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Osthole is a natural coumarin compound which isolated from Cnidium

monnieri (L.) Cusson, has extensive pharmacological activities and could be

used as a leading compound for drug research and development. In a

continuous effort to develop new acetylcholinesterase inhibitors from natural

products, eighteen osthole esters were designed, synthesized, and confirmed

by 1H NMR, 13C NMR and HRMS. The anti-AChE activity of These derivatives

was measured at a concentration of 1.0 mol/mL in vitro by Ellman's method,

and the result showed that 4m and 4o had moderate inhibitory activities with

68.8% and 62.6%, respectively. Molecular docking study results further revealed

AChE interacted optimally with docking poses 4m and 4o. Network

pharmacology also predicted that compound 4m could be involved in Ras

signaling pathway, which made it a potential therapeutic target of AD.

KEYWORDS

osthole, structural modification, acetylcholinesterase inhibitor, molecular docking,
network pharmacology
Introduction

Alzheimer’s disease (AD) is a neurodegenerative brain disorder characterized by

memory loss and cognitive impairments, which has affected 50 million people worldwide,

with numbers projected to reach 135.5 million by 2050 (Lane et al., 2018; Bertram and

Tanz, 2020). The neuropathological hallmarks of the disease are the presence of

numerous senile amyloid b-peptide (Ab) plaques, neurofibrillary tangles (NFT),
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synaptic loss and cholinergic neuron degeneration, or atrophy in

the basal forebrain (Roberson and Harrell, 1997). With the loss

of basal forebrain cholinergic cells, acetylcholine (ACh)

decreases sharply, which is thought to contribute to cognitive

impairments associated with AD (Bartus et al., 1982; Dunnett

and Fobiger, 1993). Currently, one of the most common AD

treatments is to suppress acetylcholinesterase activity in the

brain in order to improve cognitive function.

Acetylcholinesterase (AChE), which is crucial for nerve

conduction, primarily degrades acetylcholine (Nazir et al., 2018;

Penumala et al., 2018). Acetylcholine is rapidly hydrolyzed by it at

cholinergic synapses to terminate nerve impulse transmission

(Silman and Sussman, 2005). X-ray crystallography studies

revealed that there were two binding sites, the catalytic active site

(CAS) at the bottom and the peripheral anionic site (PAS) near the

entrance of the gorge (Bourne et al., 2003; Baharloo et al., 2015).

Some studies have revealed that AChE could also play a key role in

accelerating Ab plaque deposition (Inestrosa et al., 1996; Hardy and
Selkoe, 2002). AChE was also reported to interact with Ab and

promote amyloid fibril formation via a pool of amino acids located

in proximity of the PAS (De Ferrari et al., 2001). Therefore, many

pharmaceuticals have been developed for AD symptomatic

treatment, such as rivastigmine, galantamine, tacrine, and

donepezil (Schneider, 2000; Aranda-Abreu et al., 2011). However,

these AChE inhibitors are commonly used in patients with

Alzheimer’s to improve their cognitive function. These

medications can cause nausea, diarrhea, anorexia, and abdominal
Frontiers in Plant Science 02
pain (Shah and Reichman, 2006; Costantino et al., 2008; Jia et al.,

2013). Accordingly, it is being attempted to develop natural AChE

inhibitors that can replace the existing AChE inhibitors (Hansen

et al., 2008).

Coumarins are a group of plant natural products obtained from

the phenylpropanoid pathway, found in a wide range of plant

species in nature, and are classified into four main groups (Hawryl

et al., 2000; Lin et al., 2013). The biological activities of coumarins

have been found to include anticancer, anti-inflammatory, antiviral,

antimicrobial, antiasthmatic, antioxidant, antinociceptive,

antidiabetic, and antidepressant effects (Nawrot-Modranka et al.,

2006; Fylaktakidou et al., 2008; Smyth et al., 2009; Hassan et al.,

2016). Some studies also indicated that coumarins exhibited potent

AChE inhibitory activity. For instance, decursinol (Figure 1) and

scopoletin (Figure 1) were reported to exhibit the most potent

AChE inhibition (Kang et al., 2001; Rollinger et al., 2004). Youkwan

et al. found that 6′-hydroxy-7′-methoxybergamottin (Figure 1)

exhibited anti-AChE activity with IC50 values of 11.2 mM
(Youkwan et al., 2010). Thus, scientists increasingly seek to

explore the coumarin template for synthesizing novel

AChE inhibitors.

Osthole (1, Figure 1), mainly isolated from Cnidium monnieri

(L.) Cusson and other forest plant species, is a natural coumarin

compound and has extensive pharmacological features, such as

anticancer, anti-inflammatory, and neuroprotective activities (Liu

et al., 2015; Zhang et al., 2015; Fan et al., 2019; Tang et al., 2020; Bae

et al., 2021; Sun et al., 2021). Researchers have found that osthole
FIGURE 1

The chemical structures of osthole and several potent acetylcholinesterase inhibitors with coumarin moiety.
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suppressed inflammation and apoptosis in mouse models of stab

wound injuries, thus reducing secondary brain damage, enhancing

the memory and learning functions in mechanical brain injury

mice, and increasing the number of neurons in the affected brain

regions (Xia et al., 2015; Yan et al., 2018). These all show that

osthole is a promising skeleton for developing anti-Alzheimer’s

drugs. However, few reports are related to the anti-AChE activity of

osthole. Following the abovementioned interesting results, and as

part of our ongoing search for new potential natural-product-based

AChE inhibitors (Yu et al., 2021), in this paper, as part of our study,

we prepared a series of osthole-based ester derivatives, measured the

anti-AChE activity by Ellman’s method, and explored possible

mechanisms of action using molecular modeling. On the other
Frontiers in Plant Science 03
hand, we also used network pharmacology to screen other potential

targets of derivatives in AD and molecular mechanisms.
Results and discussion

Chemical synthesis

The synthesis of osthole-based ester derivatives was performed

as illustrated in Figure 2 via our previously reported methods.

Firstly, oxidation of osthol (1) with SeO2 obtained 3′-
formaldehydylosthole (2) in 46% (Yu et al., 2016). After being

reduced by NaBH4 at 0° C, compound 2 yielded 4′-hydroxyosthole
B: C:

D: E: F: G: H: I: J: K:

L: M: N: O: P: Q: R:

A:

FIGURE 2

Synthetic route for target compounds 4a–4r.
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(3) (Yu et al., 2015). Finally, a series of osthole esters derivatives (4a–

4r) were converted in 50%–69% yields by esterification of

intermediate 3 with various carboxylic acids using

dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine

(DMAP) (Yu et al., 2015). They were characterized using 1H

NMR, 13C NMR, and HRMS, and exemplary data are listed in

Supplementary Data.
Anti-AChE activity in vitro

A preliminary bioassay of these derivatives’ activities

inhibiting AChE was performed in vitro using the Ellman

method at 0.01, 0.1, and 1 mmol/ml, respectively. As shown in

Table 1, most of the target compounds had better inhibitory

activities against AChE than raw material 1 at 1 mmol/ml;

especially 4e, 4m, and 4o had significant inhibitory effects with

inhibitory rates exceeding 50% but did not surpass tacrine.

Among them, the most active of these was 4m, which showed

an inhibitory rate of 68.8%, followed by 4o, which showed a rate

of 62.6%. On the other hand, a structure–activity relationship for

these osthole-based esters was also examined. Compounds 4m

and 4o, which had superior inhibitory effects on AChE,

contained aromatic heterocycles and suggested that the anti-
Frontiers in Plant Science 04
AChE activity might be enhanced by the introduction of

aromatic heterocycles compared with compound 1. Our

previous research also showed that the introduction of

heterocycles in coumarins could improve biological activity

(Yu et al., 2021). On the contrary, target compounds with

alkyl groups showed lower inhibitory activity at 1 mmol/ml; it

showed that alkyl groups did not significantly increase activity

when introduced (e.g., 19.4% for 4a, 22.3% for 4b>, 20.2%

for 4a).

Meanwhile, compared with the inhibitory rates of 4m and 4o

at different concentrations, we found that the inhibitory rates

increased in a linear manner with an increase in compound

concentration. It indicated that there was a positive correlation

between inhibitory activities and concentration.
Molecular docking results

In our previous study, we found that coumarin could

conjugate with the amino acid residues of acetylcholinesterase,

thus showing a certain inhibitory activity (Yu et al., 2021). To

explore the possible inhibition mechanism of the potent

compound, molecular modeling studies were also performed on

compounds 4m and 4o in the active site of AChE. AChE’s 3D
TABLE 1 The inhibitory activity of titled compounds (4a–4r) against AChE in vitro.

Compound Inhibition ratea (%)

0.01 mmol/ml 0.1 mmol/ml 1 mmol/ml

4a 5.9 ± 2.6 6.2 ± 3.0 19.4 ± 2.3hijc

4b 8.4 ± 4.9 16.9 ± 3.0 22.3 ± 3.9ghi

4c 8.7 ± 1.2 18.4 ± 3.4 20.2 ± 2.8hij

4d 9.1 ± 3.3 17.0 ± 4.9 33.0 ± 2.8de

4e 12.2 ± 3.4 32.2± 3.1 56.7 ± 3.3b

4f 3.7 ± 3.2 10.5 ± 3.2 28.7 ± 2.1efg

4g 1.6 ± 3.6 9.4 ± 0.3 28.5 ± 4.2efg

4h 1.8 ± 2.4 3.9 ± 5.5 13.8 ± 5.4j

4i 2.3 ± 2.1 18.5 ± 5.2 38.6 ± 4.3d

4j 3.8 ± 2.4 13.9 ± 2.6 28.2 ± 2.3efg

4k 3.6 ± 3.5 8.4 ± 2.9 23.9 ± 5.5fghi

4l 1.2 ± 1.5 2.5 ± 3.5 18.8 ± 1.9ij

4m 21.0 ± 2.4 43.0 ± 2.8 68.8 ± 2.6a

4n 11.2 ± 2.1 21.4 ± 2.0 48.7 ± 0.5c

4o 18.4 ± 3.6 32.6 ± 1.6 62.6 ± 1.6ab

4p 3.5 ± 2.4 14.5 ± 2.2 26.3 ± 3.0efgh

4q 1.5 ± 2.3 5.6 ± 1.7 23.4 ± 2.0fghi

4r 2.3 ± 2.1 8.0 ± 0.3 30.6 ± 2.0ef

1 2.3 ± 2.6 3.6 ± 2.4 16.7 ± 3.2ij

Tacrineb 22.8 ± 2.6 53.5 ± 1.7 67.6 ± 2.6
fr
aValues were the mean ± SD of three replicates.
bTacrine was controlled and tested in 0.01, 0.01, and 1 mmol/l.
cMultiple- range test using Duncan’s test (p < 0.05). The same letters denote treatments that are not significantly different from each other.
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structure was selected for docking studies from the RCSB database

(PDB code: 3DHP). In this study, compounds 4m, 4o and AChE

binding energies were -11.5 and -10.0 kcal/mol, respectively,

which indicated that 4m and 4o had better binding activity with

core targets. As illustrated in Figure 3, AChE’s active channel

substrate (combinations 4m in Figure 3A and 4o in Figure 3B)

contains the coumarin portion, whereas its channel entrance

contains the aromatic heterocycles. In parallel, the conjugated

aromatic ring of coumarin made a p–p interaction with the Trp86

residue to locate the coumarin core in AChE’s active site. In

addition, the aromatic heterocycles were bonded to the Trp286

residue of the channel entrance via the p–p interaction.

Acetylcholine could not enter the catalytic center of AChE since

4m and 4o occupied the catalytic site. In combination with the
Frontiers in Plant Science 05
biological assay results, this molecular docking result suggested

that compounds 4m and 4o might inhibit AChE.
Analysis of network pharmacology

By searching the public databases (PubChem, Swiss

TargetPrediction, PharmMapper, SEA, GEO, GeneCard,

OMIM), confining the result to “Homo sapiens,” 241 targets

related to compound 4m and 2617 AD targets were collected,

respectively. By using R software, the intersection of 4m targets

and AD disease targets was calculated, and a Venn diagram was

drawn to obtain 115 intersection targets (Figure 4). After that,

PPI networks were constructed using target proteins and their
B

A

FIGURE 3

Docking pose of compound 4m (A) and 4o (B) inside AChE (the green dotted lines show the hydrogen bonds, the pink full lines show the p–p
interactions.).
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corresponding ingredients in the STRING database (http://

string-db.org/), and high confidence of protein interaction data

with a score >0.7 was selected. By removing free proteins that do

not interact, 4m and AD share 98 proteins.

Based on the protein–protein interaction networks, 98

proteins and 330 interactions were identified as potential

interactions between compound 4m and AD (Figure 5).

GO enrichment analysis and KEGG pathway enrichment

analysis were performed to elucidate the functions and enriched

pathways of compound 4m’s potential anti-AD genes. As a result

of the GO analysis, 2,151 statistically significant terms were

obtained with 1,896 of biological processes (BP), 96 of cellular

components (CC), and 159 of molecular functions (MF),

according to p < 0.05. As shown in Figure 6A, the bar plot

diagram displayed top eight significant enrichment terms of BP,

CC, and MF with the highest gene counts, and redder dots

indicated a lower q value and greater GO term enrichment. The

results showed that compound 4m’s targets in treating AD were

mostly enriched by positive regulation of kinase activity, positive

regulation of MAPK cascade, rhythmic process, and other

biological processes; in membrane raft , membrane

microdomain, ficolin-1-rich granule lumen, and other cellular

components; and in transmembrane receptor protein kinase

activity, transmembrane receptor protein tyrosine kinase

activity, protein tyrosine kinase activity, and other molecular

functions. In order to explore the functions and signaling
Frontiers in Plant Science 06
pathways of 4m’s identified anti-AD targets, KEGG pathways

were applied. As a result, 151 signaling pathways related to 4m-

AD were statistically significant, including Ras signaling pathway,

MAPK signaling pathway, and Pap1 signaling pathway. An

illustrated bubble diagram displayed the top 20 pathways

showing significant enrichment potential with the highest

number of genes (Figure 6B).

In addition, a constituent–target–pathway network

containing 77 nodes and 348 edges was constructed to

examine the interrelationships between ingredients, targets,

and the top 20 pathways (Figure 7). Among the top three

pathway counts, we found Ras signaling pathway, MAPK

signaling pathway, and Pap1 signaling pathway, which may be

responsible for the anti-AD effect of 4m. The Ras signaling

pathway, in which it was proved that Ras farnesylation was

significantly higher than in the elderly with non-cognitive

disorders in the brain of AD patients (Dineley et al., 2001),

contributed to the most genes and might be the most important

4m-AD pathway (Figure 8).

Finally, molecular docking was conducted between

compound 4m and the five key targets (AKT1, PIK3CD,

PIK3CA, PIK3R1MAPK1). As shown in Figure 9, it was found

that compound 4m bound to target proteins with binding

energies lower than -7 kcal/mol, suggesting that 4m inhibited

the docking pocket from binding to the target receptor, making

it an effective treatment for Alzheimer’s disease.
FIGURE 4

The Venn diagram of compound 4m and AD targets.
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Conclusion

In the present study, we designed, synthesized, and evaluated

18 derivatives of the osthole ester derivative for their in vitro
Frontiers in Plant Science 07
inhibitory activity against AChE. The derivatives 4m and 4o

showed moderate inhibitory activities, which were positively

correlated with concentrations. Molecular docking results

further revealed compounds 4m and 4o could bind to AChE
BA

FIGURE 6

Analysis of potential targets of 4m for AD treatment based on GO and KEGG enrichment. (A) GO enrichment analysis identified genes involved
in GO-BP analysis, GO-CC analysis, GO-MF analysis; (B) KEGG pathway analyses from bioinformatics data for the molecular signal pathway).
FIGURE 5

Topological network schematic of proteins targeted by 4m and associated with AD.
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FIGURE 7

Constituent–target–pathway network of top 20 pathways. (The nodes in green stands for compound 4m. Each yellow oblong on the inner
circle stands targets. Each red V node stands for each pathway.).
FIGURE 8

Ras signaling pathway map (nodes in red represent 4m-AD-related genes).
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through hydrogen bonds and hydrophobic contact. Network

pharmacology also predicted that compound 4m could be

involved in the Ras signaling pathway, which made it a

potential therapeutic target of AD.
Materials and methods

Materials and Methods see Supplementary Data.
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