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the molecular mechanism
of terpenoid formation for
salicylic acid resistance in
Pulsatilla chinensis callus
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Yating Cai1, Xiaoyun Wang1, Huan Xie2* and Shouwen Zhang1*

1Research Center of Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi
University of Chinese Medicine, Jiangxi, China, 2Pharmacy school of Nanchang Medical College,
Nanchang, China
As a kind of traditional Chinese medicine, Pulsatilla chinensis (Bunge) Regel is

well known for its anti-inflammation and anti-cancer activities, which are

attributed to its active components including total saponins and monomers.

To clarify the synthesis and metabolism mechanisms of class components in

callus terpenes of P. chinensis, a certain concentration of salicylic acid (SA)

hormone elicitor was added to the callus before being analysed by

transcriptomic and metabolomic techniques. Results showed that the

content of Pulsatilla saponin B4 in the callus suspension culture was

significantly increased up to 1.99% with the addition of SA. Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed

that the differentially expressed genes were mainly enriched in 122 metabolic

pathways, such as terpenoid metabolism-related pathways: terpenoid skeleton

synthesis pathway, monoterpenoid biosynthesis pathways, diterpenoid

biosynthesis pathways, and ubiquinone and other terpenoid-quinone

biosynthesis pathways. A total of 31 differentially accumulated metabolites

were obtained from four differential groups. Amongst 21 kinds of known

chemical components in P. chinensis, deoxyloganic acid was the only

monoterpenoid; the others are triterpenoids. In summary, this study found

that SA elicitors can affect the metabolic changes of terpenoids in P. chinensis

callus, which provided a basis for analysing the genetic regulation of terpenoid

components of leucons.

KEYWORDS

Pulsatilla chinensis, callus, salicylic acid, suspension culture, transcriptomics,
metabolomics, terpenoid components
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Introduction

Pasqueflower (Pulsatilla chinensis (Bge.) Regei) is a

traditional Chinese medicine, belonging to the Ranunculaceae

family. Pasqueflower features with the following aspects, such as

its root is dry in nature, its taste is bitter and cold, and it can be

absorbed by stomach and large intestine (Commission, 2020). At

present, P. chinensis is mainly distributed in Liaoning, Jilin,

Heilongjiang, Inner Mongolia, Shandong, Anhui, Shanxi, and

Shaanxi Provinces (Yang and Liwei, 2012; Qian et al., 2017). It

has various functions, including repairing heat injury,

detoxification and soothing blood pressure; it is used for the

symptoms of blood toxin and heat pain, vaginal itching, and

discharge. The terpenoid and monomers in P. chinensis are

widely adapted to clinical and veterinary treatment for their anti-

cancer activity (Kang et al., 2019; Huihui Song et al., 2021).

Pulsatilla saponins B3, BD, B4, B7, B9, B10, B11, A3, D, PSA,

R13 and other components have been widely reported for their

significant pharmacological activities (Xu et al., 2013; Liu, 2014;

Liang, 2016; Guo et al., 2018; Yingying Luo et al., 2018; Kang

et al., 2019; Yaru Cui et al., 2019; Zhang et al., 2021). Yingying

Luo isolated and identified the total saponins of P. chinensis and

the isolated monomers to study anti-tumor activity in vitro, and

found that monomers of B3, B7, B9 and B11 could significantly

inhibit tumor proliferation (Luo, 2014). Pulsatilla saponin R13

can inhibit metastatic activity of tumor by inhibiting G1/S phase

transduction, inducing apoptosis, regulating cell energy

metabolism and promoting cell autophagy (Liang, 2016).

Pulsatilla saponin A3 acted on TLR4/NF- k B/MAPK signal

pathway to induce M1 macrophage polarization to inhibit breast

cancer (Yin et al., 2021).As a natural compound-originated

immunomodulatory agent, Pulsatilla saponin B4 is used to

treat a variety of inflammatory diseases, such as ulcerative

colitis (Li et al., 2020).

Cell suspension culture, callus culture, hairy root culture and

other technologies have been widely used to large-scale

cultivation and production of medicinal plant resources to

obtain secondary metabolites of medicinal plants (Fan

Zhantao et al., 2022). At present, the cell suspension culture

technology of medicinal plants such as Taxus chinensis (Bai,

2020), Achyranthes bidentata (Ping Li et al., 2020), Cyclocarya

paliurus (Zhao, 2020) and Scutellaria baicalensis (Wang, 2020)

have been developed well. Hormone elicitors such as salicylic

acid (SA) and methyl jasmonate (MeJA) are often used to

regulate the production of secondary metabolites of medicinal

plants (Xiaofeng Song et al., 2020; Xiaoxia Yan et al., 2020;

Zhang, 2021; Ruixiang Lei et al., 2021; Ming Wang et al., 2021;

Qiang Zhang et al., 2021; Li, 2021). The callus of Achyranthes

bidentata and its biomass and secondary metabolite content

were observed after adding certain concentrations of SA and

MeJA. An addition of 1 mg/L SA could promote the

accumulation of callus biomass and secondary metabolite

content (Guo, 2016). When the callus of Gentiana
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macrophylla were cultured in suspension, the contents of total

phenols, total flavonoids and other secondary metabolites

changed significantly followed by addition of different

concentrations of SA (Ruixiang Lei et al., 2021). In another

research, SA and MeJA can promote the accumulation of

alkaloids (Yongbo Duan et al., 2017).

Terpenoids are the main active components of Pulsatilla

chinensis. Researches have showed that the skeleton biosynthesis

of terpenoids mainly involves shikimic acid pathway, mevalonic

acid (MVA) pathway, and methyl erythritol 4-phosphate (MEP)

pathway (Ma, 2011; Li, 2022). Among them, squalene synthetase

(SS), squalene epoxidase (SE), oxidized squalene cyclase (OSC),

cytochrome P450 and glycosyltransferase (UGT) are key

enzymes in these pathways (Yunsheng Zhao et al., 2009; Liao,

2010; Yuan Zhu et al., 2020).

The biosynthesis of secondary metabolites in medicinal

plants is based on molecular genetics studies, the core of

which is functional gene research. Under the regulation of

functional genes, medicinal plants synthesize and accumulate

secondary metabolites to produce active ingredients, or

heterologously synthesize functional ingredients by

microorganisms. With the development of high-throughput

sequencing technology, multiomics studies have been gradually

applied to the analysis of synthetic pathways of secondary

metabolites in medicinal plants. Especially for medicinal plants

without reference genomes, transcriptome and metabolome

technologies are effective methods in analysing the synthesis

pathways of secondary metabolites and to mine related

functional genes.

Based on these advanced methods, mine terpenoid synthesis

accumulation functional genes, and synthesis mechanism of

Pulsatilla terpenoid metabolites could be analysed by

transcriptome and metabolome technologies.
Materials and methods

Plant materials, culture conditions, and
SA treatment

In this experiment, callus of 3th generation (3 months) were

cultured as materials. It took about 18 days after the suspension

culture in the middle exponential growth stage and about 30

days in the initial stage of platform for the callus. The following

are the culture conditions of callus suspension: MS + 1.2 mg/L

TDZ + 0.1 mg/L NAA + 2.0 mg/L VC + 20 g/L sucrose

(Xiaozhen, 2020), medium volume 50 mL/bottle, inoculum

volume 1 g/bottle, culture conditions 25 °C, 120 r/min shaking

dark culture.

For the preparation of SA elicitor, 138.12 mg of SA was

weighed and dissolved in 10 mL absolute ethanol. Then, it was

sterilised by filtration. Next, 0 mmol/L, 100 mmol/L, 200 mmol/L,

300 mmol/L and 400 mmol/L SA elicitors were drawn into the
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callus liquid medium cultured on the 18th and 30th day, and

samples were taken after co-cultivation for 2 days.
Effects of SA on callus growth and
accumulation of secondary metabolite
saponin B4

The weight of fresh callus, conductivity of culture medium,

pH value, sugar concentration, saponin B4 content, etc. were

measured. The determination of sugar concentration was referred

to the anthrone sulfate method (Zhu et al., 2018) in the culture

solution, and the detection wavelength was 582 nm. Draw

standard curve y=7.531x+0.144, R2 = 0.997, and calculate sugar

concentration in the culture medium (Figure 1A).

For determination of saponin B4 content, callus was taken

out, dried at 50°C, ground into powder, and refrigerated for later

use. Chromatographic conditions: chromatographic column,

YMC-Pack ODS-A (4.6 × 250 mm, 5 μm); mobile phase:
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acetonitrile:water = 28:72, flow rate 0.8 mL/min, injection

volume 20 μl, column temperature 30°C, detection wavelength

203 nm. For sample preparation, weigh about 0.1000 g of P.

chinensis powder and add it to a 50 mL conical flask with

stopper; add 10 mL of methanol and seal with parafilm tightly.

The sample was extracted ultrasonically (power 150 W,

frequency 40 kHz) for 40 min. Then, let it cool and make up

the weight with pure methanol, shake well, filter, and spin dry

the filtrate. Extract the sample with water-saturated n-butanol

for three times (20 mL each time), combine with n-butanol

solution, spin dry, add methanol to the residue to dissolve, dilute

to a 10 mL volumetric flask, filter through a 0.22 mm
microporous membrane, and set aside. To draw the standard

curve, weigh an appropriate amount of Pulsatilla officinalis B4

reference substance, dissolve in methanol, and dilute in a 10 mL

volumetric flask to prepare a stock solution with a concentration

of 1.840 mg/mL. Accurately draw the reference substance stock

solution of Pulsatilla officinalis, and dilute it to 0.0368, 0.0736,

0.1104, 0.1472, and 0.184 mg/mL reference substance solution in
A B

C

D

FIGURE 1

Effects of salicylic acid on carbon source consumption and saponin B4 accumulation in callus. (A) Standard curve of glucose; (B) Standard curve
of Pulsatilla saponin B4; (C) High performance liquid chromatography (HPLC) of reference substance; (D) Sample HPLC.
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turn. The injection volume was 20 μl. The peak area of the

chromatographic peak was measured, and the standard curve of

Pulsatilla saponin B4 was drawn (Figure 1B): y = 8353948.7790 x

+ 5219.6027 (R² = 0.9997), and the linearity range was 0.768–

3.680 mg. The HPLC chromatograms of the reference substance

and sample were obtained (Figure 1C, D).
RNA extraction, library construction, and
transcriptome sequencing

The above concentrations of SA elicitors that can

significantly increase the content of Pulsatilla saponin B4 were

obtained through screening and co-cultured with P. chinensis

callus for 0, 1, 2 and 3 days. Each treatment was repeated three

times, with a total of 12 samples. The samples were washed 2–3

times with sterile water, snap-frozen in liquid nitrogen, and

stored in -80°C refrigerator for transcriptome and metabolome

sequencing research.

The RNA of samples was extracted using a versatile plant

RNA extraction kit (DNase I). The concentration and purity of

the extracted RNA were tested with a NanoDrop 2000

spectrophotometer. RNA integrity was detected by agarose gel

electrophoresis, and RIN was measured with an Agilent 2100

bioanalyser. Total RNA of ≥1 μg, concentration of ≥35 ng/ml,
D260/280 ≥1.8, OD260/230 ≥1.0, and RIN value ≥6.5 were

required for single library construction. The cDNA library was

constructed after the samples were qualified. The constructed

library was sequenced on the Illumina NovaSeq 6000 platform.

The RNA purity, concentration, and integrity of samples

were tested. The total amount meets the requirements of two

standard database constructions, and subsequent experiments

can be carried out (Supplementary Table 1). To obtain high-

quality quality control data (clean data), the original sequencing

data were quality-controlled to ensure the accuracy of

subsequent analysis results. (Supplementary Table 2).
De novo assembly and
functional annotation

For transcriptome studies without reference genomes, after

obtaining high-quality RNA-seq sequencing data, all quality-

controlled sequencing reads need to be assembled de novo to

generate contigs and singletons. The software used was Trinity

(https://github.com/trinityrnaseq/trinityrnaseq/wiki) (Grabherr

et al., 2011). After being spliced with Trinity, the assembly

results need to be evaluated. Also, the initial assembly

sequence obtained generally needs to be optimised, filtered,

and re-evaluated. (1) Optimise filtering: Using TransRate

(http://hibberdlab.com/transrate/) (Smith-Unna et al., 2016)

and CD-HIT (http://weizhongli-lab.org/cd-hit/) software (Li

and Godzik, 2006); (2) Assembly evaluation: Using BUSCO
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software (Benchmarking Universal Single-Copy Objects, http://

busco.ezlab.org) (Simão et al., 2015).

All transcripts obtained from this transcriptional group

sequencing were compared with six databases (NR, Swiss-Prot,

Pfam, COG, GO, and KEGG databases), obtaining annotated

information in each database and making statistics on each

database annotation.
Sequencing data analysis

The transcripts per million reads (TPM) values of all genes

were used to analyse the correlation between each sample

(Conesa et al., 2016). To further reveal the molecular events of

the biosynthesis of P. chinensis triterpenoid saponins, we used

DESeq2 (Robles et al., 2012) to analyse the expression levels with

|log2FC| ≥ 1 and Padjust < 0.001 (Li et al., 2014; Love et al., 2014;

Gao et al., 2020) in at least one of the comparisons, which were

considered differential expressed genes (DEGs) for

further analysis.

DEGs were analysed for functional enrichment including

GO enrichment and KEGG enrichment (Ashburner et al., 2000;

Kanehisa and Goto, 2000). Goatools was used for unigene/

transcript GO enrichment analysis using Fisher’s exact test.

When the adjusted P-value (Padjust) < 0.05, the function was

significantly enriched. KEGG pathway enrichment analysis of

unigenes was carried out. The KEGG pathway was used for

unigene enrichment analysis, and the calculation principle was

the same as GO functional enrichment analysis. When the

corrected P-value (Padjust) < 0.05, KEGG pathway was

considered to be significantly enriched.
Terpenoid metabolite analysis

Biological samples were freeze-dried with a vacuum freeze-

dryer (Scientz-100F). The freeze-dried sample was crushed using

a mixer mill (MM 400, Retsch) with a zirconia bead for 1.5 min

at 30 Hz. Dissolve 100 mg of lyophilised powder with 1.2 mL of

70% methanol solution, vortex 30 s every 30 min for six times in

total, and place the sample in a refrigerator at 4°C overnight.

Following centrifugation at 12,000 rpm for 10 min, the extracts

were filtrated (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai,

Ch ina , h t tp : / /www.anpe l . com.cn / ) be fore UPLC-

MS/MS analysis.

The sample extracts were analysed using an UPLC-ESI-MS/

MS system (UPLC, SHIMADZU Nexera X2, https://www.

shimadzu.com.cn/; MS, Applied Biosystems 4500 Q TRAP,

https://www.thermofisher.cn/cn/zh/home/brands/applied-

biosystems.html). The analytical conditions were as follows:

UPLC: column, Agilent SB-C18 (1.8 μm, 2.1 mm * 100 mm).

The mobile phase consisted of solvent A (pure water with 0.1%

formic acid) and solvent B (acetonitrile with 0.1% formic acid).
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Sample measurements were performed with a gradient program

that employed the starting conditions of 95% A and 5% B.

Within 9 min, a linear gradient of 5% A and 95% B was

programmed, and a composition of 5% A and 95% B was kept

for 1 min. Subsequently, a composition of 95% A and 5.0% B was

adjusted within 1.1 min and kept for 2.9 min. The flow velocity

was set as 0.35 mL per minute. The column oven was set to 40°C.

The injection volume was 4 ml. The effluent was alternatively

connected to an ESI-triple quadrupole-linear ion trap

(QTRAP)-MS.

LIT and triple quadrupole (QQQ) scans were acquired on a

triple quadrupole-linear ion trap mass spectrometer (Q TRAP),

AB4500 Q TRAP UPLC/MS/MS System, equipped with an ESI

Turbo Ion-Spray interface, operating in positive and negative ion

mode and controlled by Analyst 1.6.3 software (AB Sciex). The

ESI source operation parameters were as follows: ion source, turbo

spray; source temperature, 550°C; ion spray voltage (IS), 5500 V

(positive ion mode)/-4500 V (negative ion mode); ion source gas I

(GSI), gas II(GSII), and curtain gas (CUR) were set at 50, 60, and

25.0 psi, respectively; the collision-activated dissociation was high.

Instrument tuning and mass calibration were performed with 10

and 100 mmol/L polypropylene glycol solutions in QQQ and LIT

modes, respectively. QQQ scans were acquired as multiple

reaction monitoring (MRM) experiments with collision gas

(nitrogen) set to medium. DP and CE for individual MRM

transitions was done with further DP and CE optimisation. A

specific set of MRM transitions was monitored for each period

according to the metabolites eluted within this period.

Qualitative and quantitative analyses of the metabolites were

performed using secondary spectral information based on the

public metabolite database and the self-built MWBD database

(Wuhan Metware Biotechnology Co., Ltd., China).

Qualitative and quantitative analysis of metabolites in samples

were based on local metabolic database and the self-built MWBD

database (Wuhan Metware Biotechnology Co., Ltd., China).

According to the secondary spectrum information, the

material was qualitatively characterised. Substance

characterisation were based on secondary spectral information.

Isotopic signals; duplicate signals containing K+ ions, Na+ ions,

and NH4+ ions; and repeating signals of fragment ions that are

themselves other larger molecular weight species were removed

from the analysis. Metabolite quantification was performed

using triple-quadrupole mass spectrometry in MRM mode.

Mass spectral data were processed using Analyst 1.6.3 software.

Principal component analysis was performed on the samples

using multivariate statistical analysis (Chen et al., 2009).

Orthogonal partial least squares discriminant analysis (OPLS-

DA) models were used to analyse metabolomic data to further

demonstrate differences between groups (Thévenot et al., 2015).

Based on OPLS-DA results, differentially accumulated metabolites

(DAMs) were screened according to fold change ≥2 or fold change

≤0.5 and VIP ≥1. At the same time, the obtained DAMs were

submitted to the KEGG website for related pathway analysis.
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qRT-PCR analysis

According to the sequenced transcriptome data, the TPM

value of gene expression was greater than 50, and the TPM value

between samples was basically the same as the screening

standard (Ma Lulin et al., 2019). The relative amounts of these

genes were verified using qRT-PCR. The primer sequences were

provided by Beijing Dingguo Changsheng Biotechnology

Co., Ltd.

The RNA was extracted from different samples following the

instructions in the Plant Total RNA Isolation Kit (Forgene Co.,

Ltd.). The purity and concentration were checked by

NanoDrop2000, and the integrity of the total RNA was

examined using 1% agarose gel electrophoresis. The RNA was

synthesized into cDNA in accordance with RT Easy™ II(With

gDNase)(Forgene Co., Ltd) for qPCR. The qRT-PCR reaction was

performed using CFX Connect ™ Real-Time System(Bio-Rad)

and ChamQ SYBR Color qPCRMaster Mix (2X) (Vazyme Biotech

Co., Ltd.). The following were used for the qRT-PCR reaction

system: cDNA, 0.8 ml; upstream and downstream primers, 0.8 ml;
2X ChamQ SYBR Color qPCR Master Mix 10 ml, and ddH2O, 8.4

ml. The cycle conditions were as follows: pre-denaturation at 95°C

for 30 s, followed by cycling for 44 rounds (95°C for 10 s, 72°C for

30 s). The gene expression changes between different sample

materials were calculated using the 2-DDCt method, with three

biological replicates (Livak and Schmittgen, 2001).
Results

Effects of SA on callus growth
and accumulation of saponin
B4 in P. chinensis

The SA is a hormone elicitor that is commonly used to

regulate secondary metabolism in medicinal plants. At two key

time points of callus suspension growth (18 and 30 days), SA was

added to co-culture with callus. The results showed that SA

mainly affected the sugar concentration, pH value, electrical

conductivity, and saponin B4 content.

A certain concentration of SA was added into the system of

suspension callus which had cultured for 18 days. The sugar

concentration of the culture medium firstly decreased and then

increased gradually (Figure 2A). Adding 100mmol/L SA, callus

consumed the most nutrients. The pH value of culture medium

firstly increased and then decreased, and the pH value under

treatment of 400mmol/L SA was significantly lower than that of

the control group (Figure 2B). The conductivity of the culture

medium was the lowest under100mmol/L SA, but there was no

significant difference between it and the control group. When

the concentration of SA was further increased, the conductivity

gradually increased. The conductivity under treatment of

400mmol/L SA was the highest, which was significantly higher
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than that of the control group (Table 1, Figure 2C). The index

component of Pulsatilla saponin B4 changed significantly after

adding SA, when the callus was cultured for 30 days. Under the

treatment of 100mmol/L SA, the B4 content increased

significantly and reached a peak of 1.99% (Figure 2D). When

the SA concentration was further increased, the B4 content

decreased, and the 300mmol/L treatment decreased to the

lowest level.
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De novo assembly and
functional annotation

Based on the analysis results in the previous section, 100

mmol/L SA was to be added after 30 days of callus suspension

culture. P. chinensis callus was co-cultured with SA for 0, 1, 2,

and 3 days respectively for transcriptome sequencing analysis,

and each treatment was replicated three times. A total of 316.9
A B

C D

FIGURE 2

Effects of salicylic acid on callus growth and accumulation of saponin B4 at different stages. (A) Change of sugar concentration in culture
medium after adding salicylic acid for 18 days; (B) Change of pH value in culture medium after adding salicylic acid for 18 days; (C) Change of
conductivity in culture medium after adding salicylic acid for 18 days; (D) Changes of saponin b4 content in callus after adding salicylic acid for
30d of culture. Note: There was no significant difference between the same lowercase English letters (p>0.05). There was significant difference
between the different lowercase English letters (p<0.05)
TABLE 1 The effect of SA elicitor on the growth of callus of P. chinensis.

treatment (umol/L)
18d SA 30d

No. sugar concentration (mg/ml) pH value conductivity (Us/cm) B4 content(%)

1 0 7.81±0.19ab 5.18±0.02b 5.21±0.21bc 0.97±0.02b

2 100 6.62±2.03b 5.38±0.02a 5.03±0.04c 1.99±0.09a

3 200 10.77±1.37ab 5.24±0.04ab 5.61±0.17abc 1.11±0.10b

4 300 10.78±0.82ab 5.09±0.01b 5.71±0.10ab 0.62±0.01c

5 400 12.74±0.84a 4.87±0.08c 5.91±0.14a 0.65±0.04c
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million clean reads were assembled into 140,794 unigenes, with

an average length of 745.54 bp, GC percentage of 40.88%, N50 of

1242 bp, and E90N50 of 2637 bp. Amongst these unigenes, the

maximum length was 17,628 bp, and the minimum length was

201 bp (Table 2). The mapped ratio was greater than 80%

(Table 3). The assembly results are good for subsequent analysis.

Then, the results obtained from the assembly were compared

with six major databases. Amongst them, 46,178 unigenes

(32.80%) were annotated, and 94,616 (67.2%) were not

annotated (Table 4, Figure 3A). The length distribution statistics

of both annotated and unannotated unigenes were mainly

concentrated in 200-500 bp, which were 85,451 (61%) and

18,944 (41.02%), respectively (Figure 3B). The most annotated

data were obtained from the NR database, with 45,058 (32%)

unigenes being annotated (Table 5, Supplementary Figure 1). The

KEGG database had the least annotation information, and 12,543

(8.91%) unigenes were annotated (Table 5, Supplementary

Figure 1). A total of 8332 unigenes were annotated in all

databases (Supplementary Figure 1).

In the NR database, amongst the species with high matching

degree of similar bands, Aquilegia coerulea accounted for the highest

proportion (16.87%), followed by Arabidopsis (13.72%), Coptis

chinensis (9.83%), and Papaver somniferum (5.97%) (Figure 3C).

A total of 12,543 (8.91%) gene annotations were found in the KEGG

database, and KEGG metabolic pathways were divided into six

categories: metabolism, genetic information processing,

environmental information processing, cellular processes, organic

systems, and human diseases. Amongst them, metabolism contains

the most genes, with a total of 4561 genes, and carbohydrate

metabolism was the main metabolic pathway (Figure 3D).
DEGs identification and
enrichment analyses

The TPM values were calculated for each unigene

expression. The significant DEGs were selected by setting
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|log2FC| ≥ 2 and Padjust ≤ 0.001 as thresholds. Thus, a total of

9558 significant DEGs were observed in six comparison groups

(Table 6). Amongst them, the largest number of significant

DEGs (3635 upregulated and 4404 downregulated unigenes)

was detected between the SA_CK and SA_2D groups

(Table 6, Figure 4A).

The hierarchical clustering of DEGs between the SA_CK and

SA_2D groups is shown in Figure 4B. Red and blue indicate high

and low expression levels, respectively. The expression patterns

of the SA_CK and SA_2D libraries revealed that SA_ CK1, SA_

CK2, and SA_ CK3 and SA_2D1, SA_2D2, and SA_2D3 were

classified into the same cluster. To better understand the

biological functions of DEGs, the significant DEGs from six

comparison groups were analysed using GO and KEGGmethod.

The DEGs were mainly enriched into three GO categories:

molecular function, cellular component, and biological process

(Figure 4C). Amongst them, the DEGs in the molecular function

category are mainly annotated under the entries of binding and

catalytic activity; the DEGs in the biological process category

were mainly annotated under the entries of cellular process and

metabolic process; the DEGs in the cellular component category

were mainly annotated under the entries of cell part and

membrane part.

The GO enrichment directed acyclic graph was also used to

illustrate the GO structure of DEGs (Supplementary Figure 2).

The closer the colour is to red, the more significantly enriched

this GO term is. The line between the GO terms represents the

relationship between the two GOs. For KEGG analysis, the

significant DEGs were mainly enriched in the “metabolic

pathways” and “genet ic informat ion process ing “

pathways (Figure 4D).
Gene expression analysis of terpenoid
biosynthesis pathway

A total of 9558 DEGs were obtained by comparing six

different groups. KEGG pathway enrichment analysis was

performed on these DEGs, and 122 pathways were enriched

(Supplementary Table 3). For terpenoid synthesis-related genes,

13, 5, 4, 11, 4, 18, and 12 DEGs were enriched in terpenoid

backbone biosynthesis; monoterpenoid biosynthesis;

diterpenoid biosynthesis; ubiquinone and other terpenoid-

quinone biosynthesis pathways; lysine biosynthesis;

phenylalanine, tyrosine and tryptophan biosynthesis; and

phenylalanine metabolism, respectively.

The DEGs enriched in the terpenoid backbone synthesis

pathway mainly encode HMCGR, mvaK2, MVD, DHDDS,

GGPS, chlP, and SPS (Supplementary Table 4, Figure 5A). The

DEGs enriched in the monoterpene biosynthesis pathway

mainly encode E4.2.3.15, E4.2.3.111, CYP76F14and TPS1

(Supplementary Table 4, Figure 5B). The DEGs enriched in
TABLE 2 Transcriptome de novo assembly results.

Type Unigene

Total number 140794

Total base 1.05E+08

Largest length (bp) 17628

Smallest length (bp) 201

Average length (bp) 745.54

N50 length (bp) 1242

E90N50 length (bp) 2637

Fragment mapped percent(%) 67.508

GC percent (%) 40.88

TransRate score 0.24777

BUSCO score C:75.9%[S:73.1%;D:2.8%]
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the diterpene biosynthesis pathway mainly encode CYP701,

KAO, GA3ox, and GA2ox (Supplementary Table 4,

Figure 5C). The DEGs enriched in ubiquinone and other

terpenoid quinone biosynthesis pathways mainly encode 4CL,

TAT, HPD, E2.1.1.95, COQ2, COQ6, ABC4, and wrbA

(Supplementary Table 4, Figure 5D). The DEGs enriched in

the lysine biosynthesis pathway mainly encode lysC, dapA,

dapB, and lysA (Supplementary Figure 3 and Table 4). The

DEGs enriched in the phenylalanine, tyrosine and tryptophan

biosynthesis pathway mainly encode trpA, trpB, aroDE, aroK,

aroL, trpE, ADT, PDT, GOT1, TAT, and TYRAAT
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(Supplementary Figure 4 and Table 4). The DEGs enriched in

the phenylalanine metabolic pathway mainly encode GOT1,

TAT, HPD, and E3.5.1.4 (Supplementary Figure 5 and Table 4).
Terpenoid DAM analysis

Before analysing DAMs, we obtained the total ion current

(TIC) of QC samples. The results showed that the curves of TIC

detected by metabolites had high overlap, that is, the retention time

and peak intensity were consistent, indicating that the signal

stability of mass spectrometry was good when the same sample

was detected at different times (Figure 6A). In this study, OPLS-DA

was performed on the samples to discriminate the variation

between and within each sample group of SA_CK, SA_1D,

SA_2D, and SA_3D. Amongst them, the contribution rates of

PC1 and PC2 are 36.0% and 49.3%, respectively. These two

principal components can basically reflect the main characteristic

information of the test sample (Figure 6C). The four groups

showed an obvious separation on the two-dimensional graph,

indicating that the data of each sample were credible, and there

were obvious differences amongst the samples (Figure 6C).

In this study, we analysed the resulting metabolic profiles

using targeted metabolomics techniques and identified a total of

31 terpenoids in four groups (Table 7). To further understand

the metabolic changes in P. chinensis callus under SA stress,

univariate and multivariate statistical analyses were performed

to determine the DAMs in each treatment group compared with

the control group, with a threshold of VIP ≥ 1 and a fold change

≥ 2 or ≤ 0.5. Amongst them, 22 terpenoid DAMs were identified

in SA-CK_vs_SA-1D, 22 terpenoid DAMs in SA-CK_vs_SA-2D,

and 23 terpenoid DAMs in SA-CK_vs_SA-3D. The DAMs of the

above three groups were analysed, and a total of 31 DAMs

were found.

On this basis, the literature was reviewed to analyse the

chemical constituents in the original plants of P. chinensis that
TABLE 4 Sequence length distribution and annotation statistics.

Type Number (K) Length Number (K)

Unannotated 94.616 200~500 66.507

501~1000 19.409

1001~1500 4.742

1501~2000 1.907

2001~2500 0.919

2501~3000 0.446

3001~3500 0.283

3501~4000 0.164

4001~4500 0.088

>4500 0.151

Annotated 46.178 200~500 18.944

501~1000 9.036

1001~1500 4.989

1501~2000 4.211

2001~2500 2.909

2501~3000 1.949

3001~3500 1.27

3501~4000 0.892

4001~4500 0.623

>4500 1.355
TABLE 3 Comparison of sequencing data and assembly results.

Sample Clean reads Mapped reads Mapped ratio

SA_CK1 26140352 21471343 82.14%

SA_CK2 29605049 24264901 81.96%

SA_CK3 30036229 24784073 82.51%

SA_1D1 28424342 23305726 81.99%

SA_1D2 26425489 21746351 82.29%

SA_1D3 24508701 20040122 81.77%

SA_2D1 26056717 21579779 82.82%

SA_2D2 24675713 20404738 82.69%

SA_2D3 25574990 20912542 81.77%

SA_3D1 24673920 20306062 82.30%

SA_3D2 23526063 19465369 82.74%

SA_3D3 27294170 22374277 81.97%
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FIGURE 3

De novo assembly and functional annotation of transcriptome sequencing. (A) The overview of sequencing data annotation; (B) Length
distribution statistics of annotated and unannotated unigenes; (C) NR annotation result; (D) KEGG annotation results. Note:K means its number
is 1000;bp means base pair.
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have been reported (Xu Li-Ke; Xiujuan, 2010; Ding Xiujuan et

al., 2010; Zhan, 2012; Huijun, 2012; Pu Qiaoli et al., 2021).

Compared with the results of this experiment, a total of 21

DAMs have been reported. Deoxyloganic acid belongs to

monoterpenoids, and the other 20 DAMs belong to triterpene

saponin(Figure 6B).

Amongst the remaining 20 triterpenoid saponins, 4

compounds including pulchinenoside B7 belong to A-type

triterpenoid saponins; 12 compounds such as hederagenin-3-

O-a-L-rhamnopyranosyl-(1!2)-a-L-arabinopyranoside
belong to B-type triterpenoid saponins; 4 compounds including

anemoside B4 belong to C-type triterpenoid saponins (Pu Qiaoli

et al., 2021) (Figure 6B).

The DAMs in the three differential groups were annotated

using the KEGG database, and pathway enrichment analysis was

performed. The significantly enriched pathways were screened

with P < 0.01 as the threshold, and two highly enriched pathways

were obtained, namely, the secondary metabolic biosynthesis

pathway and the monoterpene biosynthesis pathway (Figure 6D).

Expression profile analysis by qRT-PCR

Six DEGs were randomly selected for quantitative real-time

PCR (qRT-PCR) to validate their expression levels during the

process of SA resistance in P. chinensis (Bunge) Regel. The RT-

qPCR results found that the transcriptional levels of the tested

genes were in a correlated trend with the respective abundance

estimated by RNA-seq (Supplementary Figure 6), suggesting

relative rationality and accuracy of the transcriptome analysis in

this study. There are four DEGs (TRINITY_DN22653_c0_g2,

TRINITY_DN2292_c0_g1, TRINITY_DN7817_c0_g2,

TRINITY_DN5169_c0_g1) enriched in the Pyruvate
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metabolism pathway (map00620). Pyruvate is an important

substance in the terpenoid skeleton synthesis pathway, which

is closely related to the synthesis and metabolism of terpenoids

(Ma, 2011; Qian Guan et al., 2011; Boronat and Rodrıǵuez-

Concepción, 2015).
Discussion

The formation and accumulation of secondary metabolites in

medicinal plants are regulated by a variety of factors. In recent years,

environmental factors, hormone regulation, and the expression and

regulation of functional genes had often been reported (Martins

et al., 2018; Ibrahim et al., 2019; Dugasa et al., 2020). The early

results showed that the growth period of suspension culture callus

was about 40 days: the slow growth period was 0-9 days; the

exponential growth period was 12-24 days; the platform period is

27-39d; the decline period was 39 days after culture (Supplementary

Figure 7). After consulting the literature and combining the early

experimental results, we finally chose two key time points of callus

suspension culture: 18 days (middle exponential growth stage) and

30 days (early platform growth stage) for experiments (Wenjing

Huang et al., 2012; Jinting Li et al., 2016; Pan, 2019). In the present

study, the callus of P. chinensis was selected as the material, and a

certain concentration of SA hormone elicitor was added at two key

time points to determine the growth of callus and the content of

Pulsatilla saponin B4, an index component of the pharmacopoeia.

On this basis, transcriptomic and metabolomic techniques were

used to analyse the transcriptional and metabolic changes of P.

chinensis callus under the regulation of SA. Functional genes

affecting secondary metabolism of P. chinensis and metabolic

pathways with significant enrichment were analysed. Thus, a

foundation will be built for the excavation of functional genes

related to the synthesis of saponins from P. chinensis and the

analysis of metabolic pathways.
SA regulates the growth and
accumulation of secondary metabolites
in P. chinensis callus

In this paper, fresh weight, pH value, electrical conductivity,

sugar concentration and saponin B4 content were selected to
frontiersin.org
TABLE 5 Annotation information statistics.

Database All_Unigene number(percent)

GO 36059(0.2561)

KEGG 12543(0.0891)

COG 29496(0.2095)

NR 45058(0.32)

Swiss-Prot 24698(0.1754)

Pfam 25890(0.1839)

Total_anno 46178(0.328)

Total 140794(1)
TABLE 6 Statistics on the number of DEGs between samples under SA stress treatment.

Diff_group Total DEGs Up Down

SA_CK_vs_SA_1D 7760 3560 4200

SA_1D_vs_SA_2D 56 10 46

SA_2D_vs_SA_3D 17 8 9

SA_1D_vs_SA_3D 73 24 49

SA_CK_vs_SA_2D 8039 3635 4404

SA_CK_vs_SA_3D 5292 2323 2969

https://doi.org/10.3389/fpls.2022.1054317
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dong et al. 10.3389/fpls.2022.1054317
A B

C

D

FIGURE 4

DEGs enrichment analyses. (A) DEGs volcano map between the SA_CK and SA_2D; (B) The hierarchical clustering of DEGs between the SA_CK
and SA_2D; (C) GO enrichment analysis of DEGs; (D) KEGG enrichment analysis of DEGs.
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compare the changes of callus growth of P. chinensis under

salicylic acid stress. Among them, fresh weight is generally used

to analyse the proliferation efficiency of callus (Wenjing Huang

et al., 2012; Xiaozhen, 2020). The pH value and conductivity of

the culture medium are used to measure the cell membrane

permeability of the callus and judge the health status of the

callus (Wenjing Huang et al., 2012; Zhang et al., 2016).

However, the sugar concentration is to reflect the carbon

source absorbed by callus (Jinting Li et al., 2016). Saponin B4

has been used to evaluate the quality and pharmacological

activity of P. chinensis (Commission, 2020; Li et al., 2020).

Salicylic acid, as a hormone inducer, has been widely proved to
Frontiers in Plant Science 12
have certain effects on the accumulation of secondary

metabolites of medicinal plants (Guo, 2016; Yongbo Duan

et al., 2017; Ruixiang Lei et al., 2021). After 30 days of callus

suspension culture, 100mmol/L of SA was added. In this paper,

after 30 days of suspension culture of callus, 100 mmol/L

salicylic acid was added, and after 2 days of co culture, the

accumulation of Pulsatilla saponin B4 in callus was significantly

higher than that in control group (1.99 ± 0.09)%. Consistent

with the studies of Zhang Yuanyuan (Zhang Yuanyuan et al.,

2019) and Zhang Jingyi (Juan-E, 2015), the SA hormone elicitor

has a certain regulatory effect on the synthesis and

accumulation of secondary metabolites in medicinal plants.
A B

C D

FIGURE 5

DEGs involved in Terpenoid Biosynthesis Pathways; (A)The DEGs enriched in the terpenoid backbone synthesis pathway; (B) The DEGs enriched
in the monoterpene synthesis pathway; (C) The DEGs enriched in the diterpene synthesis pathway; (D) The DEGs enriched in the ubiquinone
and other terpenoid quinone synthesis pathway.
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FIGURE 6

Terpenoid DAMs Analysis. (A) QC sample mass spectrometry detection TIC overlay; (B) DAMs involved in triterpene synthesis pathway; (C)
Metabolic analysis using OPLS-DA; (D) KEGG enrichment analysis of DAMs.
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TABLE 7 Summary of identification of terpenoids in P. chinensis callus under SA treatment.

No. Formula Compounds Class

1 C16H24O9 7-Deoxyloganic acid Monoterpenoids

2 C16H24O10 Loganic acid Monoterpenoids

3 C30H48O3 Ursolic acid Triterpene

4 C30H46O4 Hederagonic acid (23-Hydroxy-3-oxoolean-12-en-28-oic acid) Triterpene

5 C41H66O12 a-Hederin Triterpene
Saponin

6 C41H66O12 Pulchinenoside A;Anemoside A3 Triterpene
Saponin

7 C41H66O12 Hederagenin-3-O-a-L-rhamnopyranosyl-(1!2)-a-L-arabinopyranoside Triterpene
Saponin

8 C41H66O13 Hederagenin-3-O-b-D-glucopyranosyl-(1!4)-a-L-arabinopyranoside Triterpene
Saponin

9 C42H68O14 3b,23-Dihydroxylup-20(29)-en-28-oic acid-28-O-b-D-glucopyranosyl-(1!6)-b-D-glucopyranoside Triterpene
Saponin

10 C47H76O16 Pulchinenoside B10 Triterpene
Saponin

11 C47H76O16 Pulchinenoside B7 Triterpene
Saponin

12 C47H76O17 3-O-a-L-rhamnopyranosyl-(1!2)-[ b-D-glucopyranosyl-(1!4)]-a-L-arabinopyranosyl-3b,23-dihydroxylup-D20(29)-en-28-oic
acid*

Triterpene
Saponin

13 C47H76O17 Hederagenin-3-O-b-D-glucopyranosyl-(1!3)-a-L-rhamnopyranosyl-(1!2)-a-L-arabinopyranoside* Triterpene
Saponin

14 C47H76O17 Hederagenin-3-O-a-L-rhamnopyranosyl-(1!2)-[(b-D-glucopyranosyl-(1!4)]-a-L-arabinopyranoside Triterpene
Saponin

15 C47H76O17 Pulsatilla saponin D* Triterpene
Saponin

16 C47H76O18 3-O-a-L-arabinopyranosyl-Hederagenin-28-O-b-D-glucopyranosyl-(1!6)-b-D-glucopyranoside Triterpene
Saponin

17 C48H78O18 Hederagenin-28-O-b-D-rhamnopyranosyl-(1!4)-a-L-glucopyranosyl-(1!6)-a-L-glucopyranoside* Triterpene
Saponin

18 C48H78O18 3b,23-Dihydroxylup-20(29)-en-28-oic acid-28-O-a-L-rhamnopyranosyl-(1!4)-b-D-glucopyranosyl-(1!4)-b-D-glucopyranoside* Triterpene
Saponin

19 C48H78O18 Hederagenin-28-O-a-L-rhamnopyranosyl-(1!4)-b-D-glucopyranosyl-(1!6)-b-D-glucopyranoside Triterpene
Saponin

20 C53H86O21 Pulchinenoside E2 Triterpene
Saponin

21 C53H86O22 Pulchinenoside B* Triterpene
Saponin

22 C53H86O22 Pulchinenoside E1;Macranthoside B* Triterpene
Saponin

23 C53H86O22 Hederacoside D Triterpene
Saponin

24 C54H88O23 Cirenshenoside S Triterpene
Saponin

25 C59H96O25 Oleanolic acid-3-O-a-L-rhamnopyranosyl-(1!6)-b-D-glucopyranosyl-(1!4)-b-D-glucopyranosyl-(1!3)-a-L-rhamnopyranosyl-
(1!2)-a-L-arabinopyranoside

Triterpene
Saponin

26 C59H96O26 Hederacoside C Triterpene
Saponin

27 C59H96O26 Pulchinenoside B4;Pulchinenoside C;Anemoside B4 Triterpene
Saponin

28 C59H96O26 3-O-b-D-glucopyranosyl-(1!3)-a-L-rhamnopyranosyl-(1!2)-a-L-arabinopyranosyl-Oleanolic acid-O-b-D-glucopyranosyl-
(1!6)-b-D-glucopyranoside

Triterpene
Saponin

29 C59H96O27 3-O-b-D-glucopyranosyl-(1!4)-a-L-arabinopyranosyl-Hederagenin-28-O-a-L-rhamnopyranosyl-(1!4)-b-D-glucopyranosyl-
(1!6)-b-D-glucopyranoside

Triterpene
Saponin

(Continued)
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Determination of gene expression
changes in P. chinensis callus induced
by SA through transcriptome
sequencing technology

About 100mmol/L of SA was added to the P. chinensis callus

proliferation culture system and co-cultured for 0, 1, 2, and 3

days. Then, it was taken out for transcriptome sequencing

research. In NR species annotation, Aquilegia has the highest

matching degree, but its proportion is only 16.87%. There are

very few studies related to the gene function of P. chinensis, and

some only focused on DNA barcoding and chloroplast genome

sequencing (Yang Wei et al., 2011; Qiujie, 2019; Tingting, 2021).

The research on the functional gene of P. chinensis needs to

be enriched.

By setting |log2FC| ≥ 2 and Padjust ≤ 0.001, a total of 9558

significant DEGs were obtained. Compared with the control

group, the number of DEGs obtained by SA_2D sequencing was

the highest (up to 8039). These DEGs were significantly enriched

in 122 pathways, including multiple pathways for terpenoid

synthesis and metabolism, especially terpenoid backbone

biosynthesis, monoterpenoid biosynthesis, diterpenoid

biosynthesis, and ubiquinone and other terpenoid-quinone

biosynthesis pathways. Some terpenoid synthesis precursor

metabolism pathways were also significantly enriched, such as

lysine biosynthesis; phenylalanine, tyrosine and tryptophan

biosynthesis; and phenylalanine metabolism.

In-depth analysis of DEGs in terpenoid metabolism-related

pathways revealed that multiple genes were significantly enriched.

Amongst them, MVD, GGPS, and SPS genes in the terpenoid

backbone synthesis pathway have also been reported in Arabidopsis

(Cordier et al., 1999; Okada et al., 2000; Hirooka et al., 2005). The

TPS gene was isolated from Santalum album (Santalaceae) and

expressed heterologously in Escherichia coli, producing a variety of

sesquiterpenoids, indicating that the TPS gene is involved in the

biosynthesis of sandalwood essential oil (Jones et al., 2008). In

addition, the TPS-Cin gene is expressed in Arabidopsis root,

directing the biosynthesis of volatile monoterpenes (Chen et al.,

2004). The ADT gene plays a role in the synthesis of phenylalanine,

a precursor required for the synthesis of terpenes (Cho et al., 2007).

In addition, some homologous sequences were found in the

biosynthetic pathway such as GGPS, CYP76F14, 4CL, GOT1, etc

(Supplementary Figure 8).
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Metabolomic technique to determine the
metabolic changes of terpenoids in P.
chinensis callus induced by SA

Terpenoids are the main active components of P. chinensis,

and a variety of terpenoid monomer components have been

proved to have significant pharmacological activities (Huihui

Song et al., 2021; Liu et al., 2021; Ye et al., 2021). Metabolomics

technology was used to analyse the effect of SA elicitors on the

metabolic changes of terpenoids in Pulsatilla callus. A TIC map

of the samples was drawn, and the samples were analysed by

OPLS-DA. There are large differences between groups, and

different treatments have obvious changes in samples.

Four differential groups were analysed, and a total of 31

DAMs were obtained. Amongst them, 21 components have been

reported in the chemical composition analysis of Pulsatilla.

Except for deoxyloganic acid, which is a monoterpenoid, the

rest are triterpenoids. SA elicitor significantly affected the

metabolic changes of triterpenoids in P. chinensis callus.

In general, this study used plant tissue culture technology,

transcriptome sequencing technology, and metabolome

technology to elucidate that SA elicitors can affect the

metabolic changes of terpenoids in P. chinensis callus.

The results showed that SA could promote the accumulation

of Pulsatilla saponin B4. A number of synthetic pathways related

to P. chinensis biosynthesis were significantly enriched, and some

functional genes were excavated. Metabolomic analysis also

showed that triterpenoid metabolism is affected by SA elicitors.

In addition, from the analysis of transcriptome sequencing results,

the number of genes that can be annotated is relatively small.

Approximately 16.87% species were annotated in NR, and only

8.91% were annotated in the KEGG database. The number of

related studies on plant genes of P. chinensis is relatively small.

On the other hand, from the analysis of transcriptome data,

multiple synthetic pathways of terpenoid components in P.

chinensis were significantly enriched, and a certain number of

DEGs were obtained. From metabolomic data analysis, multiple

terpenoid component DAMs were identified. However, almost

no DEGs related to the accumulation of terpenoids were found,

and the joint analysis of DEGs and DAMs was not carried out in

this study (Mao et al., 2021; Bai et al., 2021). Overall, these

results show that SA elicitor can regulate the metabolism of

terpenoids in P. chinensis callus and obtain some functional
TABLE 7 Continued

No. Formula Compounds Class

30 C59H96O27 Macranthoidin A* Triterpene
Saponin

31 C59H96O27 3-O-b-D-glucopyranosyl-(1!4)-[a-L-rhamnopyranosyl-(1!2)]-a-L-arabinopyranosyl-Hederagenin-28-O-b-D-glucopyranosyl-
(1!6)-b-D-glucopyranoside*

Triterpene
Saponin
Note:“*”limited by the detection principle of mass spectrometry, these substances have the same molecular weight and ionic fragment information, and they are isomers, which cannot be
distinguished in the mass spectrometry results.
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genes related to terpenoid biosynthesis, which provide a basis for

analysing the genetic regulation of P. chinensis terpenoids.
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