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Responses of the bacterial
community of tobacco
phyllosphere to summer
climate and wildfire disease
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Ministry of Education, Central South University, Changsha, China
Both biotic and abiotic factors continually affect the phyllospheric ecology of

plants. A better understanding of the drivers of phyllospheric community

structure and multitrophic interactions is vital for developing plant protection

strategies. In this study, 16S rRNA high-throughput sequencing was applied to

study how summer climatic factors and bacterial wildfire disease have affected

the composition and assembly of the bacterial community of tobacco

(Nicotiana tabacum L.) phyllosphere. Our results indicated that three time

series groups (T1, T2 and T3) formed significantly distinct clusters. The

neutral community model (NCM) and beta nearest taxon index (betaNTI)

demonstrated that the overall bacterial community assembly was

predominantly driven by stochastic processes. Variance partitioning analysis

(VPA) further showed that the complete set of the morbidity and climatic

variables together could explain 35.7% of the variation of bacterial

communities. The node numbers of the molecular ecological networks

(MENs) showed an overall uptrend from T1 to T3. Besides, Pseudomonas is

the keystone taxa in the MENs from T1 to T3. PICRUSt2 predictions revealed

significantly more abundant genes of osmoprotectant biosynthesis/transport in

T2, andmore genes for pathogenicity andmetabolizing organic substrate in T3.

Together, this study provides insights into spatiotemporal patterns, processes

and response mechanisms underlying the phyllospheric bacterial community.

KEYWORDS

tobacco, phyllosphere, bacterial community, high-throughput sequencing, molecular
ecological networks, neutral community model
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1050967/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1050967/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1050967/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1050967/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1050967&domain=pdf&date_stamp=2022-12-21
mailto:yinhuaqun_cs@sina.com
mailto:205601006@csu.edu.cn
https://doi.org/10.3389/fpls.2022.1050967
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1050967
https://www.frontiersin.org/journals/plant-science


Wang et al. 10.3389/fpls.2022.1050967
Introduction

The leaf surface on which microorganisms inhabit is called

phyllosphere, which is an independent microhabitat of plant

foliar surface. Bacteria, fungi, algae and other microorganisms

living in these regions are called phyllospheric microorganisms,

the structure of which is affected by a range of abiotic and biotic

factors, including space (Rastogi et al., 2012) , growth season

(Copeland et al., 2015) , climate variation (Medina-Martıńez

et al., 2015) , solar radiation (Truchado et al., 2017) and disease

severities (Zheng et al., 2022) . The phyllospheric area has long

been considered an unfavorable habitat for microbial

colonization due to long time exposure to solar/ultraviolet

radiation, severe diurnal temperature, desiccation, fluctuation

of humidity, scouring rainfall, and the scarcity of available

nutrients. Recent high-throughput sequencing technologies

have enabled the characterization exhaustively the spatio-

temporal structure of phyllosphere microbiome. It has also

been found that there are a large number of microorganisms

inhabiting the phyllosphere, with a density as high as 106-107

cells per square centimeter with multiple biological functions,

such as improving plant disease resistance, biocontrol of

phytopathogens, enhancing nitrogen fixation, decomposing

toxic and harmful substances, and producing plant hormones,

volatile organic compounds (VOCs) to promote plant growth

(Vorholt, 2012; Xu et al., 2022) . Besides, the phyllosphere also

stands for a suitable model system for testing basic principles in

ecology since it is amenable for experiments and visual

inspection. Such research has implications for fields like plant

health and environmental chemistry (Redford and Fierer, 2009;

Remus-Emsermann and Schlechter, 2018) .

A thorough understanding of the ecological drivers of

phyllospheric community assembly and multitrophic

interactions is vital to develop strategies for plant protection.

However, many research aspects of phyllospheric microbiome still

lag behind in comparison with rhizospheric studies.

Tobacco (Nicotiana tabacum L.), is a model plant and

important economic crop, and an ideal research object to

study plant-microbe interactions under multiple stresses

(Xiang et al., 2022). Tobacco is usually grown in summer and

harvested at the end of August. Tobacco’s leaves are continually

subjected to excessive strong sunlight on summer days, which

makes it an ideal material to study the mechanism of bacterial

community assembly and succession in the face of strong abiotic

stresses (i.e., UV radiation, desiccation and heat), accompanied

with pathogen invasion (Bringel and Couée, 2015; Xing et al.,

2022). Dai et al. (2022) investigated the spatiotemporal variation

of the community tobacco leaves affected by brown spot disease

and found that the relative abundance of Pseudomonas,

Sphingomonas, and Methylobacterium increased as tobacco

leaves aging gradually. Besides, Liu et al. (2022) found that the

inoculation of Bacillus velezensis SYL-3 could increase the

abundance of beneficial bacteria, (Pseudomonas and
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Sphingomonas), while suppress the pathogens Alternaria

alternata and tobacco mosaic virus (TMV).

In the current study, we have tried to (i) elucidate

successions of the taxonomic and functional profile in the

phyllospheric bacterial community under abiotic and biotic

stresses of three time periods T1, T2 and T3 in summer

(corresponding to the June, July and August of the year 2021),

(ii) investigate which members in different bacterial community

conferred positive effects on the plant upon abiotic and biotic

stresses, and (iii) compare the networks of different period to

provide insights into the key taxa of communities.
Results and discussion

Bacterial community composition and
diversity in tobacco phyllosphere

A total of 2,302,148 high-quality paired 16S rRNA sequences

and 3,276 operational taxonomic units (OTU) were obtained

from 36 tobacco phyllospheric bacterial DNA samples, (average:

63,949; range: 47,651–79,418 reads per sample). The ternary

phase diagrams (Figure 1A) show the relative abundance and

relationships of the different taxonomic categories in the three

time series groups (T1, T2 and T3), with the circle’s size and

vicinity to the vertex proportional to relative abundance in the

respective group. We found that the phylum Proteobacteria,

class Gammaproteobacteria and orders Pseudomonadales and

Enterobacteriales made up the majority of phyllospheric

bacterial taxa (Figures 1A, B). In comparison, the phyllosphere

of other species from the solanaceous family such as tomato

(Lycopersicon esculentum) is also additionally dominant by

Rhizobium, Methylobacterium, and Xanthomonas (Ottesen

et al., 2013; Toju et al., 2019).

Principal coordinate analysis (PCoA) of Bray–Curtis distance

(Figure 1C) revealed that the microbiome from three time series

groups (T1, T2 and T3) formed three significantly distinct clusters,

indicating thatphyllosphericmicrobiomefromdifferent timeperiods

exhibited distinct community compositions. The first three axes

together explained 75.4% of the cumulative variation (ANOISM

analysis, p <0.001, R=0.597). A total of 556 OTUs are shared across

three groups (Figure 1D), and T3 group comparatively has more

uniqueOTUs (795), followedbyT2 group (628) andT1 group (591).

Alpha diversity indexes, including Richness, Shannon, Simpson,

Pielou, and invsimpson showed an obvious uptrend from the T1

group to T3 group (Figure 2).

To determine the changes in bacterial community composition

across time series, LEfSe analysis was applied to find the differential

taxa in each group. The linear discriminant analysis (LDA) score is

positively correlated with the significance of bacterial biomarkers in

each group (Figure 3). Comparatively, T1 group shows enrichment

of bacterial families like Enterobacteriaceae (LDA =5.89) and

Haliangiaceae (LDA =3.12), genra Azorhizobium (LDA =3.37)
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and Bradyrhizobium (LDA =3.34), and species Azorhizobium

doebereinerae (LDA =3.34). Members of Enterobacteriaceae in

plant phyllosphere are sensitive to abiotic or biotic stresses

(Erlacher et al., 2015), whose population sizes decline upon

desiccation stress on leaves (Brandl and Mandrell, 2002; Brandl,

2006; Whipps et al., 2008), and they contribute to the overall

phyllospheric resistome (Cernava et al., 2019).

At the same time, T2 group shows enrichment of bacterial

phylum Cyanobacteria (LDA =5.13), Firmicutes (LDA =3.37) and

Actinobacteria (LDA =3.09), class like Alphaproteobacteria (LDA

=3.59), orders likeBurkholderiales (LDA=3.57)andOceanospirillales

(LDA=3.23). In previous studies,Firmicutes (represented byBacillus

sp.) and Cyanobacteria were considered beneficial to plant growth

and pathogen control (Priya et al., 2015; Han et al., 2016; Liu et al.,

2022), indicating that plant hostmight have induced the enrichment

of thesepathogenantagonists in thephyllosphereduringT2 to rescue

itself from disease invasion.

Whereas the T3 group shows strong enrichment of genra

including Pseudomonas (LDA =5.29), Sphingomonas (LDA
Frontiers in Plant Science 03
=4.19), Agrobacterium (LDA =3.82), and family like

Xanthomonadaceae (LDA =3.94). Most Pseudomonas species are

beneficial for plants, producing phytohormones and siderophores

to the inhibit pathogens (McSpadden et al., 2001; Hsu and Micallef,

2017) and induce host systemic resistance to improve

morphological and biochemical traits of plants at the same time

(Kumar et al., 2021). Besides, the abundance of Pseudomonas was

negatively correlated with the disease index caused by pathogens

Alternaria alternate (leaf spot or blight disease) tobacco mosaic

virus (TMV) both in tobacco (Liu et al., 2022) and tomato (Gupta

et al., 2021). Likewise, Sphingomonas sp., is a kind of gram-negative,

aerobic foliar and phytohormone-producing bacterium capable of

protecting plants from foliar diseases caused by Pseudomonas

syringae (wildfire disease pathogen) via substrate competition

(Vogel et al., 2012) and various pathogenic fungi (e.g., Alternaria

and Arthrinium) (Enya et al., 2007; Vogel et al., 2012; Luo et al.,

2019) and improving plant growth during stress conditions (Asaf

et al., 2020). The enrichment of Pseudomonas and Sphingomonas in

T3 might be a”cry for help” strategy of tobacco for the recruitment
A B
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FIGURE 1

Bacterial community composition and diversity in tobacco phyllosphere. (A) The ternary phase diagrams showing the relative abundance and
relationships of the different taxonomic categories (top, phylum; middle, class; bottom, order) in the three time series groups (three vertices, T1,
T2 and T3). The size of each circle is proportional to relative abundance; the closer the circle is to the vertex, the higher the relative abundance
of the group in that group. (B) Stack bar chart showing the twenty most abundant OUT taxa in each sample. (C) Principal coordinate analysis
(PCoA) of Bray–Curtis dissimilarity matrices showing effects of time series (T1, T2 and T3 groups) on the tobacco phyllospheric bacterial
community structure. (D) Venn diagram depicting number of shared or unique OTUs in each time series group (T1, T2 and T3).
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A B

FIGURE 3

The linear discriminant analysis effect size (LEfSe) analysis at species level of bacterial communities (with LDA score >3.1 and p < 0.05) among
T1, T2 and T3 groups presented by (A) cladogram (B) and distribution histogram.
FIGURE 2

Alpha diversity indexes including Richness, Shannon, Simpson, Pielou, invsimpson, Chao1, ACE, and goods coverage of tobacco phyllospheric
bacterial communities in each time series group (T1, T2 and T3).
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of microbes upon biotic (pathogen invasion) and abiotic stresses

(drought and heat) (Wang and Song, 2022).

The neutral communitymodel (NCM) is a validatedmethod for

deducing stochastic processes related to community assembly,which

hasbeenhelpful in explainingvarious ecological phenomena (Roguet

et al., 2015) . This model could quantify the significance of processes

that are not easy to observe directly butmight have a great impact on

microbial communities (i.e., dispersal and ecological drift). In our

study, the neutral community model (NCM) has successfully

predicted a large fraction of the relation between the occurrence

frequency of OTUs and the relative abundance (Figure 4A), with

72.1%, 70.8%, 71.6%and71.5%of explained community variance for

T1, T2, T3 groups and overall, respectively, indicating similar

responses of species in different groups to stochastic processes.

Besides, the Nm value is relatively higher for T2 group (Nm =

38,332) than T1 group (Nm= 24,237) and T3 group (Nm= 25,770),

indicating that the species dispersal was higher in T2 group.

Consistently, the majority of betaNTI values of these tobacco

phyllospheric bacterial communities fall within -2 and +2

(stochastic process) in all groups (Figure 4B). The distributions of

betaNTI shifted with a downtrend from higher betaNTI in T1

showing more deterministic community assembly processes

(betaNTI > 2) to lower betaNTIs in T2 and T3 predominant with

stochastic community assembly processes (-2 < betaNTI < +2).

Besides, the estimated niche width of T3 group is significantly

greater than that of T2 and T1 (Figure 4C). These results suggested

that stochasticity was more important than determinism in

influencing the tobacco phyllospheric bacterial community

It has been demonstrated that environmental factors (e.g.,

water, temperature, nutrient and metal concentrations) affect the

microbial community composition, which further impact the

relative abundance and occurrence frequency of microbes in the

neutral or non-neutral distribution . (Liu et al., 2013; Logares

et al., 2013; Zhang et al., 2018) Rainfall always concentrates in

the summer season in the subtropical area of China. Zhangjiajie

region (the sample collection site) generally has the annual

precipitation peak in July (corresponding to T2), according to

data from national meteorological center of China (http://www.

nmc.cn/). Such rainfall abounding conditions, along with

accompanying high aerial humidity, could increase the air

retention time of microbe (pathogen) and facilitate their

passive dispersal across space with higher immigration rate

and spores germination on the leaf surface. This might explain

why the T2 group has the highest Nm-value in the neutral

community model, similar to what have observed in previous

studies (Chen et al., 2019) .
Relationship between bacterial
populations and environmental factors

Redundancy analysis (RDA) was further applied to reveal the

relationship between phyllospheric bacterial populations and
Frontiers in Plant Science 05
factors (Figure 4D). RDA results showed that morbidity

variables, including wildfire disease incidence rate (IR) and

disease index (DI), are positively correlated with temperature

(TEMP) and OTU406145 (Pseudomonas syringae, the pathogen

of bacterial wildfire disease), whereas they negatively correlated

with OTU467605 (Cyanobacteria), indicating that Cyanobacteria

is the potential disease biocontrol agent. Consistently, a previous

study also indicated that Cyanobacteria was a major phylum on

the leaf of tobacco (Xing et al., 2021) and Cyanobacteriamay play

a major role in nutrient cycling and water storage in the

phyllosphere (Fürnkranz et al., 2008). Besides, humidity (HM)

and rainfall capacity (RC) are consistently and positively

correlated with Enterobacteriaceae (OTU559204, OTU581021,

OTU813217, OTU656889, OTU922761). This is consistent with

previous reports that members of Enterobacteriaceae in the

phyllosphere are capable of rapid reproduction and formation

of aggregates under high moisture conditions and are sensitive to

fluctuations in water availability on plant surfaces (Brandl and

Mandrell, 2002; Brandl, 2006; Whipps et al., 2008).

Overall, the morbidity (IR, DI) and climatic factors (TEMP,

HM, RC) have significantly affected the phyllospheric bacterial

community. Variance partitioning analysis (VPA) further

showed that the complete set of the morbidity and climatic

variables together could explain 35.7% of the variation of

tobacco phyllospheric bacterial communities, with climatic

variables contributing most (Figure 4E). Still, the high

proportion of unexplained variation in VPA also suggested the

potential importance of neutral or stochastic processes during

community assembly.
Molecular ecological networks of
phyllospheric bacterial community

Molecular ecological networks (MENs) were constructed to

unravel how the combinations of bacterial wildfire disease and

climatic factors have affected microbial interactions across the

three time periods (Figure 5). The topological properties of the

three sub networks were shown in Table 1. The node numbers of

the phyllosphere networks showed an overall uptrend from T1

to T3. Whereas link numbers increase sharply from T1 (639) to

T2 (14,401), followed by a rapid decrease to T3 (3,533). Similar

trend is also found in MEN properties like the average number

of neighbors, network density (comparison between the edges

available in a graph and a graph with all possible edges), network

centralization (measure of how much the degree of every node is

far from the degree of the highest degree node), and connected

components (a maximal set of nodes such that each pair of

nodes is connected by a path). This indicated that T2 was more

complex, with abundant interactions in a highly connected

microbial community, which might also be explained by the

rainfall peak at T2 that has provided great growth opportunity

for microbes to multiply and make connections as mentioned
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FIGURE 4

Analyses on factors that impacted the relative abundance and occurrence frequency of microbes in tobacco phyllosphere. (A) Fit of the neutral
community model (NCM) of community assembly. The OTUs more frequently present than predicted are in cyan, whereas those less frequently
are in red. The blue dashed lines represent 95% confidence intervals around the model prediction and the OTUs fallen into the confidence
intervals are regarded as neutrally distributed. Nm indicates the meta-community size times immigration, Rsqr indicates the fit to the neutral
model. Neutral processes are the part within 95% confidence interval (red) while non-neutral are the parts including above and below prediction
(dark green); (B) beta nearest taxon index (betaNTI) comparison; (C) niche breadth comparison; (D) redundancy analysis (RDA) of the
relationships between bacterial community in tobacco leaves and environmental variables, including morbidity variables (disease incidence rate:
IR, and disease index: DI) and climatic factors (temperature: TEMP, humidity: HM, and rainfall capacity: RC), (E) variance partitioning analysis
(VPA) showing contributions of morbidity and climatic variables to tobacco phyllospheric bacterial community variation. Asterisks indicate
significance; *, p < 0.05; ***, P< 0.001.
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TABLE 1 Molecular ecological network properties of the three groups.

T1 T2 T3

Number of nodes 117 191 200

Number of edges 639 14401 3533

Positive link 0.574 0.527 0.536

Negative link 0.425 0.472 0.463

Avg- number of neighbors 10.923 45.73 35.33

Network diameter 6 7 5

Network radius 4 7 3

Characteristic path length 2.677 2.154 2.181

Clustering coefficient 0.409 0.691 0.637

Network density 0.094 0.249 0.178

Network heterogeneity 0.659 0.806 0.64

Network centralization 0.141 0.331 0.206

Connected components 1 7 1
Frontiers in Plant Science
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FIGURE 5

Molecular ecological networks of phyllospheric bacterial community. Each node represents an OTU. The size of each node is proportional to
the number of connections (that is, degree) and the colors of nodes represent different order. The links between the nodes indicate strong and
significant (P < 0.01) correlations. A red line indicates a negative interaction between two individual nodes, while a blue line indicates a positive
interaction. (A) Overall molecular ecological network; (B) spearman correlation between environmental factor, alpha diversity index, and OTUs.
(C) molecular ecological network of T1 group (left) and predicted keystone nodes (right); (D) molecular ecological network of T2 group (left)
and predicted keystone nodes (right); (E) molecular ecological network of T3 group (left) and predicted keystone nodes (right).
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above. A similar phenomenon of relatively higher connections

was also observed in the wilt diseased rhizoplane of tobacco (Tao

et al., 2022) . The percentage of positive correlation follow largely

a downtrend from T1 (57.4%) to T3 (53.6%), indicating the

decrease of cooperative relation. Besides, it is predicted by the

program cytoHubba (Chin et al., 2014) that Pseudomonas is the

keystone taxa and is present in the top 10 important nodes in the

MENs from T1 to T3 (Figure 5). Other frequently present

keystone taxa includes Sphingomonas and Labrys. These taxa

are reported to be dominant in plant phyllosphere and might

play important roles in inhibiting plant disease (Liu et al., 2021;

Liu et al., 2022).
The function profiles of phyllospheric
bacterial community

To assess the putative effect of stress factors on the bacterial

community functions of different time periods, metagenome of

tobacco phyllospheric bacterial communities were predicted with

PICRUSt2 (Douglas et al., 2020) followed by annotation in

referring to the KEGG database. A total of 7,557 KOs (KEGG

Orthologs) were predicted across three groups, and some of them

are significantly different among groups (Figures 6A, B). For

example, biosynthesis/transport genes of osmoprotectant against

osmotic stress (opuA, opuBD, treA, otsA) in T2 were predicted to

be more abundant than T3 (Figure 6B). At the same time, the

relative abundance of genes encoding resistance–nodulation–

division (RND) type cobalt−zinc−cadmium resistance protein,

periplasmic protein TonB, sirohydrochlorin ferrochelatase,

twitching motility protein PilU and several metabolic genes for

organic substrate (atoB, paaH, prnA, prpB, ctpA, pepO, aguA,

abfA) is significantly increased in T3. We proposed that these

genes enriched in the T3 group were related with the deterioration

of wildfire disease, since previous studies have found RND efflux

pumps of plant-pathogenic P. syringae pathovars essential for in

planta reproduction and evasion of the host native immune

response (Stoitsova et al., 2008) . Besides, TonB-dependent

receptor is regarded as a feature shared by phytopathogenic

bacteria for the uptake of various carbohydrates under

environmental conditions (Blanvillain et al., 2007) . Motility can

help wildfire disease pathogen search for favorable sites, facilitate

spreading and locate the most preferred site (Haefele and Lindow,

1987) . Toxin such as syringomycin produced by Pseudomonas

syringae is responsible for pore formation and nutrient leakage

through the host cell membrane (Pritchard et al., 2009) , Besides,

plants generally produce phenolic substances to counteract

increased stress levels (Lucas et al., 2022). This might explain

the significant enrichment of organic metabolic genes in the T3

group community.

Collectively, this study has contributed to improving the

understanding of the spatiotemporal patterns of tobacco
Frontiers in Plant Science 08
phyllospheric microbiome and shed light on the putative

underlying mechanism.
Materials and methods

Disease incidence of bacterial
wildfire disease

The standards used to examine tobacco bacterial wildfire

disease were based on the tobacco pest classification and survey

methods (GB/T 23222–2008), P.R. China. Disease incidence was

calculated by the percentage of diseased tobacco in each field.

Disease index was calculated using the formula:

Disease index (DI)  =   o(r � N)=(n� R)
� �

 � 100

r is the disease severity; N is the number of infected tobaccos

with a rating of r; n is the total number of tobaccos tested, and R

is the value of the highest disease severity in each field.

Meteorological data were retrieved from the National

Meteorological Center of China (http://www.nmc.cn/).
Sample collection

The tobacco leaf samples were collected in Gaofeng Town,

Cili County, Zhangjiajie City, Hunan Province (29°28′5″N, 110°
57′53″E), China, at June (T1), July (T2) and August (T3) of

2021. In the test areas, tobacco fields having typical and serious

bacterial wildfire disease levels were selected. In the same plot,

with similar conditions, plants with typical symptoms of

bacterial wildfire disease were sampled, with three plants per

group. The experiment adopted a random block design with

three duplicates; the plot area was 90 m2. Other field

management measures were carried out in accordance with

local planting practices. A total of 18 plants were randomly

selected from each plot, and the middle leaves of every sixth

plant were taken as a sample, which was kept at 4°C and brought

back to the laboratory for subsequent foliar microbial

DNA extractions.
DNA extraction and
high-throughput sequencing

Fifteen grams of leaf samples obtained from various parts of

the leaf surface (avoiding the main and branch veins) using a

sterile puncher were added to 50 mL of 0.1% Tween-80 bacterial

phosphate buffer (pH 7.0). The samples were then shaken for 30

min at 170 revolutions/min (rpm) and 28°C. The bacterial

suspension was then collected, and the leaf samples were

washed twice more. The collected suspensions were centrifuged
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for 15 min (4°C, 10,000 rpm) to pellet the microorganisms. The

pellet was suspended in sterile water and washed three times.

Finally, the microorganisms were resuspended with 1 mL of sterile

water for subsequent DNA extraction. Genomic DNA extraction

of foliar microorganisms was performed using the Plant Genomic

DNAKit (Plant Genomic DNA Kit), following the manufacturer’s

protocol. We used the primer pair 341F (5’-CCT ACGGGNGGC

WGC AG-3’) and 805R (5’-GAC TAC HVG GGTATC TAA

TCC-3’) of V3/V4 regions to amplify the 16S rRNA. Amplicons

were sequenced by Illumina NovaSeq PE250 platform (LC-Bio

Technology Co., Ltd, Hang Zhou, Zhejiang Province, China). The
Frontiers in Plant Science 09
raw sequencing data were deposited in the European Nucleotide

Archive database under accession number PRJEB56205.
Sequencing processing
and statistical analyses

Raw sequences were split into sample libraries with perfect

matches to barcodes. Low-quality sequences with QC < 20 over a

5-bp window size were trimmed using Btrim (Kong, 2011) , and

sequences with a length of < 100 bp were removed. Then, the
A

B

FIGURE 6

PICRUSt predicted metagenome functions with significant difference in abundance between groups at KO level. (A) T1 vs. T3; (B) T2 vs. T3.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1050967
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1050967
forward and reverse sequences were spliced together. Any

sequences containing ambiguous bases or the incorrect length

were removed, and the remaining sequences were compared

against the UNITE v8.2 database (Kõljalg et al., 2005) to remove

possible chimeras. The length of the sequencing fragment was

200–400 bp. Then, UPARSE (Edgar, 2013) was used to cluster

and produce operational taxonomic units (OTUs) at 97%

similarity level. To ensure the authenticity of the data, we

removed OTUs that were represented by only one sequence in

overall data (global singletons). All statistical analyses and

calculations were carried out using the R (v 3.6.3) statistical

platform (www.r-project.org).
Network construction

To construct a microbial association network, correlations

between pairwise OTUs that were present in more than half of

the samples were calculated using the SparCC method

(Friedman and Alm, 2012). Only edges with a significant

correlation higher than 0.5 (p < 0.01) were retained for

network construction. Cytoscape v.3.9.1 (https://cytoscape.org)

was used for network visualization. Cytoscape plugin cytoHubba

(Chin et al., 2014) with Maximal Clique Centrality (MCC)

method was used to predict essential/keystone nodes in

the network.

To determine the potential importance of stochastic processes

on community assembly, we adopted a neutral community model

(NCM) to predict the relationship between OTU detection

frequencies and their relative abundance across the wider

metacommunity, performed using R (version 3.6.3). The

assembly processes of bacterial and fungal communities were

evaluated by calculating the nearest taxon index and beta nearest

taxon index (betaNTI) using the “picante” package. A betaNTI

value < 2 indicates that the contribution is a stochastic process,

and when betaNTI > 2 the shifts in community composition were

considered to be shaped by deterministic processes.

The Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States (PICRUSt2) (Douglas

et al., 2020) was applied to predict potential functional profiles

of the bacterial community using 16S rRNA gene data.
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