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Global warming is predicted to change the growth conditions for plants and

crops in regions at high latitudes (>60° N), including the Arctic. This will be

accompanied by alterations in the composition of natural plant and pest

communities, as herbivorous arthropods will invade these regions as well.

Interactions between previously non-overlapping species may occur and

cause new challenges to herbivore attack. However, plants growing at high

latitudes experience less herbivory compared to plants grown at lower

latitudes. We hypothesize that this finding is due to a gradient of constitutive

chemical defense towards the Northern regions. We further hypothesize that

higher level of defensive compounds is mediated by higher level of the

defense-related phytohormone jasmonate. Because its biosynthesis is light

dependent, Arctic summer day light conditions can promote jasmonate

accumulation and, hence, downstream physiological responses. A pilot study

with bilberry (Vaccinium myrtillus) plants grown under different light regimes

supports the hypothesis.
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Introduction

Steadily rising worldwide greenhouse gases emissions have caused an increase of the

global temperature of >1 °C within the last 50 years (IPCC, 2021). The predicted global

warming is likely to lead to extreme weather events such as tropical storms, extreme

precipitations, flooding events, rise of sea level, extreme heatwaves interspersed with

drought periods, and many more with huge negative impacts on human societies, the

environment and, in particular, on agriculture (see: Cushman et al., 2022, and reviews
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therein). For example, for temperate zones, an increase of crop

loss to herbivorous insects by 10% – 25% per degree Celsius is

predicted (Deutsch et al., 2018). As another consequence of the

ongoing climate change, temperature in high-latitude regions is

rising twice as fast as elsewhere (IPCC, 2019). Due to such

warming, Northern climates are becoming increasingly

susceptible to expanded insect pest invasion and distributions

causing disease emergence and transmission (Bebber et al., 2013;

Chaloner et al., 2021). This means climate change may provide

the environmental conditions required for the emergence of

existing pathogens or the introduction of new pathogens as

major threats (Delgado-Baquerizo et al., 2020). Although still

speculative, projections anticipate a general correlation of

increasing latitudinal distribution with mean global

temperature, due to the availability of host plants or through

direct climate change effects on the pests (Bebber et al., 2013;

Bebber, 2015). Higher night temperatures and milder winters

may enable increased winter survival rates of pathogens, insect

vectors, and insect herbivores (Harvell et al., 2002). This may

also increase the possibility of pest outbreaks. In any case, it will

result in reduced plant growth and losses in crop yields.

This scenario will also severely affect Subarctic and Arctic

(>60° N) ecosystems, for example by changing the distribution of

species and their interactions (Wookey et al., 2009), as well as

agriculture. Due to climatic changes, some regions of the Arctic

are being used for agricultural purposes since the 1990s to

produce potatoes, berries, and herbs among other crops

(Leskien, 2020; Mølmann et al., 2021). This holds true in

particular for Norway with relative higher temperatures in the

Arctic (>66° N) region, due to the Gulf stream, facilitating the

growth of various crops even on Svalbard (Spitsbergen, between

74° and 81° N) (Leskien, 2020). However, for the Northern

hemisphere, important groups of microbial pathogens (Bacteria,

Fungi, Oomycetes), and pests (insects: Coleoptera, Diptera,

Hemiptera, Isoptera, Lepidoptera; mites: Acari) showed an

increase in Northbound movements since 1960 with an

average speed of 2.7 km year-1 (Bebber et al., 2013). Thus, it

can be speculated that with increasing temperatures and thawing

permafrost soil, pathogens and pests will meet naturally

occurring plants and crops in Arctic climates in the future.

Certainly, not all organisms adapt to climate change at the same

speed (Buras and Menzel, 2019; Vindstad et al., 2022). For

example, increasing temperature shifts lepidopteran larvae

populations towards the Northern regions faster than plant

populations move (e.g., Ayres and Scriber, 1994; Hellmann

et al., 2008; Batalden et al., 2014), and locally well adapted

herbivores are often poorly adapted elsewhere (Maron et al.,

2019) but for sure adapt faster than locally adapted host plants.

However, many organisms have demonstrated phenotypic

plasticity to these challenges through the range, phenological

and behavioral shifts, although genetic adaptations can take

several generations (Agrawal, 2001). Thus, very likely
Frontiers in Plant Science 02
widespread damage to vegetation will negatively affect plant

growth and crop yield and reduce the few positive effects of

warming in Northern latitudes.

Nevertheless, there are some reports showing that climate

change may strengthen plants. A study with microbial bio-

protectants showed that the presence of a plant growth-

promoting bacterium (Acidovorax radices N35) in the soil

increased crop (barley, Hordeum vulgare) growth and

simultaneously reduced insect pests (aphids, Sitobion avenae)

under environmental condition simulating climate change-

related elevated ozone (O3) levels (Zytynska et al., 2020). This

demonstrates the potential of local species interactions in

mitigating climate change impacts on plants. The authors

speculate that under the selected conditions the bacteria

induced systemic plant defense by altering plant hormone

signaling (Zytynska et al., 2020). A recent study of the invasive

plant Ambrosia artemisiifolia under the experimental

combination of both warming and biocontrol by an

herbivorous beetle (Ophraella communa), showed that at

ambient temperatures-increased resistance was costly, whereas

warming promoted better defended plants (Sun et al., 2022).

This indicates that on the one hand, invasive plants may be more

difficult to control under climate warming due to increased

resistance to herbivory; on the other hand, warming may

support the natural defensive ability of many other plants.

Plant protection against pathogens and herbivores may be

either constitutively present (e.g., morphological features,

colour, secondary metabolites) or induced upon stress (e.g.,

semiochemicals, herbivore-induced plant volatiles, trichomes)

(Mithöfer and Boland, 2012). While synthesis of constitutive

defensive traits is costly, inducible defenses, in contrast, are

triggered only on demand and are therefore relatively less

expensive. It is well accepted that growth and defense

strategies of plants are evolutionarily intertwined. Investment

in defense is assumed to compete with growth for resources

(Woods et al., 2012); however, plant growth rate has been

predicted to evolve in concert with the resource availability

and abiotic factors, which is thought to set the template for

defensive adaptations (Coley et al., 1985). Because the

replacement costs for tissues is higher for slower-growing

plants, they are thought to invest in higher levels of defense

compared with faster-growing plants (Woods et al., 2012).

Latitude may well be a factor influencing the trade-off between

plant defense mechanisms in opposite directions: inducible plant

defense correlates negatively and constitutive defense correlates

positively with increasing latitudes (Figure 1A). In general,

herbivore pressure is higher in the South but the nature of the

selective pressure is intrinsically different between higher and

lower latitudes and an increase in herbivore density with

decreasing latitude does not necessarily create a corresponding

damage gradient (Salazar and Marquis, 2012). The trade-off

between inducible and constitutive defense could occur along a
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gradient, with strong expressions in the South and the far North

(Figure 1A). This hypothesis is supported by the fact that plant

biomass in the North is less regenerative (De Frenne et al., 2012),

grows slowly (Urban et al., 1993), and herbivory is reduced

(Rasmann et al., 2014) suggesting a high level of defense

compounds. This implicates that mismatching interactions

may occur between plants and invading herbivores, and we

further hypothesize that leaf tissue from Northern regions is less

palatable for Southern communities of generalist herbivorous

arthropods than foliage from the South (Figure 1B).

Thus, it is tempting to speculate that plants living at high

latitudes might have a certain yet unknown intrinsic potential

for defending themselves against pathogens and pests. Besides

temperature and precipitation, the light conditions at high

latitudes with extremely long daylight in summer may have a

yet neglected role by causing a higher constitutive defense level.
Frontiers in Plant Science 03
Jasmonates as key compounds in
the regulation of induced
plant defenses

Jasmonates (JAs) are lipid-derived phytohormones that

regulate a broad range of biological processes in plants,

including plant growth, development, tolerance to abiotic

stresses, and the production of secondary metabolites (Ueda

et al., 2020). In particular jasmonic acid (Figure 2) is a well-

known mediator of plant defense in response to wounding,

herbivory (Howe and Jander, 2008; Koo et al., 2009), and

pathogen infection (Glazebrook, 2005). The first steps of

jasmonate biosynthesis (Figure 2) occur inside the chloroplast

starting from a-linolenic acid and followed by a three-step

enzymatic reaction, which is catalyzed by lipoxygenase (LOX),
A

B

FIGURE 1

Hypothetic distribution of plant chemical defenses along latitudinal gradients. (A) Variability of chemical defenses along latitudinal and their
corresponding daylength gradients. (B) Proposed decrease of palatability for herbivorous insects feeding on leaves with increasing latitude. ©
Map of Europe in (A) European Environment Agency (EEA).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1051107
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mithöfer et al. 10.3389/fpls.2022.1051107
allene oxide synthase (AOS), and allene oxide cyclase (AOC).

Thus, a-linolenic acid is converted into 12-oxophytodienoic acid
(OPDA). Thereafter, OPDA is transported into the peroxisome

and reduced by the OPDA reductase 3 (OPR3) into 8-(3-oxo-2-

(pent-2-enyl)cyclopentenyl)octanoic acid (OPC-8:0)

(Wasternack and Song, 2017) followed by three rounds of b-
oxidation, ultimately synthesizing jasmonic acid. Alternatively,

jasmonic acid can be formed through the intermediates dinor-

12-oxophytodienoic acid, tetranor-12-oxophytodienoic acid,

and 4,5-didehydrojasmonic acid after three b-oxidations,
followed by OPR2-mediated reduction (Chini et al., 2018).

Long time, jasmonic acid was thought to be the bioactive

jasmonate. However, Staswick and Tiryaki (2004) and Fonseca

et al. (2009) revealed that the isoleucine conjugate (JA-Ile) is the

bioactive form. The production of JA-Ile in the cytoplasm is
Frontiers in Plant Science 04
catalyzed by the jasmonic acid-amido synthetase JAR1

(JASMONATE RESISTANT 1; Staswick and Tiryaki, 2004).

In the absence of stress, only low levels of JA-Ile are present

in the cell. In this situation, the Topless (TPL)-Novel Interactor

of JAZ adapter proteins (NINJA)-JA-ZIM-domain (JAZ)

complex represses MYC transcription factors, which are

involved in the transcription of JAs-responsive genes. Upon

stimuli such as herbivory or wounding, JA-Ile accumulates and

binds to the receptor CORONATINE-INSENSITIVE1 (COI1)

(Fonseca et al., 2009; Sheard et al., 2010). COI1 is part of the SCF

complex, an E3 ubiquitin ligase (Devoto et al., 2002). Upon

binding of JA-Ile, the SCFCOI1 complex ubiquitinates the

jasmonate-ZIM-domain (JAZ) proteins, leading to their

degradation by the 26S proteasome (Chini et al., 2007;

Fernandez-Calvo et al . , 2011). Consecutively, MYC
FIGURE 2

Jasmonate biosynthesis. Simplified scheme showing the generation of jasmonoyl-isoleucine (JA-Ile) via two alternative jasmonic acid (JA)
pathways. Enzymatic reactions and corresponding enzymes are indicated in red. Transport between cell compartments is depicted by black
dotted arrows. Abbreviations: LOX, Lipoxygenase; AOS, Allene Oxide Synthase; AOC, Allene Oxide Cyclase; OPDA, 12-oxo-phytodienoic acid;
dnOPDA, dinor-OPDA; tnOPDA, tetranor-OPDA; 4,5-ddh-JA, 4,5-didehydro-JA; OPR, OPDA Reductase; OPC-8, 8-(3-oxo-2-(pent-2-enyl)
cyclopentenyl)octanoic acid; JA, jasmonic acid; JAR, Jasmonate resistant; JA-Ile, jasmonoyl-isoleucine. Scheme modified after Chini et al. (2018)
and Wasternack and Song (2017).
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transcription factors are released and lead to the expression of

JAs-regulated defense- or stress-related genes.
Jasmonates, light and phytochrome

Besides mechanical stress, JAs biosynthesis and signaling can

be regulated by light through the phytochrome system (Kazan

andManners, 2011; Svyatyna and Riemann, 2012; Ballaré, 2014).

A relationship between JAs metabolism/signal transduction and

photoperception became obvious first in studies related to the

photomorphogenesis of monocot seedlings in rice (Oryza sativa)

(Riemann et al., 2003; Haga and Iino, 2004) and maize (Zea

mays) (He et al., 2005). In rice, results indicated that JAs

biosynthesis and signaling are necessary to obtain a complete

photomorphogenic response in young, etiolated seedlings.

Genetic evidence from mutants that were affected in JAs

biosynthesis enzymes such as AOC (Riemann et al., 2013;

Nguyen et al., 2020) or JAR1 (Riemann et al., 2008; Svyatyna

et al., 2014) showed clear photomorphogenic phenotypes such as

longer coleoptiles. However, there is also a feedback of JA on the

phytochrome receptors and signaling hub. In JAs deficient rice

coleoptiles, the light-dependent degradation of phytochrome A
Frontiers in Plant Science 05
(phyA) is significantly decreased compared to the wild type

(Riemann et al., 2009).

Similar mechanisms were found in other plants such as

Arabidopsis thaliana (Chen et al., 2007; Robson et al., 2010).

Here, recently a feedback mechanism of JAs on the phytochrome

signaling machinery has been described: JAs inhibits

CONSTITUTIVE PHOTO-MORPHOGENIC1 (COP1), a

repressor of photomorphogenesis in the dark, and hence

suppresses hypocotyl elongation and promotes cotyledon

opening (Zheng et al., 2017). The Far-Red (FR) insensitive 219

(FIN219) line was demonstrated to be a suppressor of COP1 as

well (Hsieh et al., 2000). Strikingly, JAR1 has the same locus as

FIN219 (Staswick et al., 2002), which suggests that FIN219/JAR1

is an important regulator in modulating the integration of

phytohormone-signaling through jasmonates and light

signaling (Chen et al., 2007) (Figure 3).

Like in rice, JAs biosynthesis in Arabidopsis is induced by

light (Yi et al., 2020). Photomorphogenesis of Arabidopsis is

promoted via MYC2 and MYC3 transcription factors,

representing positive regulators of the JAs response (Ortigosa

et al., 2020). Both can activate the promoter of ELONGATED

HYPOCOTYL 5 (HY5), a key transcription factor regulating

photomorphogenesis. All these findings illustrate how closely
FIGURE 3

Illustration of interactions among sunlight, jasmonates, photomorphogenesis, and defense. Arrows imply activation, T-bars indicate inhibition of
an interaction/process. JAs, jasmonates; JAR1/FIN219, Jasmonate resistant1/Far-red insensitive 219; COP1, Constitutive photo-morphogenic1,
acts only in the dark on photomorphogenesis; Phy, Phytochrome; HY5, Elongated hypocotyl 5; MYC2/3, Transcription factors; photoreceptors
include phytochrome, blue light, and UV-B receptors; sunlight represent R:FR >> 1. For details see text.
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JAs, light, and phytochrome signaling are linked in young

seedlings (Figure 3). Thus, it is tempting to speculate that this

holds true also for later stages in plant life. Indeed, it was found

that a low R:FR ratio is characteristic for the shade avoidance

response of plants, a typical phytochrome regulated process,

which is induced in plants to escape from the shade and reach

sunlight in order to find optimal conditions to perform

photosynthesis. Further studies confirmed this discovery

summarized in several review articles (Kazan and Manners,

2011; Ballaré, 2014; Fernández-Milmanda and Ballaré, 2021)

and supported the trade-off between growth and

defense hypothesis.

Very likely, additional photoreceptors (e.g. for blue and UV-

B light) as well as additional plant hormones contribute to these

responses (Fernández-Milmanda and Ballaré, 2021). In

particular, gibberellic acid (GA) seems to be involved. The

increased degradation of DELLA, a suppressor of GA

signaling, led to more stable JAZ10 proteins thereby inhibiting

JAs action (Yang et al., 2012; Leone et al., 2014). In summary, it

is obvious that JAs assist light-dependent photomorphogenesis

and attenuate dark-related growth promotion (Figure 3).
Jasmonates, light and
chemical defense

Many studies have shown that low R:FR ratios due to shade

down-regulate defense responses in favor of growth (see: Ballaré,

2014). Plants grown in high density or under a low R:FR ratio

display a partially impaired defense response against

herbivorous insects, which was attributed to lower sensitivity

to JAs (Moreno et al., 2009). It is evident that leaf tissue from

plants grown in the shade is more favorable to herbivores, and

shading increases infection by a range of pathogens (Roberts and

Paul, 2006). Moreover, phyB inactivation leads to increased

insect pest and pathogen susceptibility, which has been linked

to reduced expression of defense-related chemical traits

(Izaguirre et al., 2006; Moreno et al., 2009; Agrawal et al.,

2012; Cargnel et al., 2014). However, if low R:FR or shade

increase susceptibility of plants under attack, high R:FR or

ambient light should do the opposite. This was demonstrated

by Moreno et al. (2009) who showed that under FR light feeding

herbivores (Spodoptera frugiperda larvae) performed better and

gained more weight than under ambient light conditions.

Moreover, herbivory is reduced in plants grown in full

sunlight compared with plants grown in shade (Roberts and

Paul, 2006; Schrijvers-Gonlag et al., 2020) (Figure 3). Many

studies have been published concerning JAs-dependent control

of metabolism (Mithöfer and Boland, 2012; Wasternack and

Song, 2017; Savchenko et al., 2019), but whether such regulatory

mechanisms are light-dependent and how light can influence the

primary and secondary metabolism of plants through JAs and
Frontiers in Plant Science 06
possibly other hormone pathways has rarely been investigated so

far. A huge variety of regulatory mechanisms can be expected in

the plant kingdom due to its rich and individually varied

secondary metabolism. In snapdragon (Antirrhinum majus),

the biosynthesis regulation of floral fragrance by light quality

is mediated by JAs and calcium ions (Yang et al., 2022). In

Artemisia annua a light and JAs-mediated control of artemisinin

biosynthesis has been described (Fu et al., 2021). Vitis vinfera

uses stilbenes as major defense compounds (Chong et al., 2009).

It has been found that the application of methyl-jasmonate

induced the production of stilbenes in grapevine suspension

cells and that this accumulation of secondary metabolites could

be further enhanced by red light (Tassoni et al., 2012). These few

examples indicate the presence of regulatory mechanisms in

different plant species and the potential of modulating the

content of valuable defense-related compounds in plants

depending on light quality and amount. However, it cannot be

ruled out that herbivorous insects also adapt to the new

environmental conditions and develop mechanisms that

counteract JAs-mediated defense, for example through more

efficient or novel effectors that suppress JAs synthesis
Arctic summer light conditions
cause elevated jasmonates and
defense level

In summer, plants growing at high latitudes encounter very

long photoperiods. Of course, in these latitudes the solar

elevation angle is low, even in summer. This has an impact on

the light quality. If the solar elevation angle is lower than 10°,

also the R:FR ratio is lower than 1 (Mølmann et al., 2021).

However, during the whole growth period from May to

September, for the longest time of the days, the angle is higher

than 10°. This supports our idea that Arctic summer day light

conditions not only allow photosynthesis but also may cause

higher resistance against attackers as supported by studies from

Roberts and Paul (2006) and Schrijvers-Gonlag et al. (2020). The

higher resistance might be due to intrinsic higher JAs levels.

Based on the above, our hypothesis is as follows: Arctic summer

light conditions cause elevated jasmonates and defense level.

In order to test this hypothesis, we conducted a pilot study

where naturally occurring bilberry (Vaccinium myrtillus L.)

plants were collected in Northern Norway close to Tromsø

(69° 29’ N) and grown under arctic (24 h light) and Central

European (12 h light/12 h dark) light regimes. After two weeks,

the leaf samples were collected every 6 hours in liquid nitrogen

and stored at -80 °C. Eventually, samples were freeze dried,

grinded and used for phytohormone analyses. We found that the

levels of jasmonic acid (Figure 4A), abscisic acid, and auxin but

not salicylic acid were significantly higher under 24 h light. A

principal component analysis of the accumulation of these
frontiersin.org
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defense-related phytohormones revealed a partial separation

between the two different light regimes (Figure 4B). These

results are in accordance with earlier studies showing that

increased light irradiation activates the synthesis of phenolic

compounds in bilberry leaves, likely controlled by JA-mediated

signaling (Jaakola et al., 2004; Benevenuto et al., 2019), and could

at least partially explain the higher levels of phenolic compounds

detected in bilberry leaves towards higher latitudes (Martz et al.,

2010). A very recent experiment with Chenopodium ficifolium

grown either under long-day (18 h light/6 h dark) and short-day

(6 h light/18 h dark) regimes also showed that after three weeks

the levels of JAs but also of abscisic and salicylic acids were
Frontiers in Plant Science 07
significantly higher in long-day plants. The same was

demonstrated for many stress-related genes (Gutierrez-

Larruscain et al., 2022).

These findings suggest that at high latitudes light is an

important factor for JAs accumulation and, consequently,

affects JA-dependent downstream defenses (summarized in

Figure 5). A systemically higher level of JAs very likely

contributes to constitutive defenses directed against herbivory

or any other stress-induced defense that is mediated via the

jasmonate pathway, including the defense against nectrotrophic

fungi. This might also be true for other phytohormones signaling

pathways that directly or indirectly interact with JA signaling.
frontiersin.org
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FIGURE 4

Phytohormones in bilberry (Vaccinium myrtillus) plants grown under different light regimes. (A) Accumulation of jasmonic acid (JA) in bilberry
leaves grown for 14 days under 24 h (24 L) and 12 h (12 L/12 D) light regime and collected every 6 hrs, i.e. for the 12 L/12 D light regime two
times each in the light and in the dark; ***: P < 0.001 (Welch-test). Phytohormone analysis was done according to Dávila-Lara et al. (2021).
(B) Principal component analysis of amounts of various defense–related phytohormones (JA, JA-Ile, SA, IAA, ABA) accumulating under 12 h light
(L/D) and 24 h light (Light) in bilberry leaves. PC, principal component (% of total variance); confidence area, 95% PCA analysis.
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Given that during evolution plants adapted to various light

qualities and intensities, it is not surprising that light interacts

with the action of phytohormones such as JAs that affect both

development and defense. Our controlled pilot study was

performed with local wild bilberry ecotype adapted to long day

light conditions during the growth season. To further explore the

response of this species to different day length conditions,

controlled experiments with plants originating from different

latitudinal locations will be performed. Additional,

comprehensive studies to better understand the underlying

molecular mechanisms in bilberry and other plants would lead

to potential agricultural benefits for crops grown in the far

North, which could become important in the future, especially

under climate change conditions.
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