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Phalaenopsis orchids are one of the most important exporting commodities for

Taiwan. Most orchids are planted and grown in greenhouses. Early detection of

orchid diseases is crucially valuable to orchid farmers during orchid cultivation. At

present, orchid viral diseases are generally identified with manual observation

and the judgment of the grower’s experience. The most commonly used assays

for virus identification are nucleic acid amplification and serology. However, it is

neither time nor cost efficient. Therefore, this study aimed to create a system for

automatically identifying the common viral diseases in orchids using the orchid

image. Our methods include the following steps: the image preprocessing by

color space transformation and gamma correction, detection of leaves by a U-

net model, removal of non-leaf fragment areas by connected component

labeling, feature acquisition of leaf texture, and disease identification by the

two-stagemodel with the integration of a random forestmodel and an inception

network (deep learning) model. Thereby, the proposed system achieved the

excellent accuracy of 0.9707 and 0.9180 for the image segmentation of orchid

leaves and disease identification, respectively. Furthermore, this system

outperformed the naked-eye identification for the easily misidentified

categories [cymbidium mosaic virus (CymMV) and odontoglossum ringspot

virus (ORSV)] with the accuracy of 0.842 using two-stage model and 0.667 by

naked-eye identification. This system would benefit the orchid disease

recognition for Phalaenopsis cultivation.
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1 Introduction

Orchids, the flowering plants, are popular and well-received

house plants worldwide. Phalaenopsis shared 79% of the global

orchid market in 2018 (Yuan et al., 2021). Phalaenopsis is an

important exporting flower for Taiwan. Taiwan’s Phalaenopsis

export reached 160 million US dollars in 2021 (https://www.coa.

gov.tw/). To meet the demand of the increasing share of the

global orchid market, it is imperative to develop better

techniques for quality control and management and the

optimization of the cost for the production process.

(Shaharudin et al., 2021; Yuan et al., 2021).

Phalaenopsis are propagated with tissue culture technique

and often densely planted in greenhouses in Taiwan. Such

cultivation practice can easily lead to the spread of virus

diseases (Lee et al., 2021). Phalaenopsis are cultivated in

greenhouses that provide suitable temperature, humidity,

daylight, irrigation, and fertilization. However, the close

planting environment in greenhouses is quite suitable for virus

spread as well (Koh et al., 2014). Viruses might infect the whole

orchid plants under cultivation or even spread to most orchids in

the entire cultivation area. Orchids infected by viruses will

greatly lose their commercial value. Hence, developing better

viral disease detection protocols has always been one essential

task for the quality control of orchid cultivation (Koh

et al., 2014).

There are nearly 60 viruses that reportedly infect orchids. The

most common viruses are odontoglossum ringspot virus (ORSV)

and cymbidium mosaic virus (CymMV) worldwide (Huang et al.,

2019; Lee et al., 2021). It is a common phenomenon that the

coinfection of ORSV and CymMV on orchids resulted in a

synergistic effect on symptoms. Capsicum chlorosis virus

(CaCV), previously found on Phalaenopsis, was once known as

“Taiwan virus”. CaCV belongs to Orthotospovirus which can be

transmitted by thrips. These viruses frequently appear on orchid

farms in Taiwan. Plants suffered from viral diseases grow slowly

and eventually lose the economic values (Zheng et al., 2008; Lee

et al., 2021). Early detection and removal of diseased plants is a

prerequisite for ensuring the quality of orchids. The most

commonly used detection methods for orchid viruses involve

the nucleic acid amplification and serology. For instance, the

enzyme-linked immunosorbent assay (ELISA), immunostrip test,

reverse transcription-polymerase chain reaction (RT-PCR),

polymerase chain reaction (PCR), and reverse transcription-loop

mediated isothermal amplification (RT-LAMP) were often used

(Eun et al., 2002; Chang, 2018; Lee et al., 2021). However, these

detection methods are labor-intensive and expansive

economically. Moreover, some of the early-stage symptoms on

the orchid leaf infected by one of the common viruses are not

noticeable and often not easily identified by the naked eye.

Therefore, an automated and precise intelligent image analysis

system for the identification of Phalaenopsis orchid viral diseases
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can be a powerful tool for better management of the viral diseases

of orchids.
1.1 Related studies

1.1.1 AI models for the identification of plant
leaf diseases

During the past decade, using artificial intelligence (AI)

methods with image data or big data for the prediction or

detection of plant diseases has become very popular globally

(Chan et al., 2018; Wu et al., 2022). For example, Ali et al.

(2017) reported the detection of citrus diseases using machine

learning (ML) models, k-nearest neighbor (KNN) and support

vector machine (SVM), with color histogram and texture features

of the infected leaf images. The classification of soybean leaf

diseases was reported using the convolution neural network

(CNN, a deep learning model) with the segmentation of

soybean leaf and the background of each image, as well as data

augmentation (by image translation and rotation) for increasing

the case number of training data (Karlekar and Seal, 2020). A

tomato leaf disease classification using a deep learning model,

which integrated DenseNet121 and transfer learning, with

conditional generative adversarial network (C-GAN) (Mirza and

Osindero, 2014) for data augmentation was proposed and

achieved with great accuracy (Abbas et al., 2021).

A recent review article (Dhaka et al., 2021) revealed that the

AI models proposed in 20 articles for classifying different plant

types (apple, cucumber, tomato, radish, wheat, rice, or maize in

individual research) could reach good or excellent accuracies

(0.8598-0.9970). ML-based approaches were adopted in the

identification of plant growth stages, taxonomic classification

of leaf images, plant image segmentation (reported in 6 studies);

and deep learning (DL) architectures with transfer learning were

applied in segmentation of crops and weeds, weed identification,

disease classification of 12 plant species, identification of biotic

and abiotic stress, and leaf counting (reported in 6 studies)

(Nabwire et al., 2021).

AI models were designed to identify plant leaf diseases; they

could reach fair, good, or excellent accuracies (0.590-0.9975) as

mentioned in 32 articles (Dhaka et al., 2021). Basically, these

researches focused on identifying leaf diseases for one of the

following plant types: banana, apple, 14 crop species, 6 plant

species, tomato, cucumber, rice, 25 plant species, olive, wheat,

radish, 14 plant species, potato, cassava, maize, radish,

grapevine, and tea (Dhaka et al., 2021). Various feature

extraction methods reported in 9 studies for the image-based

plant disease detection were reviewed (Ghorai et al., 2021). It was

clearly documented that texture and/or color features were

adopted in most of these studies on disease detection for

soyabean, maize seedling, grape, bean, tomato, rice and one

study on orchid (Huang, 2007; Ghorai et al., 2021).
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1.1.2 AI models for the
orchid-associated identifications

A review article (Vishnoi et al., 2021) reported that the top

three crops associated with plant disease detection using image

processing techniques during 2009-2020 were rice (11%),

tomato (11%), and corn (7%). Reportedly, only 1% of the

studies was associated with orchids and in them there was

very few studies using the AI method for the identification of

common orchid diseases using orchid images (Vishnoi et al.,

2021). We aimed to develop the AI system with images of orchid

seedlings for accurate detection of common viral diseases of

orchids. The system will provide higher accurate detection

capability than that with the naked eye, and suitable for early

detection that in turn can reduce the economic loss. The system

enables non-destructive detection and can be developed toward

automatic and fast detection that can replace the nucleic acid

amplification and serology detection that are labor-intensive and

neither time nor cost efficient for the comprehensive detection.

Thereby, the proposed intelligence system can benefit the orchid

cultivation industry.
2 Materials and methods

The Phalaenopsis images and methods described in this

section were prepared and designed for accurate identification

of common viral diseases of orchids. The orchid virus

inoculation and Phalaenopsis image acquisition were described

in section 2.1. The design flow of the proposed AI system,

associated with the adopted image processing methods and AI

models, for realizing the accurate identification of common viral

diseases of orchids using the acquired Phalaenopsis images was

sequentially described in section 2.2.
2.1 Image dataset

2.1.1 Orchid virus inoculation
Leaves of ORSV- or CaCV-infected N. benthamiana and

CymMV-infected C. quinoa were ground in phosphate buffer

(0.1 M potassium phosphate buffer, pH 7.0) and the resultant

saps were inoculated to Phaleanopsis seedlings. Inoculated plants

were maintained in a growth chamber with the temperature set

at 25°C located in the National Chung Hsing University

(NCHU, Taichung, Taiwan) for symptom development.

2.1.2 Samples and photographic images
A total of 1888 images of Phalaenopsis consisted of five

categories (CymMV infection, ORSV infection, CaCV infection,

health and others) were generated. Photographic samples

included collections from various orchid farms and artificially

inoculated Phalaenopsis. The virus-infected Phalaenopsis was
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photographed with a digital single-lens reflex (DSLR) camera

(Nikon D300). Plants were placed on black cloth for photos from

different angles. Figure 1 shows examples of these images. The

study viruses were inoculated into Phalaenopsis mechanically.

ORSV-infected plants exhibited chlorotic mosaic symptoms on

the apical leaves. CymMV-infected plants exhibited mosaic

symptoms on the apical leaves. CaCV-infected plants exhibited

chlorotic ringspots symptoms on the inoculated leaves. All

samples were detected by ELISA for the presence of viruses.

ORSV infection induced symptoms of chlorotic mosaic, mosaic,

chlorotic arch and chlorotic spots on Phalaenopsis leaves.

CymMV infection induced symptoms of chlorotic necrosis,

mosaic, necrotic streaks, and necrotic spot turned dark on

Phalaenopsis leaves. CaCV infection induced symptoms of

chlorotic ring spots of different sizes on Phalaenopsis leaves. In

Taiwan, eight viruses reportedly infect orchids. The most

common orchid viral diseases in Taiwan are ORSV, CymMV,

and CaCV. Phalaenopsis orchids showing virus-like symptoms

were collected in Taiwan. All samples were detected by ELISA

for the presence of viruses. Phalaenopsis leaves with virus-like

symptoms but from which no virus was detected were listed in

the category of “others”. In other words, symptomatic leaves

other than CymMV-, ORSV-, and CaCV-infected leaves were

listed in the category as “others”.
2.2 System architecture and design
methods

The system architecture for the identification of Phalaenopsis

orchid diseases (shown in Figure 2) included two major portions,

namely, the leaf segmentation and disease identification. The leaf

segmentation can keep only the leaf image with all other parts being

removed from a Phalaenopsis orchid image. The leaf segmentation

can be regarded as the image preprocessing before the disease

identification. The disease identification, following the leaf

segmentation, was designed to identify the five categories

(described in section 2.1) using the two-stage-AI model with the

segmented leaf image and the acquired leaf texture features of the

Phalaenopsis orchid image. The proposed AI system performed all

the procedures sequentially, shown in the 8 blocks in Figure 2, for

the identification of orchid diseases. The design methods of this

identification system, illustrated in Figure 2, were described in detail

in the following subsections. The detailed procedures and methods

of two major portions, the leaf segmentation and disease

identification, were described in section 2.2.1 and section 2.2.2,

respectively, with each subsection title corresponding to the block in

Figure 2. For example, the subsection title “Contrast enhancement”

follows the first paragraph of section 2.2.1 is also presented as one

procedure shown in the second left block in Figure 2. The details of

each procedure are described after the corresponding subsection

title. This identification system, including AI models and image

processing approaches, were developed using Python 3.6.10 (with
frontiersin.org
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FIGURE 1

Image examples of orchids: (A) Capsicum chlorosis virus (CaCV) infection, (B) Cymbidium mosaic virus (CymMV) infection, (C) Odontoglossum
ringspot virus (ORSV) infection, (D) health, (E) and (F) others.
FIGURE 2

The proposed system architecture for identifying orchid diseases.
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Tensorflow 1.15 and Keras) underWindows 10 pro and executed in

Intel i7-9700K 8-core CPU and Nvidia RTX-2080TI GPU.
2.2.1 Leaf segmentation
The first half of this system architecture, illustrated in the

upper half of Figure 2, mainly performs the leaf segmentation

from each Phalaenopsis orchid image by the contrast

enhancement (CE) using color space transformations and

gamma correction for solving the non-uniform brightness

issue of the input images; leaf region prediction using the U-

net model for selecting the leaf regions in an orchid image; and

removal of non-leaf fragment areas using connected component

labeling for removing small fragment areas and keeping the

desired leaf regions in an orchid image. Technical details of these

procedures are explained as follows.
Contrast enhancement

The non-uniform brightness of input images was a common

issue in the field of image processing. The following image

preprocessing method, the contrast enhancement with color

space transformations was adopted for brightness adjustment in

this study. A color image is usually expressed using the RGB

format with each pixel range from 0-255 levels for red, green, and

blue components, respectively. The RGB format can be transferred

into the YUV space using Equation (1) (wikipedia.org, 2022). In

the YUV space, Y, U, and V components represent the luminance

(or brightness), chrominance, and chroma, respectively. The YUV

space can also be transferred back to the RGB space by Equation

(2) (wikipedia.org, 2022).

Y

U

V

2
664

3
775 =

0:299 0:587 0:114

−0:169 −0:331 0:5

0:5 −0:419 −0:081

2
664

3
775

R

G

B

2
664

3
775 +

0

128

128

2
664

3
775 (1)
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3
775
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2
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The gamma correction, expressed in Equation (3), can be

used to adjust brightness level within an image by computing a

power of gamma g of the normalized brightness from Y-

component IY(x,y) , brightness value for each pixel within the

image. If g is smaller than 1, the detail of the dark region can be

enhanced (highlighted). If g is larger than 1, the detail of the

bright region can be enhanced.

IY 0   = (
IY x, yð Þ −min 
max −min

)g � 255 (3)

The brightness of the input Phalaenopsis orchid images may

not be uniform. Some of the Phalaenopsis orchid images may be

bright and some may be dark as shown in (Figures 3A, B)

respectively. Because of this issue, a color Phalaenopsis orchid

image was read in and followed by the contrast enhancement.

The contrast enhancement was performed by transferring the

RGB space of the input image, such as shown in (Figure 4A),

into the YUV space using Equation (1) and followed by the

gamma correction, using Equation (3), for obtaining the

enhanced Y component IY '. The U and V components

(chrominance and chroma) were remained the same to keep

the color information of each orchid image including symptom

colors and symptom textures of each leaf image. Figures 4B–D

shows the images after the contrast enhancement with different

gamma values.
Leaf region prediction using the
U-net model

In order to prevent objects unrelated to leaf symptoms such

as the soil and potted container from affecting the subsequent

model of disease identification, we separated the Phalaenopsis
FIGURE 3

The bright (A) and dark (B) orchid images.
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orchid leaf region from the image using a U-net model before

performing the disease identification.

The U-net (Ronneberger et al., 2015) was a very popular AI

network architecture for image segmentation. Because the network

architecture of the model is very similar to a capital letter U, hence

named U-net. U-net consists of two portions, namely the encoder

and decoder. The encoder mainly extracts image features of

different sizes by multiple sub-models. The decoder concatenates

features from the same level layers of the encoder and up sample to

generate the trained imagemask. The U-net features performing the

image segmentation with a small amount of training images.

The U-net model adopted in this study was illustrated in

Figure 5. The leaf region and background region were specified

in white and black colors, respectively, (as illustrated in Figure 6)

using an image labeling tool for preparing the training data.

Then the output of the trained U-net model will provide the leaf

region and background region. 1504 and 377 images (randomly

split from 1881 Phalaenopsis orchid images) were used as the

training dataset (80%) and testing dataset (20%), respectively, for

designing the U-net model. U-net parameters adopted in this

study include that image size=256x256, 3 channels, batch size=8,

epoch=200, Adam optimizer, and learning rate=0.0001.

The contrast enhanced YUV space after gamma correction,

using Equation (3), with different values of g were transferred
Frontiers in Plant Science 06
back to the RGB space using Equation (2) and input to the U-net

model for obtaining the best value of g .
The performances of segmenting the leaf region from the

background region in a Phalaenopsis orchid image using the U-

net model were quantified by the parameters formulated in

Equations (4)-(7). TP, TN, FP and FN represent for the true

positive, true negative, false positive, and false negative,

respectively.

 Accuracy  =    TP  +  TN ð Þ = Total Number (4)

Precision  =  TP =   TP  +  FP ð Þ (5)

Recall  =  TP =   TP  +  FN ð Þ  (6)

F1 Score = 2� Precision� Recall= Precision + Recallð Þ (7)
Removal of non-leaf fragment areas

After the contrast enhancement and leaf region prediction

using the U-net model, the mask region generated may include

non-leaf regions such as the white mask region indicated by the
FIGURE 4

(A) An original orchid image and (B-D) images after contrast enhancement with different gamma values.
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red oval in the right panel of (Figure 7A). Besides that, the leaf

regions in an image may not be connected as shown in

(Figure 7B). Furthermore, sometimes the side-view picture of

a leaf was taken, such as that shown in the left panel of

(Figure 7C), and its top-view leaf texture may not be observed.

Therefore, the predicted mask of a side-view leaf may be less

helpful for the disease identification.

U-net predicted leaf regions (mask), such as shown in the

right three panels in Figure 7, were further processed using the

connected component labeling method with 8-neighbor

connectivity (Chen et al., 2018) to recognize each connected

region to obtain multiple connected regions in an Phalaenopsis

orchid image. Figure 8 shows two examples of the automatic

labeled connected regions with consecutive Arabic numerals

after performing the connected component labeling.

The maximum area, maxarea, of connected leaf regions

obtained was computed (excluding the background region). If

the area of any of the rest connected regions is smaller than a

threshold area THarea (a ratio of maxarea), this connected region

was regarded as a non-leaf fragment area and will be removed

from the predicted leaf region. Experimental results obtained in

this study suggested that THarea=1/20 maxarea could have the
Frontiers in Plant Science 07
highest accuracy for the automatic removal of non-leaf fragment

regions and leaf segmentation.

2.2.2 Disease identification
The second half of this system architecture, illustrated in the

lower half of Figure 2, mainly performs the disease identification

from segmented leaf images by sequentially performing the

image augmentation for obtaining more and balanced

numbers of images among all categories, leaf texture feature

acquisition for obtaining and quantifying symptom features on

each leaf image, and two-stage identification model for accurate

disease identification. Technical details of the procedures were

described as follows.
Image augmentation

The numbers of five categories of Phalaenopsis orchid

images collected in this study were imbalanced as shown in

Figure 9. The data augmentation was performed to solve the

imbalanced issue and avoid overfitting for designing a better

identification model. The smaller number categories, ORSV and
FIGURE 5

The U-net model for automatic leaf region prediction.
FIGURE 6

Manual labelling for the leaf region (white region) and background region (black region).
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B

C

A

FIGURE 7

(A–C) Examples of the predicted leaf region (mask).
BA

FIGURE 8

Results after performing the connected component labeling with (A) two connected regions and (B) three connected regions.
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“others”, were augmented by randomly selecting some images

and rotating them by ±15° . The image numbers of ORSV and

“others” were increased by 0.5 and 2 folds, respectively. More

than 400 images for each category were obtained.
Leaf texture feature acquisition

The texture features of the Phalaenopsis orchid leaf were

computed and extracted using two techniques: the method of

rotation invariant local binary pattern (LBPri) (Ojala et al., 2002)

and the method of gray level co-occurrence matrix (GLCM)

(Haralick et al., 1973).

The technique of LBPri can provide the rotation invariant

features using a local binary pattern, LBP, (Ojala et al., 2002).

The computation of LBPri is shown in Equation (8). LBPri

creates P -bit circular patterns and encoded them as P -bit

binary numbers for a point with P circular neighbors (with

radius R ). The minimum value of all rotation results is

selected as the LBP value of the pattern center. For R =1

and P =8, 36 rotation invariant patterns (features) can be

obtained and were used as 36 features for leaf texture in the

current study.

LBPriP,R = min ROR LBPP,R, k
� �

∣k = 0,…, P − 1
� �

(8)

where ROR(LBPP,R,k) rotates k bit clockwise with radius R

and P neighbors of a circular pattern LBP (Ojala et al., 2002).

The method of GLCM can extract and quantify multiple

features for the texture of a gray level image (Haralick et al.,

1973; Ozdemir et al., 2008; Zulpe and Pawar, 2012; Hall-Beyer,

2017; Andono et al., 2021). Six features, contrast, dissimilarity,

homogeneity, angular second moment (ASM), energy, and

correlation, were computed using GLCM with Equations (9)-

(14) (Haralick et al., 1973; Ozdemir et al., 2008; Zulpe and

Pawar, 2012; Hall-Beyer, 2017; Andono et al., 2021) in the

current study. In the matrix of GLCM, the matrix element,
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Pd,q(i,j), represents the relative occurrence frequency for the gray

level pair with gray level i and j among all pixel pairs separated

with distance d and relative angle q in a gray level image.

Contrast  = o
Lg−1

n=0
n2 o

Lg−1

i=0
o
Lg−1

j=0
Pd,q i, jð Þ

( )
, i − jj j = n (9)

Dissimilarity  = o
Lg−1

i=0
o
Lg−1

j=0
Pd,q i, jð Þ i − jj j (10)

Homogeneity  = o
Lg−1

i=0
o
Lg−1

j=0

Pd,q i, jð Þ
+ i − jð Þ2 (11)

ASM  = o
Lg−1

i=0
o
Lg−1

j=0
Pd,q i, jð Þ2 (12)

Energy  =
ffiffiffiffiffiffiffiffiffiffi
ASM

p
(13)

Correlation  =  o
Lg−1

i=0
o
Lg−1

j=0

i� jð ÞPd,q i, jð Þ − mxmy

sxsy

 !
(14)

where mx , my sx , and sy are the means and standard deviations

of Px(i) = o
Lg−1

j=0
Pd,q(i, j), and Py(j) = o

Lg−1

i=0
Pd,q(i, j), respectively.

Each of the six features was computed for four different

angles (q=0°,45°,90°,and 135° ) with distance d=1 , as mentioned

in the method of GLCM (Haralick et al., 1973) and select the

maximum value as this feature as shown in Equation (15).

Feature = max feature 0°, feature 45°, feature 90°, feature 135°
� �

(15)

Totally 42 features of the leaf texture were extracted from a

Phalaenopsis orchid image using methods of LBPri and GLCM,

and each feature was normalized within 0~1.
FIGURE 9

The number of collected orchid images with different diseases.
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Two-stage identification model

We adopted and proposed the two-stage model as shown

in Figure 10 for Phalaenopsis orchid disease identification

with excellent identification performances. Firstly, a random

forest (RF) model (Breiman, 2001) was designed using 42

features of leaf texture obtained using methods of LBPri and

GLCM to preliminarily classify the 5 categories (mentioned in

section 2.1) into 2 categories: “others” and “non-others”.

Secondly, the InceptionV3 model (Bal et al., 2021), a deep

learning model as illustrated in Figure 11, was created using

the Phalaenopsis orchid images to identify an input image is
Frontiers in Plant Science 10
the CaCV-infected, CymMV-infected, ORSV-infected or

healthy leaf.

The random forest model (Breiman, 2001; Athey et al.,

2019; Musolf et al., 2021; Singh et al., 2021; Yang et al., 2021;

Al-Mamun et al., 2022) is one of a popular machine learning

models for classification. Before the first stage of the

identification model, the R, G and B components of each

Phalaenopsis orchid image were individually transferred to a

gray level image and the methods of LBPri and GLCM

described above were used to obtain the texture features of

each gray-level image. There were 1841 (80%) and 462 (20%)

images for training and testing, respectively. Three datasets of
FIGURE 10

Procedures of the two-stage identification model for identifying orchid diseases using extracted leaf features and orchid images.
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texture features corresponding to the transferred gray-level

image of R, G, or B component of all these images were

extracted respectively. Each of the three datasets was used to

design and verify the identification performance of a random

forest model with 300 decision trees individually.

Recently, the feature importance of a RFmodel was increasingly

presented in AI applications (Musolf et al., 2021; Algehyne et al.,

2022; Loecher, 2022). The package of gini importance (or mean

decrease impurity) built in Python (scikit-learn package) was

adopted for the feature importance computation of the RF model

(Menze et al., 2009; Wei et al., 2018; Płoński, 2020). Furthermore,

the method of principal component analysis, PCA, (Bro and

Smilde, 2014; Zhao et al., 2019) was adopted to reduce the

dimension of data features to analyze and visualize the

distribution of the most important features among all categories

for category selection in the first stage design.

An InceptionV3 model, the third generation of GoogleNet

Inception, can excellently extract the detail information and

feature of an image, reduce training parameters, and solve

overfitting issue by the modified neural structures (Gunarathna

and Rathmayaa, 2020; Jayswal and Chaudhari, 2020; Bal et al.,

2021; Xiao et al., 2022). In the second stage of the disease

identification model, an InceptionV3 model was designed as the

identification structure shown in Figure 11. The feature extraction

portion of the inceptionV3model included the convolution layers,

pooling layers, and inception model layers A-E as illustrated in

Figure 11, and was followed by classification layers (which

sequentially included two fully connected layers (FC1 with L2

normalization and FC2), a dropout layer (for solving the

overfitting issue during training), and the third fully connected

layer (FC3) with the softmax activation function) for classification

(Bal et al., 2021). The flatten layer (Bal et al., 2021) was

adopted for connecting the feature extraction portion to the

classification layers.
Frontiers in Plant Science 11
An inceptionV3 model pretrained using the ImageNet dataset

(which includes 1000 categories for object identification) was

selected and transferred to the inceptionV3 model, illustrated in

Figure 11, for initializing hyper parameters (Russakovsky et al.,

2015; Chen et al., 2019; Gunarathna and Rathmayaa, 2020; Morid

et al., 2021). In this study, 1841 (80%) and 462 (20%) images were

adopted for further training and testing the InceptionV3 model.

The output category of inceptionV3 model for each image was

determined by the category with the highest confidence (among

the four categories). Adopted parameters of the optimized

InceptionV3 model included the input image size=224x224, 3

channels, batch size=16, epoch=500, Adam optimizer, and

learning rate=0.000005.
3 Experimental results

3.1 Performances of the leaf
segmentation

The performances of the leaf segmentation with contrast

enhancement (described in section 2.2.1) are shown in

Figure 12 for different gamma g values. The accuracy=0.9707

is highest when g =1.5, and the corresponding precision, recall

and F1-score are excellent as listed in the row of (CE + U-net)

of Table 1. Only three cases gave their predicted masks with the

larger errors (accuracy< 0.9) as shown in the right panels

of Figure 13.

The performances of leaf segmentation (using CE, U-net

model, and RNLFA) listed in the row of (CE + U-net + RNLFA)

in Table 1, were also excellent and we adopted this integrated leaf

segmentation method to exclude the non-leaf area for favoring

the following disease identification.
FIGURE 11

The network structure of designed InceptionV3 model.
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3.2 Performances of the
disease identification

Feature importance and category distribution
The relative importance of 42 features was illustrated in

(Figure 14A). The numbers in the horizontal axis represent the

42 features (contrast, dissimilarity, homogeneity, ASM, energy,

correlation, and followed by 36 features of LBPri) extracted using

methods of GLCM and LBPri from the leaf texture. The top four

features were contrast and correlation of GLCM as well as the

22nd and 27th of LBPri features. (Figure 14B) presents the

distribution of the five categories of orchid leaves associated

with the top two features. Furthermore, (Figure 14C) shows the

category distribution associated with the two features (namely,

feature_A and feature_B) after the dimension reduction using

PCA (described in section 2.2.2) from the top 4 features shown

in (Figure 14A). (Figures 14B, C) illustrated the distribution of

the category “others” differs most from the other four categories.

This phenomenon explains the reason why we classified
Frontiers in Plant Science 12
categories into “others” and “non-others” in the first stage of

the proposed two-stage model shown in Figure 10.
Performances of the
single-stage identification

Table 2 shows the accuracies of the single-stage identification

using the random forest models, designed with different methods

of leaf texture feature acquisition (GLCM or/and LBPri) and

different gray-level images (obtained from the R, G or B

component of each segmented leaf image), to identify the five

categories (listed in section 2.1). It was obvious that the best

performances were withmodels designed using GLCM+ LBPri for

the leaf texture feature acquisition (the last three rows in Table 2).

This was the reason for using GLCM + LBPri to extract leaf texture

features in this study. The accuracy (0.87) of the random forest

model designed using GLCM + LBPri with gray-level image of B

component (the last row in Table 2) was the highest.
TABLE 1 Performances of the leaf segmentation for g =1.5.

Method Accuracy Precision Recall F1 score

CE1 + U-net2 0.9707 0.9982 0.9723 0.9850

CE1 + U-net2 + RNLFA3 0.9707 0.9986 0.9719 0.9850
fron
1CE: contrast enhancement.
2U-net: leaf region prediction using the U-net model.
3RNLFA: removal of non-leaf fragment areas.
FIGURE 12

Performances of the leaf segmentation versus different values of gamma (g =0.1~2.0).
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Identification accuracies of four single-stage models with or

without the leaf segmentation are listed in Table 3. Furthermore,

Table 4 shows the values of recall and precision by category

using single-stage models with leaf segmentation in identifying

leaves with the CaCV infection, CymMV infection, ORSV

infection, health status, and other diseases.
Frontiers in Plant Science 13
Performances of the
two-stage identification

Table 5 shows the identification performances for leaf

diseases using the proposed two-stage architecture shown in

Figures 2, 10, and described in section 2.2. Each bold value in
B

C

A

FIGURE 13

(A–C) Predicted masks with the larger errors.
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Table 5 indicates that it outperformed other single-stage models

shown in Tables 4, 3, except for the category of “others” which

performs equally to the RF model with B-component features

shown in Table 4. This equal performance resulted from the first

stage of the two-stage model was using this RF model with B-
Frontiers in Plant Science 14
component features shown in Table 4 for preliminary categories

identification of “others” and “non-others”.

Based on the experimental results (Table 5), it was obvious

that the identification performances of two categories (CymMV

and ORSV) were the lowest among the five categories. This
B

C

A

FIGURE 14

(A) The importance of 42 extracted features, (B) the category distribution in the top-2 feature plan, and (C) the category distribution related to 2
features obtained using the method of PCA with top 4 features.
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mainly resulted from the differences between symptoms of the

two categories (CymMV and ORSV) were not noticeable or in

some cases they were even similar. However, these two

categories were confirmed by ELISA assay. Examples of

misclassified CymMV and ORSV cases are shown in

Figure 15. The accuracy comparison in the identification

between these two categories (CymMV and ORSV) using the

proposed two-stage model and by the expert was performed. The

results presented in Table 6 showed that the proposed two-stage

model outperformed expert identification in the identification of

the easily misidentified categories (CymMV and ORSV).
4 Discussions

4.1 Image preprocessing

The contrast enhancement, including Equation (3), the Y-

component of the color space YUV with the color space

transformations, and Equations (1)-(2), was adopted for

brightness adjustment to solve the non-uniform brightness

issue in this study. The effectiveness of brightness adjustment

was shown in (Figures 4B, D) with different values of gamma g .
Moreover, the accuracy, precision, recall, and F1 score of the leaf

segmentation (illustrated in Figure 12) with different values (0.1-

2) of gamma g were all excellent (>0.962). The results described
above directly or indirectly proved that the adopted contrast

enhancement method solved the issue of non-uniform

brightness effectively. Besides the YUV space, other color

spaces (such as YCbCr, HSI, Lab, HSL, etc.) which include one

component of brightness, intensity, or lightness might be other

options with the corresponding color space transformations for
Frontiers in Plant Science
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implementing the contrast enhancement to solve the non-

uniform brightness issue (Banerjee et al., 2016; Sabzi et al.,

2017; Shi et al., 2019; Tan and Isa, 2019; Xiong and Shang, 2020).
4.2 Leaf segmentation and single-stage
orchid-disease identification

Predicted masks with the larger errors (only three cases were

obtained with the accuracy< 0.9 in this study) obtained in the leaf

segmentation process as shown in the three right panels of

(Figures 13A–C) resulted from (a) one of the leaves was

confused with the green objects inside the pot, (b) the pot color

was close to the colors of leaves, and (c) the leaf was seriously

injured (there were only 2 images of this kind of the seriously

injured leaf in the entire dataset of this study), respectively.

From our experimental results of the single-stage

identification, the identification performance listed in Table 3

shows that the accuracy of every model with the leaf segmentation

(accuracy=0.846-0.894) outperformed the corresponding model

without leaf segmentation (accuracy=0.827-0.883). And The

inceptionV3 model performed best with accuracy=0.894. The

results verified the importance of using the leaf segmentation

for accurate identification.

Table 4 shows that all three RF models with gray-level

images of R, G or B component outperform the inceptionV3

model in the first-stage identification results (recall and

precision) for the identification of the category “others”. The

RF model with 42 texture features extracted from the gray-level

image of B component performed best in the identification of

the category “others”. This was the reason why we adopted

the RF model with B-component texture features as the first

stage model in designing the proposed two-stage model

(Figure 10) to precisely classify two categories of “others”

and “non-others”.
TABLE 2 Identification performances of single-stage RF models
designed with different combination of texture feature acquisition
methods and gray-level images (obtained from the different R, G or B
component).

Texture feature acquisition method
(gray-level image source)

Accuracy

GLCM (R component) 0.606

GLCM (G component) 0.604

GLCM (B component) 0.677

LBPri (R component) 0.838

LBPri (G component) 0.868

LBPri (B component) 0.859

GLCM+ LBPri (R component) 0.846

GLCM+ LBPri (G component) 0.868

GLCM+ LBPri (B component) 0.870
The bold value indicates the highest accuracy.
TABLE 3 Identification accuracies of single-stage models (for
identifying five categories of leaf diseases) with or without leaf
segmentation.

Single-stage model Accuracy

With leaf
segmentation

Without leaf
segmentation

RF with GLCM+ LBPri (R
component)

0.846 0.827

RF with GLCM+ LBPri (G
component)

0.868 0.827

RF with GLCM+ LBPri (B
component)

0.870 0.833

InceptionV3 0.894 0.883
The bold value indicates the highest accuracy.
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4.3 Two-stage orchid-disease
identification performances and future
works

From the identification performances of categories of “non-

others” listed in Table 5, it is clear that the proposed two-stage

model outperformed all single-stage models listed in Table 4 and

Table 3 (except that the recall=0.957 of health category listed in

Table 5 was slightly lower than that of the single-stage

inceptionV3 model with recall=0.967 listed in Table 4). For

the identification of the category “others”, the proposed two-

stage model performed excellently and equally to that of the RF

model with B-component features which was adopted as the first

stage model in the proposed two-stage model (Figure 10) in this

study as mentioned above.

In Table 5, the overall accuracy (0.918) for the identification of

five categories ofPhalaenopsisorchid leaf status using the proposed

two-stagemodel (RF + InceptionV3)was excellent and higher than

that of the one-stage model (inceptionV3 model) with the best

accuracy (0.894) among all one-stage models listed in Table 3.

In the identification performance of two-stage model listed

in Table 5, the recall (0.972) and precision (0.981) in the

identification of CaCV-infected leaf symptoms were both the

highest among the five categories. While the recall (0.768) and

precision (0.797) in the identification of ORSV-infected leaf

symptoms were both the lowest among the five categories. Based

on the confusion matrix of identification results of the proposed
Frontiers in Plant Science 16
two-stage model, it was clear that the most misclassification

cases happened between two categories, CymMV and ORSV

infections. Symptoms caused by viral infection may vary in

Phalaenopsis and often depend on the plant genotype,

environment, planting, and virus species and isolates. CymMV

and ORSV infections are often misidentified by the naked eye

due to their relatively unnoticeable and similar symptoms in

early stage of infection or different Phalaenopsis cultivars (Wong

et al., 1996; Seoh et al., 1998; Koh et al., 2014). Figure 15 shows

four examples of misclassification cases (identified using the

two-stage model) between CymMV-infected and ORSV-infected

categories. CymMV- and ORSV-infected leaves often exhibit

mild symptoms in the early stage of infection or in some

Phalaenopsis cultivars as shown in Figure 15.

Table 6 shows the proposed two-stage model identification

(accuracy=0.842) outperformed the expert identification

(accuracy=0.667) in the identification of CymMV and ORSV

categories (easily misidentified). The excellent identification

performances shown in Tables 5, 6 demonstrated that the

proposed identification system (with architecture shown in

Figure 2) would be beneficial toward an automatic and accurate

disease identification using Phalaenopsis orchid leaf image, which

in turn would benefit the orchid cultivation industry.

Future study may focus only on the development of more

precise identification of the only categories of CymMV- and

ORSV-infected leaves by designing a modified model with the

third stage. On the other hand, as to identify more infection

classes individually and precisely maybe worth trying.
Real practice considerations
Plants were placed on a black cloth for photo-taking to verify

the feasibility of this developed recognition system. The following

options may be considered for building a working system for the

real practice in the greenhouse. The first option: an automatic

conveyor system (usually with the black plane of a conveyor belt)

may be built to take the orchid image for simultaneous disease

detection and other cultivation activities by sequentially putting

the orchid seedlings or plants on the conveyor belt for the real

practice. This should be an easy realization way but may not be

smart nor be fully automatic way. The second option: each orchid

seedling or plant may be cultivated with a pot surrounded by the
TABLE 4 The identification recall and precision of single-stage models with leaf segmentation.

Single-stage model RF+R component RF+G component RF+B component InceptionV3

REC PRE REC PRE REC PRE REC PRE

CaCV 0.924 0.899 0.925 0.925 0.953 0.910 0.943 0.962

CymMV 0.821 0.716 0.863 0.759 0.853 0.757 0.905 0.851

ORSV 0.585 0.706 0.659 0.740 0.610 0.735 0.768 0.797

Health 0.924 0.944 0.924 0.955 0.935 0.966 0.967 0.927

Others 0.943 0.953 0.943 0.953 0.966 0.966 0.862 0.915
frontier
The bold value indicates the highest recall or precision.
TABLE 5 Identification performances (the recall, precision and mean
accuracy) of the proposed two-stage model.

RF+InceptionV3 (two-stage model)

REC PRE

CaCV 0.972 0.981

CymMV 0.905 0.851

ORSV 0.768 0.797

Health 0.957 0.978

Others 0.966 0.966

Mean accuracy = 0.918
Each bold value indicates that the two-stage model outperforms other models (or
performs equally to the best model) shown in Tables 3, 4.
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black supporting mechanism. The developed disease detection

methodmay be integrated into an APP of a smart device with auto

focus function for taking photo of an orchid. Sequentially taking

photos of all (or sampled) orchids in a greenhouse by a person or

robot (or a moveable robotic arm system) may be considered. The

third option: a robot (or a moveable robotic arm system) with

automatic orchid detection function can be adopted to

sequentially screen all (or sampled) orchid seedlings or plants in
Frontiers in Plant Science 17
a greenhouse. The black cloth or some object like that can be

automatically and sequentially placed surrounding each target

orchid pot by the robot. Then, the robot can automatically move

the camera to the suitable position to take the photo of an orchid

seedling or plant for disease detection. The fourth option:

similarly, a robot (or a moveable robotic arm system) with

automatic orchid detection function can be adopted to

sequentially screen all orchid seedlings or plants in a

greenhouse. Then, the robot can automatically move the camera

to the suitable position to take the photo of an orchid seedling or

plant. The non-orchid area (the area without orchid leaf nor its

pot in an orchid image) can be identified and removed using an AI

model with image processing techniques before performing the

disease identification. Any of the above four options for the real

practice of the disease identification system may be considered to

simultaneously integrate with the original routine cultivation

activities, the disease identification method proposed in this

study, and a suitable APP in the smart device.
B

A

FIGURE 15

Misidentified examples between two categories, cymbidium mosaic virus (CymMV) and odontoglossum ringspot virus (ORSV). (A) ORSV cases
misidentified as CymMV. (B) CymMV cases misidentified as ORSV.
TABLE 6 The accuracy comparison between the proposed two-stage
model and expert identifications for the CymMV and ORSV
categories.

Identification method CymMV ORSV Average

Expert 0.921 0.372 0.667

Two-stage model 0.905 0.768 0.842
The bold value indicates the highest average accuracy.
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4.4 Comparison with associated studies

As mentioned in section 1.1, many previous studies focused

on AI models or image processing techniques for the

identification of plant diseases. For example, the review paper

(Vishnoi et al., 2021) mentioned that the top 3 studied plants

were rice (11%), tomato (11%) and corn (7%) in addition to

many other plants using image processing or AI methods during

2009-2020. However, orchid disease identification studies using

AI or image processing methods shared only 1% (Vishnoi et al.,

2021). Based on reports of other review articles (Dhaka et al.,

2021; Ghorai et al., 2021) and the survey results, there were very

few orchid disease identification studies involved the use of the

AI model and leaf images.

Huang (2007) adopted an AI model (back-propagation

neural network, BPNN, with lesion area segmentation and

texture features) in detecting and classifying Phalaenopsis

seedling diseases including 4 categories: the bacterial soft rot

(BSR), bacterial brown spot (BBS), Phytophthora black rot

(PBR), and OK with the average accuracy reached 0.896

(Huang, 2007). The classified diseases (BSR, BBS and PBR)

(Huang, 2007) were different from diseases (CaCV infection,

CymMV infection, ORSV infection, and others) identified in this

study. Furthermore, the image symptoms or texture features of

CymMV- and ORSV-infected leaves, shown in (Figures 1B, C),

are often less obvious than that presented on the leaves of BSR,

BBS and PBR diseases (Huang, 2007). The symptoms or texture

features of a CymMV- or ORSV-infected leaf, (Figures 1B, C),

are often not easily identified by the naked eye, even though they

were confirmed by ELISA assay. The mean identification

accuracy (=0.918) of the current study outperforms that

(=0.896) of the previous study (Huang, 2007). Moreover, the

recall and precision were not provided, nor the disease type of

others was included in previous study (Huang, 2007).

The main difference and the importance of the proposed

algorithm versus other state-of-the-art algorithms include the

following points. As described above and in section 1.1, many

AI models with image processing methods were proposed in

detection diseases for different plants in the previous studies

(Dhaka et al., 2021; Ghorai et al., 2021; Vishnoi et al., 2021) and

reached fair, good, or excellent accuracies (0.590-0.9975) as

mentioned in 32 articles (Dhaka et al., 2021). However, around

99% of these previous studies were not associated with the orchid

disease (Vishnoi et al., 2021). Furthermore, the image and

detection conditions adopted among these previous studies

differed a lot. Nevertheless, the mean accuracy (0.918) of the

current study reached the excellent detection performance for

orchid diseases when compared to that (0.896) of previous studies.

An aforementioned study, the AI model used for orchid

disease detection was adopted from a traditional AI model,
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BPNN, which was used for the detection of two bacterial and

one Phytophthora infection symptoms that were obviously

identifiable even with the necked eye (Huang, 2007). Moreover,

many of their images were taken after fixing the leaves on a plane

using pushpins, that could limit the usage for real practice

(Huang, 2007). Contrarily, our study designed the more

advanced AI model for detecting more common virus diseases

of orchid seedlings with symptoms that were less noticeable and

often could not be easily identified by the naked eye.

Besides that, the proposed model system of the current study

reached an accuracy of 0.842 and outperformed the human

expert with an accuracy of 0.667 in the identification of easily

misidentified categories between CymMV and ORSV which

often showed no noticeable symptoms in the early stage of

infection. Therefore, our proposed method should be beneficial

to accurately detect the common virus diseases of orchid

seedlings for early detection followed by early preventive

measures to avoid the extended infection and loss.
5 Conclusions

Phalaenopsis orchid cultivation is often hindered by viral

diseases. The proposed system architecture for the identification

of Phalaenopsis orchid viral diseases were successfully

implemented and reached excellent identification performances.

This study conducted a system included designing the U-net

model for leaf segmentation with contrast enhancement

techniques followed by the approach of removal of non-leaf

fragment areas, as well as creating a two-stage model (a random

forest model and an InveptionV3 model) with methods of image

augmentation and leaf texture feature acquisition from segmented

leaf images. This system reached identification accuracy of 0.918

in the identification of five categories of orchid leaves. Moreover,

this system provided an accuracy of 0.842 and outperformed the

human expert with an accuracy of 0.667 in the identification of

easily misidentified categories between CymMV and ORSV

infections. In the future, we will continue to provide more

database images to improve the recognition accuracy of

CymMV and ORSV categories. We believe this outcome would

serve as a solid ground for the development of the accurate,

automatic, and cost-effective disease identification system for

supporting orchid cultivation industry.
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