dataset), and glutathione

metabolism (QEI_12_09153839 and candidate gene LOC_Os12g16200 in the Arg
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dataset) pathways through KEGG analysis. As an alternative of themulti-locus GWAS

method, these findings suggested that the application of 3VmrMLM may provide

new insights into better understanding FAA accumulation and facilitate the

molecular breeding of rice with high FAA level.
KEYWORDS

rice, free amino acid level, genome-wide association study, quantitative trait locus,
quantitative trait nucleotide-by-environment interactions
Introduction

Rice (Oryza sativa L.) is one of the most important crops

worldwide and provides energy, amino acid, and dietary fiber for

human consumption. In addition to the basic unit in protein

biosynthesis, amino acids are involved in several cellular

responses to affect physiological processes in plants, such as plant

growth and development, intracellular pH control, production of

metabolic energy or redox capacity, signal transduction, and

response to abiotic and biotic stresses (Moe, 2013; Watanabe

et al., 2013; Zeier, 2013; Fagard et al., 2014; Galili et al., 2014;

Pratelli and Pilot, 2014: Hausler et al., 2014; Hildebrandt et al.,

2015). Free amino acids (FAAs) not only play essential roles in plant

growth, development, and responses to stress, but also serve as

important nutrients for human health (Pathria and Ronai, 2021;

Yang et al., 2022). Of all the amino acids, tryptophan (Trp),

isoleucine (Ile), leucine (Leu), and valine (Val) are essential amino

acids that are based on plants and cannot synthesize from external

sources (Galili et al., 2016). In plants, branched-chain amino acids

are important compounds in several aspects. Besides their function

as building blocks of proteins, they get involved in the synthesis of a

number of secondary products in plants and regulate plant growth

by affecting the homeostasis of mineral elements in rice (Diebold

et al., 2002; Jin et al., 2019). Arginine (Arg) is a semi-essential amino

acid and involved in the regulation of various molecular pathways,

which regulates key metabolic, immune, and neural signaling

pathways in human cells (Patil et al., 2016). Branched-chain

amino acids mainly including leucine, valine, and isoleucine

generally participate in regulating protein synthesis, metabolism,

food intake, and aging (Le Couteur et al., 2020). Arginine is a

precursor of amino acids, polyamines, and nitric oxide (NO) for

protein synthesis and is an important metabolite for many cells at

the developmental stage (VanEtten et al., 1963; King and Gifford,

1997). Arginine is generally a major nitrogen storage form also in

underground storage organs, roots of trees, and other plants

(Bausenwein et al., 2001; Rennenberg et al., 2010). Tryptophan

(Trp) is an aromatic amino acid that is synthesized through the

shikimate/chorismate pathway. Notably, Trp is decarboxylated to

tryptamine in vivo; subsequently, hydroxylase catalyzes the

conversion of tryptamine to 5-hydroxytryptamine (5-HT). 5-HT
02
is an important neurotransmitter associated with a range of human

behavior problems such as personality and emotional disorders

(Muller et al., 2016). Tryptophan provides the structural backbone

for numerous plant secondary metabolites including the

indoleamines, auxin [indole-3-acetic acid (IAA)], alkaloids, and

benzoxazinoids (Erland and Saxena, 2019). Numerous loci with

small effect underlying the natural variation of primary metabolites

were found in previous studies (Rowe et al., 2008; Chan et al., 2010;

Joseph et al., 2013; Fernie and Tohge, 2017). However, as one of

primary metabolites, the genetic mechanism underlying these five

FAA levels in rice is largely unknown, which is a limitation to the

molecular breeding of rice with high-level FAAs.

Genome-wide association studies (GWAS) provide an

insight into unraveling the genetic basis of complex traits in

plants, especially for the trait controlled by small-effect genes

(Zhu et al., 2008). Since the landmark GWAS of 107 Arabidopsis

accessions (Atwell et al., 2010), GWAS of several agronomical

traits in plants have been reported, which included starch

content in wheat (Hao et al., 2020), flowering time and grain

yield in rice (Yang et al., 2014; Liu et al., 2021), and seed protein

and oil in soybean (Kim et al., 2021). With the technical progress

and cost reduction of metabolomics, metabolite-based genome-

wide association study (mGWAS) has been successfully applied

in several functional genomics and metabolomics studies in

plants (Luo, 2015; Fang et al., 2016; Fang and Luo, 2019).

Previous studies have proven the effectively controlled

spurious association of widely adopted single-locus GWAS

methods (Yu et al., 2006; Zhou and Stephens, 2012). However,

the stringent Bonferroni correction is commonly used as the

significant threshold of marker–trait associations (MTAs),

which may result in the low power of polygenic loci detection

in these methods (Zhang Y.M. et al., 2019). Thus, multi-locus

GWAS methods have been proposed and identified quantitative

trait nucleotide/locus (QTN/QTL) with small effect in a powerful

manner (Segura et al., 2012). For instance, the improved

statistical power and short computing time have been shown

in the implementation of the FarmCPU method (Liu et al.,

2016). The improvement of power and accuracy of the multi-

locus GWAS method mrMLM have been reported (Wang et al.,

2016). Additionally, a series of multi-locus models were
frontiersin.org
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proposed and released in R package mrMLM, which contained

mrMLM (Wang et al., 2016), pLARmEB (Zhang et al., 2017),

FASTmrEMMA (Wen et al., 2017), pKWmEB (Ren et al., 2017),

FASTmrMLM (https://cran.r-project.org/web/packages/

mrMLM/index.html), and ISIS EM-BLASSO (Tamba et al.,

2017). However, the additive and dominance effects of trait-

associated loci remain unclear. To address this issue, a new

multi-locus GWAS method, 3VmrMLM, was proposed to

estimate the genetic effects of three marker genotypes (AA, Aa,

and aa) by controlling all the possibly polygenic backgrounds.

Subsequently, these effects were further divided into additive and

dominance effects for QTNs. Moreover, QTN-by-environment

interactions (QEIs) were also able to be detected by 3VmrMLM

for dissecting the genetic architecture of complex and multi-

omics traits in GWAS (Li et al., 2022a).

To identify the QTLs associated with five FAAs levels,

GWAS was performed on a genetic panel including 448

accessions with 4,325,832 SNPs from the rice core collection

using nine statistical methods. Of these methods, one single-

locus method, seven previous released multi-locus methods, and

the recent proposed 3VmrMLM method were employed to

determine the reliable approaches for main-effect QTLs and

QEI detection of five FAA contents.
Materials and methods

Genetic panel for GWAS

A genetic panel of 448 rice accessions from our lab—a

previously released core collection by Chen et al. (2014)—was

used in Huazhong Agricultural University. It included 293 indica

and 155 japonica accessions, of which 362 varieties are from Asia,

22 varieties are fromAmerica, 8 rice accessions are fromAfrica, 13

accessions are from Europe, 3 varieties are from Oceania and, 40

varieties have unknown geographical information.
Metabolite profiling and sequencing

Two biological replicates of the 448 rice accessions grew in

the normal rice growing season at two different blocks of

Huazhong Agricultural University, Wuhan, China. For each

replicate, randomly designed planting materials were used to

harvest leaves at the five-leaf stage in liquid nitrogen of three

different plants in each row of the field for metabolite extraction.

Then, mix the material for biological replicate of each accession.

The broad-sense heritability H2 was calculated by using the data

collected from different biological replicates at two different

experimental bases of Huazhong Agricultural University. A

scheduled multiple reaction monitoring (MRM) method with

an MRM detection window of 80 s and a target scan time of 1.5 s

were used to quantify the FAAs (Chen et al., 2013). Log2-
Frontiers in Plant Science 03
transformed metabolite data were used for further analysis to

improve normality.

To identify the genetic variation of 448 rice accessions,

approximately 448 Gb high-quality genome sequences of these

accessions were obtained from the Illumina HiSeq 2000 platform

(Chen et al., 2014). Rice reference genome sequence MSU 6.1

(Nipponbare, version 6.1) and corresponding annotation were

downloaded from Rice Genome Annotation Project (http://rice.

uga.edu/index.shtml). Clean reads were mapped to the rice

reference genome using BWA software (https://sourceforge.

net/projects/bio-bwa/) with default settings. The mapping files

were processed with SAMtools software (Li et al., 2009).

HaplotypeCaller, CombineGVCFs and GenotypeGVCFs

functions with default settings in GATK software (https://gatk.

broadinstitute.org/hc/en-us) were used for SNP joint-calling and

filter of the 448 accessions. Filtered high-quality SNPs (–maf

0.05 and –geno 0.1 in PLINK software, https://zzz.bwh.harvard.

edu/plink/) were used for subsequent analysis.
PCA and phylogenetic analysis

To summarize the genetic structure and variation of 448 rice

accessions, principal component analysis (PCA) was conducted

by PLINK software using the obtained high-quality SNPs.

Furthermore, SNP-based phylogenetic analysis of all accessions

was performed by MEGA-CC with a pairwise gap deletion

method for 1,000 bootstrap replicates (Kumar et al., 2012).
Population structure and
linkage disequilibrium

ADMIXTURE software was employed to estimate the

population stratification of all accessions (Alexander et al.,

2009). To evaluate LD decay across the whole genome, the

squared correlation coefficient (r2) between SNPs was computed

and plotted using PopLDdecay software (Zhang C. et al., 2019).
Genome-wide association study

GWASwere performed on the association panel containing 448

rice accessions with 4,325,832 high-quality SNPs. In total, nine

models were implemented for GWAS, which included a single-

locus model GEMMA (Zhou and Stephens, 2012) and eight multi-

locus models, namely, FarmCPU (Liu et al., 2016), mrMLM (Wang

et al., 2016), pLARmEB (Zhang et al., 2017), FASTmrEMMA (Wen

et al., 2017), pKWmEB (Ren et al., 2017), FASTmrMLM (https://

cran.r-project.org/web/packages/mrMLM/index.html), ISIS EM-

BLASSO (Tamba et al., 2017), and 3VmrMLM (Li et al., 2022a).

The R package mrMLM composed of six multi-locus methods

mrMLM, pLARmEB, FASTmrEMMA, pKWmEB, FASTmrMLM,
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and ISIS EM-BLASSO was applied to test the marker and trait

as soc ia t ion . mrMLM parameter for s ix methods :

Likel ihood=“REML” , SearchRadius=20, CriLOD=3,

SelectVariable=50, and Bootstrap=FALSE. These six methods in

the mrMLM package were developed and released from the same

research group that were referred to as “mrMLM series methods”.

The LOD score ≥ 3 was used to detect the association signals of

mrMLM series methods by default. The new released 3VmrMLM

method, implemented by the IIIVmrMLM software (Li et al.,

2022b), was used to detect main-effect quantitative trait

nucleotide (QTN) and QTN by environment interaction (QEI).

3VmrMLM parameter for main-effect QTL: method=“Single_env”,

SearchRadius=20, and svpal=0.01. 3VmrMLM parameter for QEI:

method=“Multi_env”, SearchRadius=20, and svpal=0.01. The

threshold of significant association of other methods was

determined by a critical p-value at the 0.05 significant level

subjected to Bonferroni correction (p-value = 1.16 × 10−8). All

methods used in this study were implemented with default

parameters. Manhattan and QQ plots were drawn using R

CMplot, mrMLM, and 3VmrMLM packages with default settings.
Analysis of candidate genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway annotation of candidate genes was

analyzed by the Plant GeneSet Enrichment Analysis Toolkit

(PlantGSEA) (Yi et al., 2013). The annotation of SNP effects on

gene body was obtained from the RiceVarMap database (http://

ricevarmap.ncpgr.cn/) and further used for haplotype and
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content analysis of potential candidate genes. Haplotype

network was generated according to all information of a

candidate gene from RiceVarMap database (http://ricevarmap.

ncpgr.cn/). Temporal and spatial expression of potential

candidate genes were assayed based on the expression data

from electronic fluorescent pictograph Browser (ePlant)

(http://bar.utoronto.ca/).
Results

FAA levels of rice genetic panel

The five FAA levels (Val, Leu, Ile, Arg, and Trp) were

quantified by LC-MS/MS to evaluate the phenotypic variation

in 448 rice accessions. The CV of them were 45.03%, 58.83%,

71.25%, 92.30%, and 58.21%, respectively (Table 1).

Furthermore, significant differences on five FAA levels were

observed between indica and japonica accessions in this rice

genetic panel (Figure 1). High correlation of five FAA contents

was observed among them. For instance, the Val dataset was

highly correlated with the Leu (r = 0.83) and Ile (r = 0.90)

datasets, and the Leu dataset was highly correlated with the Ile

(r = 0.93) dataset (Supplementary Figure 1). The skewness and

kurtosis of five FAA levels were less than 1, which showed the

nature of quantitative traits (Supplementary Figure 1;

Table 1). The broad-sense heritability (H2) for Val, Leu, Ile,

Arg, and Trp ranged from 0.32 to 0.51 (Table 1). These

indicated the natural variation of five amino acids present in

this genetic panel.
TABLE 1 Descriptive statistics of five FAA content datasets.

Trait Val Leu Ile Arg Trp

Number 448 448 448 448 448

Mean 23.68 23.41 21.80 17.91 22.20

Standard deviation 0.65 0.83 0.92 0.97 0.78

Variance 0.42 0.69 0.84 0.95 0.61

Mean squared error 0.03 0.04 0.04 0.05 0.04

Median 23.72 23.40 21.81 17.93 22.20

Trimmed 23.70 23.42 21.80 17.91 22.20

Median absolute deviation 0.61 0.87 0.98 1.02 0.82

Minimum 21.69 20.96 19.42 15.01 20.36

Maximum 25.83 25.51 24.94 21.87 24.47

Range 4.14 4.55 5.52 6.86 4.11

Skewness −0.26 −0.07 0.05 0.10 0.04

Kurtosis 0.06 −0.31 −0.17 0.49 −0.27
a Coefficient of variation (%) 45.03 58.83 71.25 92.30 58.21

Confidence interval of 0.95 0.06 0.08 0.09 0.09 0.07

H2 0.32 0.51 0.46 0.38 0.43
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Population structure and phylogenetic
relationship of rice genetic panel

To dissect the genetic basis underlying the natural variation of

FAAs, the relationship assessment of rice genetic panel was based

on 4,325,832 SNPs. According to the Neighbor-joining (NJ)

phylogenetic tree, 448 rice accessions were mainly divided into

two clades which contained 293 indica accessions and 155 japonica

accessions, respectively (Figure 2A). Likewise, the classification of
Frontiers in Plant Science 05
these accessions into two groups were observed in principal

component analysis (PCA) (Figure 2B). Moreover, the population

structure of rice genetic panel was identical with those obtained in

NJ tree and PCA (Figure 2C). Linkage disequilibrium (LD) analysis

showed that LD decayed fastest before 122 kb, and subsequently

tended to be flat for the rice genetic panel (Figure 2D). Therefore,

the 122- kb flanking region of each QTN was used for putative

candidate gene prediction hereafter. Additionally, indica accessions

showed the highest decay rate in Figure 2D.
A B

D

E F

C

FIGURE 1

Geographic distribution and five FAA levels of genetic panel. (A) Geographic distribution of indica and japonica accessions in the genetic panel;
indica accessions are indicated in red, and blue represents japionica accessions. (B–F) Violin plots of Val, Leu, Ile, Arg, and Trp contents for all,
indica, and japonica accessions; *** indicate statistical significance at the 0.1% probability level
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Identification of five FAA-associated QTLs

In this study, a total of 987 QTNs are identified using nine

GWAS methods (a single-locus method, seven multi-locus

methods, and the recently released 3VmrMLM method) for five

FAA content datasets. Detected QTNs varied resulting from

statistical methods (Supplementary Table 1). 3VmrMLM detected

160 QTNs and the largest number of common QTNs, while no

QTN was detected by GEMMA. In addition, the largest number of

QTNs were identified in the Trp dataset (214) by eight multi-locus

GWAS methods (3VmrMLM, mrMLM, FASTmrEMMA,

pLARmEB, FASTmrMLM, pKWmEB, ISIS EM-BLASSO, and

FarmCPU), followed by the Val dataset (207), the Ile dataset

(203), the Arg dataset (195), and the smallest number of detected

QTNs in the Leu dataset (168) (Figures 3A–E and Supplementary

Figures 2A–E; Supplementary Table 1). Six mrMLM series methods

were compared together; FASTmrEMMA detected the most QTNs

(245), followed by pLARmEB (160), mrMLM (151), FASTmrMLM

(145), pKWmEB (77), and ISIS EM-BLASSO, which detected the

least QTNs (25) (Supplementary Figures 2A–E; Supplementary

Table 1). Different R2 values of common QTNs across methods
Frontiers in Plant Science 06
were observed, such as the R2 value (%) of 3VmrMLM-detected

QTNs that ranged from 0.78 to 6.95, while the R2 value (%) of the

mrMLM-detected QTN dataset was from 0.43 to 17.61. The average

R2 value (%) of ISIS EM-BLASSO-detected QTNs was the highest

(2.93) among nine GWAS methods, whereas the average R2 value

(%) of the QTNs detected by FarmCPU was the lowest (0.24)

(Table 2). Tag QTNs were selected and referred to as

QTLs hereafter.

In addition, some common QTLs were detected in different

FAA datasets. Intriguingly, QTL_01_10944343 (this QTL ID

refers to QTL_Chromosome_Position) and QTL_05_19754561

were associated with Val and Ile datasets, respectively;

QTL_01_23419417 was co-detected in the Leu and Ile

datasets; QTL_02_24189963 was co-localized in the Leu and

Trp datasets; QTL_09_16065720 was detected in the Arg and

Trp datasets simultaneously; and QTL_10_17905052 was

identified in the Ile and Arg datasets (Supplementary

Figure 3). Among nine GWAS methods, most p-values of the

3VmrMLM-detected common QTLs were the lowest and most

of their LOD scores were the highest correspondingly (Table 2;

Supplementary Table 1; Supplementary Figure 3). These results
A B

DC

FIGURE 2

Population analyses of the genetic panel. (A) Phylogenetic tree of 448 rice accessions. (B) Principal component analysis of 448 rice accessions.
(C) Population structure estimated by ADMIXTURE. (D) LD decay analysis of the genetic panel; LD decay of all 448 rice accessions, indica
accessions, and japonica accessions is indicated in black, red, and blue, respectively.
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indicated that the common QTLs detected by 3VmrMLM across

traits were more significant than those detected by other eight

GWAS methods.
Stable FAA-associated QTLs and
candidate genes

A QTL detected by no less than two methods of 3VmrMLM,

mrMLM series methods (mrMLM, pLARmEB, FASTmrEMMA,

pKWmEB, FASTmrMLM, and ISIS EM-BLASSO), FarmCPU,

and GEMMA was defined as a stable QTL. A total of 88 stable

QTLs were identified in five FAA datasets (Supplementary

Table 2). Fifteen stable QTLs were detected in the Val dataset

(Figures 3A, 4A). In particular, QTL_01_10944343 was

identified by seven GWAS methods (3VmrMLM, mrMLM,

FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and

FarmCPU), and the QTL was also detected in Ile

(Supplementary Figure 3A; Supplementary Table 2). For the

Trp dataset, 23 stable QTLs were identified (Figures 3E, 4E). Of

these QTLs, QTL_09_16065720 was identified by six GWAS

methods (3VmrMLM, FASTmrMLM, FASTmrEMMA,

pLARmEB, pKWmEB, and ISIS EM-BLASSO), and it was
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detected in the Arg dataset simultaneously (Supplementary

Figure 3E; Supplementary Table 2). Additionally, 16, 20, and

14 stable QTLs were detected in Leu, Ile, and Arg datasets

(Figures 3B–D, 4B–D). Significant correlations between NPQTL

(the number of QTL with positive-effect or favorite alleles) and

five FAA contents were observed in Figures 5A–E (r = 0.53–

0.69). The highest correlation was shown in the Trp dataset

(r = 0.69) (Figure 5E).

To understand the molecular basis controlling the five FAA

levels, the biological function of candidate genes was

investigated. According to functional annotations, these

candidate genes were primarily categorized as protein, protein

kinase, glycosyltransferase, and transcription factor

(Supplementary Table 3). Furthermore, GO analysis showed

that these genes were classified into 51 GO terms, such as the

primary metabolic process, biosynthetic process, and catalytic

activity (Supplementary Figure 4). Meanwhile, KEGG analysis of

candidate genes showed that most of them were involved in

metabolic pathways; biosynthesis of amino acids; glycine, serine,

and threonine metabolism; and tryptophan metabolism

(Supplementary Figure 5), for instance, biosynthesis of amino

acids in five FAA datasets (Supplementary Figures 5A–E);

glycine, serine, and threonine metabolism in the Leu dataset
A B

D E

C

FIGURE 3

Circos map of QTLs and QEIs in rice genome identified from Val (A), Leu (B), Ile (C), Arg (D), and Trp (E) datasets. Track A: 12 rice
chromosomes; Track B: heatmap of SNP density with bin sizes of 0.1 Mb; Track C: total unique QTNs detcted by all used methods; Track D:
stable QTLs co-detected by no more than two methods; Track E: all detected QEIs by the 3VmrMLM method.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1048860
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2022.1048860
TABLE 2 Comparison of QTN/QTL identification for different GWAS methods.

Statistical method No. of detected QTNs No. of stable QTLs Average R2 (%) R2 range (%) LOD range

3VmrMLM 160 83 1.99 0.78–6.95 3.04–46.29

FASTmrEMMA 245 29 1.01 0.01–8.93 3.01–24.01

FASTmrMLM 145 48 1.14 0.03–5.22 3.03–9.95

ISIS EM-BLASSO 25 9 2.93 0.98–6.89 3.01–10.65

mrMLM 151 19 2.54 0.43–17.61 3.06–21.49

pKWmEB 77 22 2.82 0.79–10.46 3.01–9.20

pLARmEB 160 34 1.46 0.01–14.39 3.02–14.80

FarmCPU 24 9 0.24 0.09–0.50 NA

GMMEA 0 0 NA NA NA
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FIGURE 4

Venn diagrams of unique QTNs detected by different GWAS methods from Val (A), Leu (B), Ile (C), Arg (D), and Trp (E) datasets. mrMLM
represents mrMLM series methods including mrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO, and FASTmrMLM.
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(Supplementary Figure 5B); and tryptophan metabolism in the

Trp dataset (Supplementary Figure 5E).

The candidate gene LOC_Os01g19220 encoding beta-D-

xylosidase was identified in the Val and Ile datasets, which

presented three types of alleles: Hap1 (AAGG) was concentrated

in japonica accessions, while Hap2 (GGAA) and Hap3 (GGGG)

were mainly concentrated in indica accessions, and the Val and Ile

content of Hap1 was significantly different with the contents of

Hap2 and Hap3. A lower Val and Ile content in Hap2 and Hap3

was observed than that in Hap1, which directly indicated the

relatively high Val and Ile content present in japonica accessions

compared with indica accessions (Figures 6A–C; Supplementary

Table 4). Based on previous transcriptome and haplotype network

analysis, LOC_Os01g19220 was mainly expressed in seed (S1),

inflorescence (P5), and seedling root. In the haplotype network,

haplotype II of LOC_Os01g19220 was mainly presented in

japonica accessions; however, haplotypes I and III gathered in

indica accessions (Figures 6D, E). Moreover, the gene

LOC_Os01g12940 encoding the phosphorylase domain

containing protein detected in the Leu dataset had three types

of allelic variation. Hap2 (TTGG) was concentrated in indica

accessions, whereas Hap3 (TTTT) was concentrated in japonica

accessions. A vast majority of japonica accessions with Hap3

showed significantly higher Leu level than indica accessions with

Hap2 (Figures 6F, G; Supplementary Table 4). LOC_Os01g12940
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was highly expressed in seedling root. In the haplotype network,

haplotype I of LOC_Os01g12940 was concentrated in japonica

accessions, while haplotypes III and V were concentrated in indica

accessions (Figures 6H,I). In addition, the gene LOC_Os05g49760

encoding the dehydrogenase is identified in the Arg dataset, which

was involved in glutathione metabolism and had three types of

allelic variation. Hap1 (AAGG) and Hap3 (GGGG) were enriched

in indica accessions, and Hap2 (GGAA) was enriched in japonica

accessions. Significant differences of Arg content were observed

among accessions with Hap2, Hap1, and Hap3. Correspondingly,

the Arg level of japonica accessions carrying Hap2 was higher

than the indica accessions with Hap1 and Hap3 (Figures 7A, B;

Supplementary Table 4). Relatively high abundance of

LOC_Os05g49760 was found in SAM (shoot apical meristem),

young leaf, and inflorescence (P5). In the haplotype network,

haplotype II was concentrated in japonica accessions, while

haplotypes I and III gathered in indica accessions (Figures 7C,

D). Moreover, the gene LOC_Os11g06900 encoding amidase

family protein detected in the Trp dataset had two alleles. Hap1

(CC) gathered in indica accessions, and Hap2 (TT) was mostly

present in japonica accessions. Significant differences of Trp

content were observed among accessions with Hap2 and Hap1.

Subsequently, the Trp level of japonica accessions carrying Hap2

was higher than the indica accessions with Hap1 (Figures 7E, F;

Supplementary Table 4). High expression of LOC_Os11g06900
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FIGURE 5

Box plots of the number of stable QTL with positive-effect alleles (NPQTL) in relation to Val, Leu, Ile, Arg, and Trp contents (A–E). ** indicates
statistical significance at the 1% probability level.
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FIGURE 6

Analyses of Val and Ile level associated gene LOC_Os01g19220 and Leu level associated gene LOC_Os01g12940. (A) Significant tests between
three haplotypes of LOC_Os01g19220 and Val contents. (B) Significant tests between three haplotypes of LOC_Os01g19220 and Ile contents.
(C) Three haplotypes of LOC_Os01g19220 and their distribution in indica and japonica accessions. (D) Haplotype network of LOC_Os01g19220.
(E) Expression profile of LOC_Os01g19220 based on ePlant transcriptome analysis in rice; expression strength coded by color from yellow (low)
to red (high). (F) Significant tests between three haplotypes of LOC_Os01g12940 and Leu contents. (G) Three haplotypes of LOC_Os01g12940
and their distribution in indica and japonica accessions. (H) Haplotype network of LOC_Os01g12940. (I) Expression profile of LOC_Os01g12940
based on ePlant transcriptome analysis in rice, expression strength coded by color from yellow (low) to red (high). *** and NS indicate statistical
significance at the 0.1% probability level and no significant difference, respectively.
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FIGURE 7

Analyses of Arg level associated gene LOC_Os05g49760 and Trp level associated gene LOC_Os11g06900. (A) Significant tests between three
haplotypes of LOC_Os05g49760 and Arg contents. (B) Three haplotypes of LOC_Os05g49760 and their distribution in indica and japonica
accessions. (C) Haplotype network of LOC_Os05g49760. (D) Expression profile of LOC_Os05g49760 based on ePlant transcriptome analysis in
rice, expression strength coded by color from yellow (low) to red (high). (E) Significant tests between two haplotypes of LOC_Os11g06900 and
Trp contents. (F) Three haplotypes of LOC_Os11g06900 and their distribution in indica and japonica accessions. (G) Haplotype network of
LOC_Os11g06900. (H) Expression profile of LOC_Os11g06900 based on ePlant transcriptome analysis in rice, expression strength coded by
color from yellow (low) to red (high). *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1% probability level, respectively.
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was observed in inflorescence (P5). In the haplotype network,

haplotypes I, III, IV, and V of it gathered in indica accessions,

whereas haplotype II was concentrated in japonica accessions

(Figures 7G, H).
QEI detection of five FAAs

In total, 95 QEIs of five FAAs were detected by 3VmrMLM

(Supplementary Table 5). Of them, 23, 16, 16, 18, and 22 QEIs

were identified in the Val, Leu, Ile, Arg, and Trp datasets

(Table 3). However, no QEI was detected on some

chromosomes in five FAA datasets (Figure 3; Supplementary

Figure 6). For instance, no QEI on chromosomes 8 and 3 was

found in the Val and Trp datasets, respectively (Figures 3A, E);

none of the QEIs on chromosomes 3, 10, and 11 were detected in

the Leu dataset (Figure 3B); no QEI located on chromosomes 6,

8, and 9 was identified in the Ile dataset (Figure 3C); and no QEI

located on chromosomes 4 and 9 was identified in the Arg

dataset (Figure 3D). Based on biological process, molecular

function, and cellular component in GO analysis, candidate

genes of these detected QEIs were classified into 47 GO terms,

such as metabolic process, transferase activity, and transport

(Supplementary Figure 7). Furthermore, KEGG pathway

analysis showed that candidate genes were mainly involved in

glutathione metabolism (QEI_12_09153839 and its candidate

gene LOC_Os12g16200 in the Arg dataset), valine leucine and

isoleucine degradation (QEI_09_03978551 and its candidate

gene LOC_Os09g07830 in the Leu dataset), and tryptophan

metabolism (QEI_01_00617184 and its candidate gene

LOC_Os01g02020 in the Trp dataset) (Supplementary Figure 8

and Supplementary Table 6). In addition, cysteine and

methionine metabolism in the Val dataset (Supplementary

Figure 8A); tryptophan metabolism in the Trp dataset

(Supplementary Figure 8E); and valine, leucine, and isoleucine

degradation in the Leu dataset (Supplementary Figure 8B) are

also shown in Supplementary Figure 8. According to ePlant

analysis, high expression of LOC_Os12g16200 encoding

glutathione synthetase was observed in seedling root and

mature leaf. LOC_Os09g07830 encoding acetyl-CoA

acetyltransferase was highly expressed in seedling root and

SAM. Relatively high abundance of LOC_Os01g02020
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encoding acetyl-CoA acetyltransferase was found in young leaf

and mature leaf.
Discussion

Methods comparison

Due to the difference of algorithm in different GWAS

methods, the varied number of detected QTNs was observed

accordingly. The FASTmrEMMA method detected the most

QTNs (245), followed by 3VmrMLM (160), pLARmEB (160),

mrMLM (151), FASTmrMLM (145), pKWmEB (77), ISIS EM-

BLASSO (25), FarmCPU (24), and GEMMA, which detected the

least QTNs (0) (Supplementary Table 1). Meanwhile, 3VmrMLM

detected the largest number of common QTNs (Figure 4). Similar

to the result obtained in this study, no QTN was identified in Xu

et al. (2017) and Li et al. (2018) by GEMMA (Xu et al., 2017; Li

et al., 2018). These were consistent with previous studies

suggesting that multi-locus methods outperform single-locus

methods on the statistical power of QTL detection, especially on

the accuracy of QTN effect estimation and reduction of false-

positive rate (Misra et al., 2017; Chang et al., 2018; Cui et al., 2018;

Hou et al., 2018; Ma et al., 2018). The results of 3VmrMLM and

mrMLM were compared as 3VmrMLM was a new three-variance

component integrated with the mrMLM methodological

framework. Most p-values of 3VmrMLM-detected QTNs were

lower than those in mrMLM, and the LOD value of QTNs

measured by 3VmrMLM was larger than the other eight

methods (Supplementary Figure 3). These results indicated that

the QTNs identified by 3VmrMLM were more significant than

those identified by mrMLM. Additionally, the average R2 value

(%) of 3VmrMLM-detected QTNs was lower than that of

mrMLM. The average R2 value of ISIS EM-BLASSO (2.93) was

the highest, followed by pKWmEB (2.82), mrMLM (2.54),

3VmrMLM (1.99), pLARmEB (1.46), FASTmrMLM (1.14),

FASTmrEMMA (1.01), and FarmCPU (0.24) (Table 2).

Notably, in this study, stable QTL_05_19754561 detected by

3VmrMLM/pLARmEB in the Val dataset, QTL_01_07646091

and QTL_07_08680072 detected by 3VmrMLM/mrMLM/

pLARmEB/FarmCPU in the Ile dataset, QTL_11_22412156

detected by 3VmrMLM/pLARmEB in the Arg dataset, and
TABLE 3 QTN-by-environment interactions (QEIs) detected from five FAA content datasets.

Trait No. of detected QEIs R2 range (%) LOD range add*env1 range add*env2 range

Val 23 0.33–2.42 5.09–35.28 −0.13–0.15 −0.15–0.13

Leu 16 0.57–2.41 5.07–21.31 −0.15–0.12 −0.12–0.15

Ile 16 0.46–2.94 4.83–29.92 −0.19–0.12 −0.12–0.19

Arg 18 0.34–1.22 6.16–21.15 −0.14–0.14 −0.14–0.14

Trp 22 0.36–2.60 4.63–34.53 −0.16–0.11 −0.11–0.16
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QTL_01_23592545 detected by 3VmrMLM/FASTmrEMMA in

the Trp dataset were reported in a previous study (Chen et al.,

2014). Furthermore, QTN-0315484798 detected by 3VmrMLM

only and QTN-0134428638 (~5.55 kb downstream of QTN-

vg0134424130 detected by mrMLM in Ile dataset; QTN-

0107646091 detected by FarmCPU/mrMLM in the Val/Trp

dataset; QTN-0100694213, QTN-0727264573, and QTN-

1203473916 detected by mrMLM/ISIS EM-BLASSO/pLARmEB

in the Arg dataset; and QTN-0619805830 detected by ISIS EM-

BLASSO and QTN-0805618520 detected by mrMLM in the Trp

dataset were consistent with previous studies (Chen et al., 2014;

Sun et a l . , 2020) . S ix QTLs (QTL_01_10944343 ,

QTL_01_23419417, QTL_02_24189963, QTL_05_19754561,

QTL_09_16065720, and QTL_10_17905052) were identified in

more than one FAA dataset by no less than three methods

(Supplementary Figure 3). Thus, the present complementarity of

different methods suggested that the combined utilization of

various single-locus and multi-locus GWAS methods may

facilitate the identification of all potential QTLs with large and

small effects in a powerful and robust manner, and the

3VmrMLM method may be used as an alternative for other

multi-locus methods.
Candidate genes for five FAA levels

A total of 88 stable QTLs were identified by no less than two

methods. Genes co-localized in the 122-kb flanking region of

stable QTL were identified for further analysis. Based on GO

classification and KEGG pathway analysis, four potential

candidate genes were found related to five FAA levels in rice,

and the Beta-glucosidase gene (LOC_Os01g19220) involved in

cyano amino acid metabolism (map00460) was a candidate gene

of QTL_01_0944343 on chromosome 1, which was identified in

both the Val and Ile datasets. According to KEGG pathway

information, beta-glucosidase plays an important role in cyano

amino acid metabolism, in which L-isoleucine and L-valine are

required. The Adenosylhomocysteine nucleosidase gene

(LOC_Os01g12940) associated with Leu content was identified

in QTL_01_07089989 on chromosome 1 and involved in

biosynthesis of amino acids (map01230) according to KEGG

anno t a t i on . Th e I s o c i t r a t e d e h yd r o g ena s e g en e

(LOC_Os05g49760, IDH) involved in glutathione metabolism

(map00480) was detected in QTL_05_28394307 from the Arg

dataset according to KEGG annotation. The IDH gene has been

reported as a key enzyme in glutathione metabolism (Koh et al.,

2004; Reitman et al., 2011; Tang et al., 2020). Glutathione is

formed by the binding of g-glutamate and cysteine via peptide

bonds via the g-glutamylcysteine synthetase (GSH1) and the

binding of glycine catalyzed by glutathione synthetase (GSH2)

(Noctor et al., 2012). As the essential precursor of glutathione,
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glutamate plays an important role in the biosynthetic and

catabolism pathway of arginine. For instance, ornithine is

synthesized from glutamate either in a cyclic or in a linear

pathway and subsequently further converts to arginine; arginine

catabolism begins with the degradation of arginine to ornithine,

followed by the generation of glutamate through ornithine

degradation (Winter et al., 2015; Majumdar et al., 2016).

Genetic variation of LOC_Os05g49760 resulted in the content

alteration of Arg in this study (Figure 7A). The Amidase gene

(LOC_Os11g06900) that participated in tryptophan metabolism

(map00380) was a candidate gene of QTL_11_03441584 on

chromosome 11, which was associated with Trp level in rice. In

Arabidopsis, amidase catalyzes the conversion of indole-3-

acetamide (IAM) to indole-3-acetic acid (IAA), which is an

alternative terminal reaction step of IAA synthesis (Pollmann

et al., 2009). IAA is the predominant auxin in plants, which can be

synthesized from the Trp-dependent pathway. It has been

confirmed that amidase promotes the synthesis of IAA, which is

formed from tryptophan (Dharmasiri et al., 2005; Mockaitis and

Estelle, 2008; Erland and Saxena, 2019). The natural variation of

LOC_Os11g06900 caused the content alteration of Trp in this

study (Figure 7E). Moreover, bZIP18, BCAT2, and BCAT4 genes

have been validated to control the FAA levels in rice and other

plant studies (Schuster et al., 2006; Angelovici et al., 2013; Sun

et al., 2020). However, they were not found to be candidate genes

offive FAA datasets in this study. Some transcript factors were co-

localized with stable QTLs, which may contribute to the natural

variation of FAA level in rice. Hence, the molecular mechanism of

these candidate genes underlying the variation of FAA levels is

warranted for further validation in the laboratory.
Candidate gene prediction based on
detected QEI

Compared with the other eight methods, 3VmrMLM is able to

detect the QEI of five FAA levels. Based on the 95 detected QEIs,

their predicted candidate genes were subjected to further functional

analysis (Supplementary Table 6). According to KEGG annotation,

the candidate gene LOC_Os12g16200 of QEI_12_09153839 (this

QEI ID refers to QEI_Chromosome_Position) encoding

glutathione synthetase was identified in glutathione metabolism

(map00480) in the Arg dataset. Glutathione synthetase (GSH) is an

important enzyme to catalyze the formation of glutathione via the

binding of g-glutamate and cysteine (Noctor et al., 2012). Glutamate

not only is an essential precursor for glutathione synthesis, but also

participates in the biosynthetic and catabolism pathway of arginine

(Noctor et al., 2012; Winter et al., 2015). LOC_Os09g07830 of

QEI_09_03978551 encoding acetyl-CoA acetyltransferase was

identified in the Leu dataset, which was involved in valine leucine

and isoleucine degradation (map00280) according to KEGG
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annotation. In the Trp dataset, LOC_Os01g02020 gene harbored in

QEI_01_00617184 encoding acetyl-CoA acetyltransferase was

involved in tryptophan metabolism (map00380). These results

suggested that a few QEIs may contribute to a small proportion

of total variation on five FAA levels in rice.
Breeding applications of FAA-
associated QTLs

Significant correlations between NPQTL and five FAA

contents were observed (r = 0.53–0.69), which indicated the

additive effect of these QTLs, especially for the Trp dataset (r =

0.69) (Figure 5). It was observed that the highest levels of Arg

were present in some rice accessions carrying nine QTLs with

positive-effect or favorite alleles (PQTLs), such as C063 and

W088. In addition, the Trp levels in accessions with 18 PQTLs

(C119, etc.) were higher than those with 19 PQTLs (C197)

(Supplementary Table 7). These suggested that the accessions

carrying these PQTLs hold the potential in FAA biofortified rice

breeding through the pyramiding of loci. This strategy has been

successful in the improvement of FHB resistance in wheat

(Buerstmayr et al., 2008). In five FAA datasets, FAA content

in japonica accessions was generally higher than that in indica

accessions (Figures 1B–F; Supplementary Table 4). This

suggested that japonica accessions have more breeding

potential than indica accessions in terms of these five FAA

levels. These japonica accessions are good parents for genetic

improvement of high FAA level by directly hybridizing with elite

varieties. The average R2 value of QTL detected in all five FAA

datasets by 3VmrMLM was lower than that by mrMLM

(Table 2). QTLs with a small effect have been successfully

applied in genomic selection (GS) breeding for the

improvement of disease resistance and yield in crops (Crossa

et al., 2017; Wang et al., 2018; Xu et al., 2021). Hence, these

relatively small-effect QTLs detected by 3VmrMLM might be

applicable for genomic selection breeding in rice with high FAA

levels; in particular, the 3VmrMLM method is beneficial for the

QTL detection of an association mapping population consisting

of heterozygous individuals (Li et al., 2022a).
Conclusion

In this study, a total of 987 QTNs were detected in five FAA

datasets by nine GWAS methods. The large number of detected

QTNs demonstrated five FAA levels in rice were controlled by

polygenes. 3VmrMLM has advantages in several aspects

compared to other GWAS methods; 3VmrMLM detected the

largest number of common QTNs, more significant on QTN

detection, and relatively moderate R2 values of QTLs were
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detected in multi-locus methods. The combined use of GWAS

methods may facilitate the identification of all potential QTLs

with large and small effects in a powerful and robust manner.

Additionally, 15, 16, 20, 14, and 23 stable QTLs were detected in

Val, Leu, Ile, Arg, and Trp datasets. Natural variations of the

LOC_Os01g19220 gene resulting in the content alteration of Val

and Ile demonstrated that some potential candidate genes may

play an important role in the crosslinking of different pathways.

Of these QTLs, KEGG analysis of the candidate genes of five

FAA-associated stable QTLs showed that they participated in

biosynthesis of amino acids in five FAA datasets; glycine, serine,

and threonine metabolism in the Leu dataset; and tryptophan

metabolism in the Trp dataset. Moreover, 23, 16, 16, 18, and 22

QEIs were identified in the Val, Leu, Ile, Arg, and Trp datasets.

KEGG pathway analysis showed that candidate genes were

mainly involved in valine, leucine, and isoleucine degradation

(QEI_09_03978551 and its candidate gene LOC_Os09g07830 in

the Leu dataset), tryptophan metabolism (QEI_01_00617184

and its candidate gene LOC_Os01g02020 in the Trp dataset),

and glutathione metabolism (QEI_12_09153839 and its

candidate gene LOC_Os12g16200 in the Arg dataset). To sum

up, the combined utilization of 3VmrMLM with other GWAS

methods will facilitate the mining of genes controlling complex

traits and genomic selection breeding in rice.
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SUPPLEMENTARY FIGURE 1

Dot plots (lower triangle), histograms (diagonal) and Pearson correlations
(upper triangle) between five FAAs datasets. Best curves are fitted in dot

plots and histograms. *** indicates statistical significance at the 0.1%
probability level probability level, and the size of the coefficient value is

proportional to the strength of the correlation.

SUPPLEMENTARY FIGURE 2

Venn diagrams of unique QTNs detected by mrMLM series methods from

Val (A), Leu (B), Ile (C), Arg (D) and Trp (E).

SUPPLEMENTARY FIGURE 3

Common QTNs detected in different FAA datasets by different methods.
(A): QTN-0110944343; (B): QTN-0123419417; (C): QTN-0224189963;

(D): QTN-0224189963; (E): QTN-0519754561; (F): QTN-0916065720;
(G): QTN-1017905052. The size of the circle is proportional to the

significance level.

SUPPLEMENTARY FIGURE 4

GO classification of candidate genes harbored in stable QTLs in Val (A),
Leu (B), Ile (C), Arg (D), Trp (E) datasets.

SUPPLEMENTARY FIGURE 5

KEGG pathway analysis of candidate genes harbored in stable QTLs in Val

(A), Leu (B), Ile (C), Arg (D) and Trp (E) datasets.

SUPPLEMENTARY FIGURE 6

Manhattan plots for five FAA levels detected QEIs by 3VmrMLM. QEIs in

Val (A), QEIs in Leu (B), QEIs in Ile (C), QEIs in Arg (D), QEIs in Trp (E). Black
horizontal lines in the Manhattan plots represent the genome-wide

significant threshold.

SUPPLEMENTARY FIGURE 7

GO classification of candidate genes harbored in QEIs in Val (A), Leu (B),
Ile (C), Arg (D) and Trp (E) datasets.

SUPPLEMENTARY FIGURE 8

KEGG pathway analysis of candidate genes harbored in QEIs in Val (A), Leu
(B), Ile (C), Arg (D) and Trp (E) datasets.
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