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Bacterial fruit blotch, caused by the seedborne gram-negative bacterium

Acidovorax citrulli, is one of the most destructive bacterial diseases of

cucurbits (gourds) worldwide. Despite its prevalence, effective and reliable

means to control bacterial fruit blotch remain limited. Transcriptomic analyses

of tissue culture-based regeneration processes have revealed that

organogenesis-associated cellular reprogramming is often associated with

upregulation of stress- and defense-responsive genes. Yet, there is limited

evidence supporting the notion that the reprogrammed cellular metabolism of

the regenerated tissued confers bona fide antimicrobial activity. Here, we

explored the anti-bacterial activity of protocorm-like-bodies (PLBs) of

Phalaenopsis aphrodite. Encouragingly, we found that the PLB extract was

potent in slowing growth of A. citrulli, reducing the number of bacteria

attached to watermelon seeds, and alleviating disease symptoms of

watermelon seedlings caused by A. citrulli. Because the anti-bacterial activity

can be fractionated chemically, we predict that reprogrammed cellular activity

during the PLB regeneration process produces metabolites with antibacterial

activity. In conclusion, our data demonstrated the antibacterial activity in

developing PLBs and revealed the potential of using orchid PLBs to discover

chemicals to control bacterial fruit blotch disease.
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Introduction

Bacterial fruit blotch (BFB) is a serious seedborne pathogen

for watermelon and melon worldwide and its outbreaks have

caused severe fruit loss in the Americas, Asia, Europe, the

Middle and Far East, and Australia (Burdman et al., 2005;

Bahar and Burdman, 2010; Burdman and Walcott, 2012). In

Taiwan, BFB disease was first reported in 1992-1993 (Tzeng

et al., 2010). The recurrence of BFB in 1994 caused more than

60% loss of the watermelon crop nationwide (Tang, 1997; Cheng

et al., 2000; Cheng, 2009; Tzeng et al., 2010). The primary source

of inoculum is often contaminated seeds (Assouline et al., 1997).

Because of the destructive nature of BFB disease, evaluation of

pathogen contamination in seed lots prior to their sale and

distribution has become a critical practice for seed companies.

Based on the National Seed Health System USDA standard

(http://www.seedhealth.org/cb1-1), one infected seedling in

30,000 tested seeds can be sufficient to lead to rejection of the

entire seed lot. However, seed disinfestations and chemical

control only have limited efficacy in controlling BFB

(Burdman and Walcott, 2012). Even though seedling grow-out

assay is widely used to evaluate seed health, infected seedlings

may or may not show disease symptoms. It has been reported

that the amount of bacteria present on a seed, environmental

conditions, virulence levels of the strains, and the susceptibility

of host plants as a whole affect BFB outbreaks (Schaad et al.,

2003; Bahar and Burdman, 2010). If infected seedlings are not

detected, they might be transplanted into the field and become

the primary source of inoculum for field outbreaks. To date, no

BFB disease resistant plants have been developed and BFB

management remains a major challenge to global watermelon

and melon agriculture (Bahar and Burdman, 2010; Islam et al.,

2020). Hence, an innovative plan for a BFB management

program is a pressing need.

The Orchidaceae represents one of the largest angiosperm

families comprising more than 25,000 species that grow in wide

range of habitats ranging from rainforest and mountain, to

swamp and arctic tundra (Stokstad, 2015). Considering the

rich diversity of the orchid species, it is likely that orchids

provide a substantial resource of novel compounds for

potential application. In fact, orchids have been utilized by

humans for thousand years. For example, vanilla orchid

Vanilla planifolia, probably endemic to tropical forests in

Eastern Mexico, is a major source of vanilla (Bory et al., 2008).

Additionally, orchids such as Gastrodia elata, Bletilla striata, and

Dendrobium species have been used for medicinal purposes in

China and other Asian countries for thousands of years (Bulpitt

et al., 2007). Despite this background, only a few phytochemicals

have been characterized from orchids and the potential of orchid

derived-phytochemicals has not been fully explored.

Protocorm-like bodies (PLBs) morphologically resemble the

orchid germinated structures, protocorms, but are derived from
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somatic explants via a de novo regeneration pathway (Jones and

Tisserat, 1990; Chugh et al., 2009; Fang et al., 2022). Because

each PLB has the ability to regenerate into an individual plant,

PLB-based micropropagation is often used to produce clonal

plantlets in the orchid industry (Yam and Arditti, 2009). Our

previous comparative transcriptomic studies to dissect the

developmental origin of PLB supported that PLB and

protocorm share similar molecular s ignatures and

unexpectedly revealed that many genes involved in plant

defense responses are specifically enriched in the developing

PLB (Fang et al., 2016; Fang, 2021; Fang et al., 2022).

Considering the potential functions of PLB-enriched defense

related genes, we explored the antimicrobial activity of PLB

extract and tested its effects on BFB of watermelon. Our results

demonstrate the antibacterial activity of PLB extract and suggest

the potential of using the orchid PLBs for developing a reagent to

control BFB.
Materials and methods

Pathogen

Acidovorax citrulli Aac153 (A. citrulli Aac153), isolated by

the Laboratory of Phytopathogenic Bacteria, Department of

Plant Pathology, National Chung Hsing University, Taiwan

was a kind gift from Dr. Yi-Hsien Lin from National Pingtung

University of Science and Technology. A. citrulli Aac153 has

been shown to cause watermelon fruit blotch disease (Chang

et al., 2019). A. citrulli Aac153 was stored at -75°C in tryptic soy

broth (TSB) supplemented with 15% glycerol (v/v) and allowed

to grow on selective medium AacG containing 0.5g/l KH2PO4,

2g/l Na2HPO4·12H2O, 2 g/l (NH4)2SO4, 5 g/l L-glutamic acid,

12.5 mg/l bromothymol blue, 15g/l agar, 20 mg/l ampicillin, 25

ppm/l cycloheximde as described previously (Chen, 2014). The

single colony was used as inoculum for the primary culture. For

subculture, single colony of primary culture was used to

inoculate TSB and allowed to grow overnight at 28°C. The

overnight culture was then grown on a selective AacG agar

plate and the single colony was used as inoculum for the

secondary culture. Only the primary and secondary cultures

were used for inoculation in all the experiments. This strain

produces reproducible, severe symptoms on the commercialized

watermelon cultivar China Baby (Chang et al., 2019).
PLB extraction

PLB tissues were homogenized by pestle and mortar in the

presence of liquid nitrogen. One gram of pulverized PLB tissues

was sonicated in the presence of 5 ml of ethyl acetate (EtOAc) for

30 mins (Branson 8510 DTH). The EtOAc-based PLB extract
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was incubated at 55°C for 10 min. Large tissue debris was

removed by centrifugation at 3220 x g for 10 min. Supernatant

was transferred to a new tube and concentrated by a rotary

evaporator (EYELA, USA). The pellet was resuspended in 1 ml

100%MeOH. The PLB extract was then filtered by a 0.2 mm filter

(13 mm Acrodisc Syringe filter, Pall) followed by concentration

using a CentriVap Vacuum Concentrator (Labconco). The

concentrated PLB-extract was flash frozen and stored at -80°C.

Frozen PLB extract was resuspended in 2 ml 30% MeOH.

The 1 cc 50 mg Sep-PaK C18 cartridge (Waters) was first

equilibrated with 1 ml of 100% MeOH followed by 1 ml of

H2O once and then 1 ml of 30% MeOH once. For fractionation,

solid phase extraction (SPE) was carried out by applying 1 ml

PLB-based extract onto the equilibrated Sep-PaK C18 cartridge

using a step gradient of MeOH-water mixture at a concentration

of 30%, 45%, 60%, 80%, and 100% MeOH PLB and the eluents

were collected individually. Methanol was allowed to evaporate

by CentriVap Vacuum Concentrator (Labconco) and the

fractionated PLB extract from 1 g tissues was pooled and

resuspended in 100 ml 100% MeOH for seed infestation and

pathogenicity assays as described below.
Bacterial growth inhibition assay

Frozen PLB extract from 1 g of PLB tissues (see above) was

resuspended directly in 1 ml 100%MeOH. The overnight A. citrulli

Aac153 culture was pelleted by centrifugation and washed once

with 5 ml TSB medium, and diluted to OD600 = ~0.05 with TSB

medium. The diluted culture was mixed with crude PLB extract

(933 ml bacterial culture + 67 ml PLB extract) and aliquoted into 6

technical replicates (100 ml each) to a 96-well microtiter plate and
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allowed to incubate at 28°C. The OD600 was recorded at 0, 15, 19

hours after incubation. For each biological replicate, the absorbance

measurements of OD600 were recorded in three technical replicates.

This experiment was repeated three times.
Disease index scale

Disease symptoms of seedlings at 12 days after

transplantation (DAT) were recorded. Normally, 12 DAT

watermelon seedlings have two expanded true leaves. Disease

index was rated as follows (Figure 1): 0, no symptoms; 1, slight

(< 20%) water-soaking or necrotic spots on cotyledons or

hypocotyls; 2, increased water-soaking or necrotic spots

(>20%) on cotyledons or hypocotyls; 3, expanded water-

soaking and necrosis (>50%) on cotyledons or hypocotyls, true

leaves often failed to emerge from infected seedlings, for

seedlings with emerging true leaves, leaves failed to expand

and were often distorted; 4, bent seedlings with necrotic

cotyledons and hypocotyls, no true leaves were observed; 5,

falling-over seedlings with complete necrotic cotyledons and

hypocotyls. Disease severity was calculated as DS (%) = [sum

(class frequency × score of rating class)]/[(total number of

plants) × (maximal disease index)] × 100.
Seed infestation and pathogenicity
assays

Watermelon seeds (China Baby) were purchased from

Known-You Seed Company (Taiwan). For seed sterilization,

seeds were imbibed in distilled water supplemented with 0.1%
FIGURE 1

The represented disease severity index used to categorize disease symptoms of watermelon seedlings infected with A. citrulli Aac153. The
numbers indicate the disease index described in Materials and Methods.
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Triton X100 and gently shaken for 30 min. Imbibed seeds were

sterilized by incubating with 75% ethanol for 5 min followed by

washing with sterilized water 5 times. Seeds were allowed to dry

in a laminar hood overnight.

For bacterial culture preparation, A. citrulli Aac153 culture that

grew in 4 ml TSB overnight was pelleted by centrifugation at 3220 x

g at 25°C for 10 min, washed once with 5 ml 0.5% carboxymethyl

cellulose (CMC), resuspended in 0.5% CMC, and adjusted to OD600

to ~0.3. This preparation was used as the bacterial stock for seed

infestation and seedling pathogenicity assays.

For seed infestation assay, five sterilized seeds were

incubated with A. citrulli Aac153 culture in the presence (933

ml diluted bacterial culture + 67 ml fractionated PLB extract) or

absence (933 ml diluted bacterial culture + 67 ml methanol) of

PLB extract with gentle shaking (200 rpm) at 28°C for 2 h. The

infested seeds were allowed to dry in a laminar flow hood

overnight. The infected seeds were then resuspended in 1 ml

AacG selective medium, incubated at 4°C for 30 min followed by

incubation at 37°C for 1 h as described previously (Chen, 2014).

Bacteria were concentrated by centrifugation at 15871 x g at 4°C

for 10 min. The supernatant was carefully removed and the

bacterial pellet was resuspended in 1 ml distilled water. The

bacterial suspension was diluted 10 or 100 times by distilled

water, plated on AacG selective plates, and allowed to grow at

28°C for three days. For each biological repeat, measurement of

colony forming units was performed in three technical

replicates. This experiment was repeated three times. A two-

tailed Student’s t-test was applied. *, 0.05 > p > 0.01; **, p < 0.01.

Only the treatments showing statistically significant reduction of

bacteria were marked.

For seedling pathogenicity assay, the diluted A. citrulli Aac153

culture (OD600 to ~0.3) was further diluted 500 times with 0.5%

CMC immediately before infection experiment. Eight sterilized

seeds were incubated with 1 ml of diluted A. citrulli Aac153

culture in the presence (933µl diluted A. citrulli Aac153 + 67µl

fractionated PLB extract, treatment) or absence (933 µl diluted A.

citrulli Aac153 + 67µl MeOH, control) of PLB extract at 28°C with

gentle shaking (200 rpm) for 24 h. The infested seeds were allowed

to germinate in a humidity chamber at 32°C in the dark for 72 h.

The germinated seedlings were then transferred to soil and allowed

to grow in a growth chamber with a 16-h:8-h light:dark cycle under

illumination of ~300 mmol photons m-2s-1 at 32°C. Plastic wrap was

used to cover soil pots to maintain humidity and removed 5 days

after transplantation. Disease symptoms were rated and recorded

based on disease index scale (Figure 1) as described previously. The

experiment was conducted three times. A two-tailed Student’s t-test

was applied. **, 0.01 > p > 0.001; ***, p < 0.001.
RNA extraction and RT-qPCR

RNA was extracted as described previously (Fang et al.,

2016). Three micrograms of DNA-free RNA were reverse
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transcribed in the presence of a mixture of oligo(dT) and

random primers in a 9:1 ratio using the GoScript Reverse

Transcription System (Promega) based on the manufacturer’s

instructions. Ten microliters of reverse transcription-PCR

reaction contained 2.5 mL of 1:20 diluted cDNA, 0.2 mM of

primers, and 5 mL of 2x KAPA SYBR FAST master mix (KAPA

Biosystems). The amplification program was as follows: 95°C for

1 min, and 40 cycles at 95°C for 5 s and 58°C to 60°C for 20 s.

PCR was performed in triplicate. Data are from technical

triplicates and the error bars are presented as standard error of

the mean. The RNA samples used for RT-qPCR analysis were

independent from those for RNA-seq analyses. Primer pairs and

the specified annealing temperature used for quantitative PCR

are listed in Supplementary Table 1. UBIQUITIN was used as an

internal control (Lin et al., 2014). The nomenclature of chalcone

synthases was based on the previous study (Kuo et al., 2019). List

of gene IDs used in this study and their corresponding IDs in the

P. aphrodite databases are listed in Supplementary Table 2.
Statistical analysis

All experiments were performed three times or as otherwise

mentioned in the figure legends. The data are presented as

means and standard deviations obtained from at least three

replicates of a single experiment. The significant difference

between the treatments was analyzed by running a Student’s t-

test in IBM SPSS v.20.
Results

Plant defense-related genes are
specifically upregulated in PLBs

Our previous RNA-seq study invest igat ing the

developmental origin of PLBs revealed that Gene Ontology

(GO) terms such as oxidation-reduction process, terpene

synthase activity, and stress responses are overrepresented in

developing PLBs (Fang et al., 2016). The biochemical and

biological properties of these GO terms are generally

associated with plant defense responses (Field et al., 2006;

Almagro et al., 2009; Ton et al., 2009; Gonzalez et al., 2010;

Denance et al., 2013; Yang et al., 2013; Savatin et al., 2014).

Among them, Phalaenopsis chalcone synthase (CHS) and

flavonoid 3’ hydroxylase (F3’ H) genes, PaCHS4, PaCHS5, and

PaF3’ H1, were preferentially upregulated in developing PLBs

(Table 1). Chalcone synthase and flavonoid 3’ hydroxylase act at

the initial steps to produce flavonoids- and isoflavonoid-type

phytoalexins (Bak et al., 2011; Dao et al., 2011; Ahuja et al., 2012)

that are part of plant defense responses (Ahuja et al., 2012). A
frontiersin.org
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PLB-enriched PaCYC71A1, which is related to Arabidopsis

CYP71A12 (Bak et al., 2011), encodes a putative cytochrome

P450 monooxygenase (Table 1). Arabidopsis CYP71A12 takes

part in biosynthesis of camalexin, a major phytoalexin important

for disease resistance (Millet et al., 2010; Klein et al., 2013;

Pastorczyk et al., 2020). Additionally, two PLB-enriched WRKY

transcription factors, PaWRKY3 and PaWRKY4, were identified.

PaWRKY3 belongs to the group III WRKY transcription factors

(Supplementary Figure 1) and is related to Arabidopsis

WRKY70 (Wu et al., 2005). Arabidopsis WRKY70 modulates

salicylic acid (SA)- and jasmonic acid (JA)-mediated defense

pathways to regulate plant immunity against bacterial pathogens

(Li et al., 2004; Li et al., 2006; Zhou et al., 2018). PaWRKY4, on

the other hand, encodes a group I WRKY transcription factor

that is related to Arabidopsis WRKY33 (Supplementary

Figure 1), which is an important regulator for biosynthesis of

camalexin and pathogen-associated molecular patterns

(PAMP)/pathogen-triggered reactive oxygen species (ROS) and

ethylene production (Qiu et al., 2008; Mao et al., 2011; Li et al.,

2012; Zhao et al., 2020; Zhou et al., 2020).

These PLB-enriched genes (Table 1) are also associated with

other aspects of plant defense responses. For example, PaECR1

encodes a potential enoyl-coA reductase that has been shown to

play roles in plant defense responses in cotton and P. amabilis

orchid (Fu et al., 2012; Mustafa et al., 2017). A potential PLANT

NATRIURETIC PEPTIDE (PEP) encoded by PaPEP1A belongs

to a family of peptides involved in regulation of defense

responses and ion and water homeostasis (Gehring and Irving,

2013; Ficarra et al., 2018). MAJOR LATEX PROTEIN1

(PaMLP1) and NORCOCLAURINE SYNTHASE1 (PaNCS1)

belong to pathogen-related 10 (PR10) and Bet v1 proteins
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(Radauer et al., 2008). MLP proteins are known to be involved

in various abiotic and biotic responses (Yang et al., 2015; Wang

et al., 2016; Holmquist et al., 2021). NCS proteins catalyze the

first committed step of biosynthesis of benzylisoquinoline

alkaloids (BIAs) that possess antimicrobial activity (Lee and

Facchini, 2010). PaRALF1, on the other hand, encodes a protein

that is related to Arabidopsis RAPID ALKALINIZATION

FACTOR (RALF) peptides, which are found to interact with

receptor-like kinase FERONIA to modulate ROS production and

plant immune responses (Stegmann et al., 2017; Li et al., 2018;

Abarca et al., 2021). The PLB-enriched genes, PaCOMT1 and

PaCOMT2, encode putative caffeic acid O-methyltransferases.

Rice COMT is reported to have N-acetylserotonin O-

methyltransferase (ASMT) activity that converts N-

acetylserotonin to melatonin (Byeon et al., 2015), which

modulates ROS and SA levels to improve plant responses to

various abiotic and biotic stresses (Lee et al., 2015; Khan et al.,

2020). Additionally, PaPRX1 encodes a PLB-enriched

peroxidase, which may take part in plant defense responses

(O’Brien et al., 2012). The expression patterns of the described

PLB-enriched genes have been documented in an independent

RNA-seq dataset (Fang et al., 2022) and validated by RT-qPCR

analysis in a separate set of samples (Figure 2).
Crude PLB extract slows growth of A.
citrulli Aac153

Because many plant defense-relates genes were specifically

induced in developing PLBs, we hypothesized that the dynamic

metabolomic reprogramming of developing PLBs leads to
TABLE 1 Plant defense-related genes are enriched in developing PLBs as shown by RNA-seq analysis.

FPKM values

Transcript ID Annotation 30/40
DAP

50/60
DAP

70/80
DAP

90/100/
120 DAP

140/
160
DAP

180/
200
DAP

PLB Protocorm Young
leaves

Stalk
buds

Floral
stalks

orchid.id124284.tr400924 PaCHS4 1.7 0.6 0.2 0.4 2.0 2.3 185.9 10.7 1.4 0.8 0.9

orchid.id121282.tr400924 PaCHS5 0.6 0.4 0.1 0.3 2.3 2.2 186.2 15.1 1.3 0.5 0.6

orchid.id17741.tr406385 PaF3’ H1 7.56 9.43 25.19 11.91 5.96 10.07 194.62 5.43 7.90 6.39 4.89

orchid.id115099.tr56794 PaCYP71A1 0.2 0.1 0.1 0.7 1.9 1.4 395.4 23.6 0.1 0.2 0.1

orchid.id36575.tr215222 PaWRKY3 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0 0.0 0.0 0.0

orchid.id184974.tr136611 PaWRKY4 0.0 0.0 0.0 0.0 0.0 0.0 9.1 1.1 0.0 0.0 0.0

orchid.id154271.tr406853 PaECR1 1.1 0.1 0.6 1.2 2.9 1.2 313.0 3.4 0.8 0.8 3.1

orchid.id163617.tr122100 PaPNP1 3.7 1.8 1.5 9.6 0.6 0.3 106.6 3.6 0.9 3.6 0.5

orchid.id156327.tr422593 PaRALF1 1.4 0.6 0.0 0.3 1.2 0.0 159.4 0.2 26.2 20.7 1.4

orchid.id133178.tr112803 PaMLP1 3.1 1.3 0.5 2.4 0.9 2.2 1046.2 7.6 0.2 7.1 6.9

orchid.id148348.tr112803 PaMLP2 4.3 1.4 0.6 3.1 0.9 2.6 1318.7 8.4 0.2 10.6 10.9

orchid.id136038.tr32844 PaPRX1 0.3 0.5 0.1 0.4 0.5 0.3 253.7 27.6 0.1 0.1 0.5

orchid.id123338.tr499847 PaCOMT1 1.4 1.1 1.4 3.0 4.0 3.7 645.1 28.4 1.8 15.0 8.7

orchid.id21743.tr69582 PaCOMT2 0.0 0.0 0.0 0.2 0.0 0.2 28.8 0.0 0.0 0.0 0.0
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synthesis of antimicrobial metabolites. Ethyl acetate (EtOAc),

which is commonly used for plant metabolite extraction

(Tamokou et al., 2012; Oliveira et al., 2013; Lien et al., 2014;

Yang et al., 2022), was used to prepare PLB crude extract. The

crude extract was then tested for its effect on growth of three
Frontiers in Plant Science 06
plant pathogens including Acidovorax citrulli Aac153

(watermelon bacterial fruit blotch disease), Pectobacterium

carotovorum subsp. carotovorum (bacterial soft rot disease),

and Xanthomonas citri pv. mangiferaeindicae (mango bacterial

black spot disease). Because PLB crude extract showed

consistent inhibitory effect on growth of A. citrulli Aac153 in

the preliminary test (data not shown), we decided to focus on

A. citrulli Aac153. To confirm this inhibitory effect, bacterial

growth was monitored over 19 hours. In three separate

experiments, PLB crude extract slowed the growth of A.

citrulli Aac153 15 hours after treatment (Figure 3), indicating

the presence of anti-bacterial activity in the developing PLBs.

However, growth of A. citrulli Aac153 eventually caught up 19

hours after incubation, suggesting other substances may

interfere with the inhibitory activity.
PLB extract reduces number of A. citrulli
Aac153 bacteria associated with
watermelon seeds

To enrich and separate the active metabolites from

interfering substances, PLB crude extract was fractionated by

solid phase extraction (SPE) based on the chemical polarity.

Chemicals eluted with different concentrations of MeOH were

collected for seed infestation test. Watermelon seeds were

inoculated with A. citrulli Aac153 in the presence of different

PLB eluents (see Materials and Methods). Interestingly, 30%

MeOH PLB eluent was shown to be most effective in reducing

the number of bacteria associated with watermelon seeds

(Figure 4). Only 2.1% to 6.5% of bacterial cells remained after

co-incubation with 30% MeOH-water PLB eluent. Co-

incubating seeds with the 100% MeOH PLB eluents was also

effective in reducing bacterial number but to a lesser extent

(between 7.9% to 53.2%) with relatively large variations as

compared to the 30% MeOH-water PLB eluents. This indicates
FIGURE 3

Crude PLB extract affected growth of A. citrulli Aac153. Aac153, A. citrulli Aac153 culture. TSB, cells were allowed to grow in TSB medium.
MeOH, cells were allowed to grow in TSB medium containing 6.7% MeOH. PLB, cells were allowed to grow in TSB medium supplemented with
6.7% PLB extract. hr, hour after incubation. I, II, and III represent three independent experiments.
FIGURE 2

Expression profiles of the selected PLB-enriched genes in
developing ovaries of P. aphrodite collected at 30 to 200 days
after pollination (DAP), and developing PLBs and protocorms.
Small PLBs (PLBS), medium PLBs (PLBM), large PLBs (PLBL), 10-
d-old protocorms (protocorm10), 20-d-old protocorms
(protocorm20), and 30-d-old protocorms (protocorm30) are
defined as previously described (Fang et al., 2016) by RT-qPCR
analysis. Expression was normalized to the Ubiquitin (PaUBI)
signal. Data are from technical triplicates and the error bars are
presented as standard error of the mean. Similar expression
pattern was observed in RNA-seq data from two independently
collected samples (Fang et al., 2016; Fang et al., 2022).
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that compounds with the potent antibacterial activity were

enriched in 30% MeOH-water PLB eluent.
PLB extract alleviates disease symptoms
caused by A. citrulli Aac153

Because 30%MeOH PLB eluent was effective in reducing the

number of bacteria attached to the watermelon seeds, we then

investigated whether it can protect watermelon seedlings from

A. citrulli Aac153 infection. To this end, watermelon seeds were

incubated with A. citrulli Aac153 culture in the presence of 1x or

1/5x of 30% MeOH PLB eluent.

Watermelon seedlings from seeds incubated with CMC or

CMC + 6.7% MeOH were used as controls, and no disease

symptoms were observed on these seedlings (Figure 5A;

Supplementary Figure 2). On the other hand, watermelon

seedlings inoculated with A. citrulli Aac153 inoculation,

showed water-soaking spots and necrotic lesions on the

hypocotyl or cotyledons, typical BFB symptoms (Walcott,

2008; Bahar and Burdman, 2010), at 12 days after

transplantation (DAP). Co-treatment of 1x 30% MeOH PLB

eluent alleviated disease symptoms on the A. citrulli Aac153-

infected seedlings. Moreover, 1/5 x 30% MeOH PLB eluent was

also potent in protecting the A. citrulli Aac153-infected

seedlings. This experiment was conducted three times and

similar results were obtained each time. Disease assessment

was quantified by the disease index scale as detailed in

Materials and Methods. Disease severity of the A. citrulli

Aac153-infected seedlings ranged from 65.5% to 81%

(Figure 5B). The disease severity of the A. citrulli Aac153-

infected seedlings treated with 1x 30% MeOH PLB eluent was

reduced to 38.0% to 46%. Even 1/5 x 30% MeOH PLB eluent

was able to protect the A. citrulli Aac153-infected seedlings and
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disease severity was reduced to 46% to 48.2%. Importantly, PLB

treatment at the higher concentration only slightly affected

seed germination (p value = 0.03, Table 2). Together, we

conclude that PLB-derived metabolites possess the

antibacterial activity that protects watermelon seedlings from

A. citrulli Aac153 infection.
Discussion

Phalaenopsis orchid PLBs possess the
antibacterial activity

Accumulated studies have provided molecular evidence

linking pluripotency acquisition of plant regeneration processes

to activation of defense responses (Chupeau et al., 2013; Ikeuchi

et al., 2017; Iwase et al., 2021; Li et al., 2021). Furthermore,

defense- or stress-associated pathways are proposed to be part of a

gene regulatory network for cell proliferation and organ

regeneration (Heyman et al., 2018; Wu et al., 2020a; Zeng et al.,

2021). However, there is little evidence to support the notion that

the rewired gene regulatory network of regenerated tissues is

capable of synthesizing antimicrobial metabolites. Here, we

showed that orchid PLB contains antibacterial substances that

are potent in slowing the growth of A. citrulli Aac153, reducing

the number of A. citrulli Aac153 associated with watermelon

seeds, and protecting watermelon seedlings from severe infection

by A. citrulli Aac153. Why would the developing PLBs possess the

antibacterial activity? PLB is a regenerated structure induced by

cutting during tissue culture (Yam and Arditti, 2009). Tissue

injury caused by cutting during tissue culture triggers wounding-

induced responses that mimic mechanical wounding triggered by

herbivores and insects. It is therefore possible that wounding

activates responses that contribute to production of antibacterial

activity in PLBs. Wounding induced by herbivores and insects is
FIGURE 4

Watermelon seed infestation assay. CFU, colony forming unit. CFU Data were collected from 5 pooled watermelon seeds. C, no PLB extract
control. 30%, PLB extract eluted by 30% MeOH-H2O. 45%, PLB extract eluted by 45% MeOH-H2O. 60%, PLB extract eluted by 60% MeOH-
H2O. 80%, PLB extract eluted by 80% MeOH-H2O. 100%, PLB extract eluted by 100% MeOH-H2O. The experiment was repeated three times
with similar results. I, II, and III represent three independent experiment. A two-tailed Student’s t-test was applied. *0.05 > p > 0.01; **p < 0.01.
Only the treatments showing statistically significant reduction of bacteria were marked.
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known to trigger de novo synthesis of ethylene, jasmonic acid, and

abscisic acid (Hyodo et al., 1983; Peña-Cortés et al., 1995; Bergey

et al., 1996; Bouquin et al., 1997) that subsequently induce plant

immunity responses to protect plants from infection by microbial

pathogens (Savatin et al., 2014). Wounding also induces an array

of immunity-related transcription factors such as WRKY

transcription factors whose functions are to activate plant
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defense responses and prevent bacterial and fungal infection (Li

et al., 2004; Li et al., 2006; Zheng et al., 2006; Pandey et al., 2010;

Sarris et al., 2015; Zhou et al., 2018). Coincidently, some of the

WRKY transcription factors also play a role in tissues regeneration

(Che et al., 2006; Xu et al., 2012; Iwase et al., 2021). In this study,

we showed that PaWRKY3 and PaWRKY4 (Table 1, Figure 2) are

PLB-enriched transcription factors. PaWRKY3 and PaWRKY4 are
TABLE 2 Germination rate of watermelon seeds.

CMC CMC + MeOH Aac153 Aac153 + PLB Aac153 + 1/5 PLB

Germination rate 100.0 ± 0.0% 90.0 ± 9.1% 87.9 ± 8.0% 89.4 ± 6.1% 93.9 ± 3.0%

p value N/A 0.42 0.15 0.03 0.18
CMC, seeds incubated with CMCmedium before germination. CMC+MeOH, seeds incubated with 6.7%MeOH in CMCmedium before germination. Aac153, seeds incubated with A. citrulli Aac153
in the presence of 6.7% MeOH. Aac153 + PLB, seeds incubated with A. citrulli Aac153 in the presence of 30% MeOH PLB extract. Aac153 + 1/5 PLB, seeds incubated with A. citrulli Aac153 in the
presence of one-fifth 30%MeOH PLB extract. Twenty-two seeds were used in each experiment except CMC and CMC +MeOH control experiments. For CMC and CMC +MeOH treatments, eleven
seeds were used in each experiment. The experiment was repeated three times. N/A, not applicable. p values were derived from SPSS Student’s t-test analysis.
A

B

FIGURE 5

Thirty percent MeOH PLB eluent alleviates disease symptoms of watermelon bacterial blotch disease. (A) Disease symptoms of A citrulli Aac153-
infested seedlings at 12 days after transplantion (DAT). (B) Disease severity index (DSI) of 12 DAT watermelon seedlings after treatments. CMC +
MeOH, seeds were incubated with 6.7% MeOH in CMC medium. Aac153, seeds were incubated with A citrulli Aac153 in the presence of 6.7%
MeOH. Aac153 + PLB, seeds were incubated with A citrulli Aac153 in the presence of 30% MeOH PLB extract. Aac153 + 1/5 PLB, seeds were
incubated with A citrulli Aac153 in the presence of one-fifth 30% MeOH PLB extract. The experiment was repeated three times. I, II, and III
represent three independent experiments. Twenty-two seeds were used in each experiment except CMC and CMC + MeOH treatments. A two-
tailed Student’s t-test was applied. **0.01 > p > 0.001; ***p < 0.001.
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the homologs of Arabidopsis defense response regulators,

WRKY70 and WRKY33, respectively (Li et al., 2017; Zhou et al.,

2018). Arabidopsis WRKY70 is directly regulated by the key

immunity signaling regulator NONEXPRESSOR OF PR

GENES1 (NPR1) and wrky70 mutant displayed reduced

resistance to the oomycte Hyaloperonospora parasitica (Wang

et al., 2006; Knoth et al., 2007). Arabidopsis WRKY33, on the

other hand, is required for pathogen-induced biosynthesis of

camalexin and ethylene response (Mao et al., 2011; Li et al.,

2012). Considering the antimicrobial activity of PLB extract, we

hypothesize that PaWRKY3 and PaWRKY4 may be part of cell

reprogramming networks in developing PLBs that contribute to

the defense activation and accumulation of antimicrobial

metabolites. The functions of these PaWRKY3 and PaWRKY4

transcription factors remain to be determined.

Phytoalexins are reported to play important roles in

combating a broad range of bacterial and fungal pathogens

(Glazebrook and Ausubel, 1994; Graham et al., 2007; Ahuja

et al., 2012; Schmelz et al., 2014). Because wounding has been

reported to induce phytoalexin biosynthesis (Guillet and De

Luca, 2005; Naoumkina et al., 2007; Farag et al., 2008), we

speculated that phytoalexins make up part of the PLB-based

antibacterial metabolites. Since chalcone synthases (PaCHS4

and PaCHS5) and flavonoid 3’ hydroxylase (PaF3’ H1) were

specifically upregulated in PLBs, it is possible that flavonoids-

and isoflavonoid-type phytoalexins were accumulated to

provide the antimicrobial activity. However, we cannot

exclude the possibility that other types of phytoalexins or

cellular processes provide the inhibitory effect against A.

citrulli Aac153. The active substance(s) remain to be purified

and identified.
Orchid PLBs may enable discovery of
novel antimicrobial metabolites

Plants possess a rich repertoire of phytochemicals that are

important for plants to combat pathogens and predators, and

adapt to biotic and abiotic stresses in the natural environment

(Pichersky and Lewinsohn, 2011; Moghe and Last, 2015). The

fact that the stress-activated plant regeneration program is often

associated with defense-associated cellular activity suggests that

the molecular wiring of development and plant immunity

processes is overlapping. This notion is supported by a recent

study showing that plant development and immunity share a

signaling network (Wu et al., 2020b). In addition to a signaling

network, we hypothesize that the cellular metabolism is also

reprogrammed to accommodate stress-associated organogenesis

and plant immunity functions. The available genome and

transcriptome databases of P. aphrodite (Chao et al., 2017;

Chao et al., 2018) provide the molecular basis to discover

pathways and to decode the molecular wiring of PLB-

associated antimicrobial metabolites (Owen et al., 2017). We
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suggest that PLBs may be used as a metabolite tap for identifying

novel antibacter ia l compounds. Ident ificat ion and

characterization of the PLB-associated antimicrobial

metabolites may provide a new route to harness the chemical

diversity of orchid species.

Bacterial fruit blotch disease is a serious threat to the

cucurbit (gourd) industry. Even though seed sanitation with

hydrochloric acid or peroxyacetic acid have been proven to be

effective at eradicating pathogens from infested seeds, seed

quality is affected substantially (Hopkins et al., 1996; Hopkins

et al., 2003). Moreover, seed disinfestation treatments and

chemical control in the field are limited in their ability to

reduce the yield losses associated with BFB (Burdman and

Walcott, 2012), most likely because the applied chemicals

cannot reach bacteria that are associated with developing

embryos and seed coats (Rane and Latin, 1992; Hopkins and

Thompson, 2002; Dutta et al., 2016). Since PLB-based extract

did not affect the viability or germination rate of the watermelon

seeds (Table 2), it may serve as an alternative to control

watermelon fruit blotch disease.
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