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Puccinia triticina, which is the causative agent of wheat leaf rust, is widely

spread in China and most other wheat-planting countries around the globe.

Cultivating resistant wheat cultivars is the most economical, effective, and

environmentally friendly method for controlling leaf rust-caused yield damage.

Exploring the source of resistance is very important in wheat resistance

breeding programs. In order to explore more effective resistance sources for

wheat leaf rust, the resistance of 112 wheat accessions introduced from the U.S.

National Plant Germplasm System were identified using a mixture of

pathogenic isolates of THTT, THTS, PHTT, THJT and THJS which are the

most predominant races in China. As a result, all of these accessions showed

high resistance at seedling stage, of which, ninety-nine accessions exhibited

resistance at adult plant stage. Eleven molecular markers of eight effective leaf

rust resistance genes in China were used to screen the 112 accessions. Seven

effective leaf rust resistance genes Lr9, Lr19, Lr24, Lr28, Lr29, Lr38 and Lr45

were detected, except Lr47. Twenty-three accessions had only one of those

seven effective leaf rust resistance gene. Eleven accessions carried Lr24+Lr38,

and 7 accessions carried Lr9+Lr24+Lr38, Lr24+Lr38+Lr45, Lr24+Lr29+Lr38
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and Lr19+Lr38+Lr45 respectively. The remaining seventy-one accessions had

none of those eight effective leaf rust resistance genes. This study will provide

theoretical guidance for rational utilization of these introduted wheat

accessions directly or for breeding the resistant wheat cultivars.
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Introduction

Wheat leaf rust, caused by Puccinia triticina Erikss., is a

serious fungal disease of wheat which occurs in the majority of

wheat-growing regions worldwide, especially in North Africa,

Southeast and Central Asia, Eastern Europe, North and South

America (Bolton et al., 2008). In China, leaf rust is a common

disease threatening wheat production, especially in the North

China Plain, the Middle and Lower Reaches of the Yangtze

River, Southwest and Northwest Regions (Liu and Chen, 2012).

Varying on wheat cultivars and disease period, 7% to 30% yield

loss can be encountered and even more than 50% in severe cases

(Huerta-Espino et al., 2011). In recent years, the occurrence of

wheat leaf rust has been in ascendancy as a result of varying

climatic conditions as evident in 2008, 2009, 2012, 2013 and

2015 in the whole country or some regions (Zhang et al., 2015;

Zhang et al., 2020a; Zhang et al., 2020b).

The most economical, effective and environment-friendly

method to control leaf rust is to cultivate resistant cultivars

(Pink, 2002). However, the variation of virulence and the

emergence of new races of P. triticina always leads to loss of the

effective resistance of wheat cultivars, especially which carried

single leaf rust resistance genes and large-scale planted, and

increase the potential risk of leaf rust epidemic on wheat (Zhang

et al., 2015). The THTT, THTS, PHTT, THJT, THJS, PHJT, and

PHTS were predominant races of P. triticina in China from 2011-

2015, of which, THTT and PHTTwere also the predominant races

in India (Zhang et al., 2020a, b;Bhardwaj et al., 2019). Most wheat

cultivars in the major wheat-growing regions such as Henan,

Shandong and Hebei province are susceptible to these races

(Zhang et al., 2017a; Zhang et al., 2017b; Zhang et al., 2020a;

Zhang et al., 2020b). Previous studies also revealed that many of

the major wheat cultivars in China carry a few leaf rust resistance

genes, such as Lr1, Lr16, Lr26, and Lr37, which have lost their

effective resistance (Zhang et al., 2017a; Zhang et al., 2017b; Zhang

et al., 2020a; Zhang et al., 2020b). So, it is necessary to explore and

utilize the effective wheat resistance resources for the breeding of

new, sustainable, and durable resistant wheat cultivars.

Gene postulation and molecular marker-assisted selection

(MAS) are the most commonly used methods for identification
02
and analysis of wheat leaf rust resistance genes (Zhang et al.,

2017a). Gene postulation is a method for presupposing and

identifying leaf rust resistance genes in wheat cultivars. This

method uses a set of wheat leaf rust resistance near-isogenic lines

or single gene lines, but it is easily influenced by genetic

background, environmental conditions and human factors (Hu

et al., 2014). In addition, the different virulent races of P. triticina

to the differential lines are the key factors for gene postulation.

Therefore, the high-resistance wheat cultivars carrying effective

leaf rust resistance genes cannot be analyzed by gene postulation

methods due to the lack of corresponding virulent races for these

genes. For example, so far, there are no virulent races against the

leaf rust resistance genes Lr9, Lr19, Lr24, Lr28 and Lr38 in China

and many parts of the world (Zhang et al., 2020a; Zhang et al.,

2020b). So these genes cannot be postulated in the wheat

cultivars by gene postulation. MAS can effectively track

corresponding genes by using the molecular markers closely

linked to the leaf rust resistance genes (Ding et al., 2010). Most of

the leaf rust resistence gene markers had been developed and

successfully applied to identify the known leaf rust resistance

genes in wheat cultivars and molecular breeding for disease

resistance (Bassi et al., 2015; Wang et al., 2016; Gebrewahid et al.,

2017; Beukert et al., 2020; Wu et al., 2020). For instance, MAS

has been successfully applied to practical commercial wheat

breeding for rust resistance genes Lr34 and Yr36 (Miedaner and

Korzun, 2012). Therefore, the gap created by gene postulation

methods can be bridged by MAS methods, which has high

efficiency for the identification of effective resistance genes

contained in wheat cultivars.

There are abundant wheat germplasm resources (more than

49,000) preserved in the National Germplasm Bank of China.

However, according to previous studies, the proportion of

Chinese wheat cultivars with high resistance to leaf rust is

relatively low by identifying the resistance of the main or core

wheat breeding materials (lines) to leaf rust in different regions,

and the majority of Chinese main wheat cultivars(lines) carry

only a few leaf rust resistance genes which have lost their

effectiveness (Ding et al., 2010; Shi et al., 2011; Zhao et al.,

2013; Zhang et al., 2017a; Zhang et al., 2017b; Gao et al., 2019;

Zhang et al., 2019a). For example, only 14 of 182 wheat cultivars
frontiersin.org
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(lines) in Huang-Huai-Hai river wheat region were resistant to

leaf rust at seedling stage, and a few resistance genes, such as Lr1,

Lr26, and Lr37 which had lost their effectiveness in China, were

detected in these tested cultivars(lines) (Gao et al., 2019). It is

therefore demand-driven to increase the genetic resources of

wheat leaf rust resistance and the appropriate supplement to the

wheat parent material resource pool that can lay a resource

foundation for the breeding of more resistance cultivars. In the

previous study, we preliminarily identified the resistance of 359

introduced accessions from the United States National Plant

Germplasm System at seedling stage, of which 112 resistant

accessions were screened (Unpublished data). So this study

aimed to further identify the resistance of these 112 wheat

accessions to the Chinese predominant races of P. triticina and

determine the effective leaf rust resistance genes by MAS, and

provide new and excellent resistance sources for wheat resistance

breeding program in China.
Materials and methods

Plant materials

One hundred and twelve wheat accessions used in this study

were provided by Dr. Harold Bockelman, National Plant

Germplasm System (NPGS), USDA-ARS, Aberdeen, Idaho,

USA. The susceptible wheat Thatcher, Zhengzhou 5389 and 8

Thatcher near-isogenic lines with single resistance genes Lr9,

Lr19, Lr24, Lr28, Lr29, Lr38, Lr45 and Lr47, the effective

resistance genes until now in China, were provided by Wheat

Leaf Rust Research Center of Hebei Agricultural University.
Puccinia triticina isolates

Five predominant races of P. triticina, THTT, THTS, PHTT,

THJT and THJS were used in this study. These races were

collected and identified by Wheat Leaf Rust Research Center of

Hebei Agricultural University in China in 2015.
Evaluation of resistance to leaf rust at
seedling stage

In 2016 and 2017, 112 wheat accessions, Thatcher and

Zhengzhou 5389 were planted in 30×16 cm plastic trays in the

greenhouses of Hebei Agricultural University. Each line was

represented by 5 to 10 seedlings. These wheat materials were

inoculated with predominant P. triticina races as described by

Zhang et al. (2020a). Urediniospores offive predominant races of

P. triticina were mixed with talcum powder in a 1:10 proportion

and subsequently bestrewed on the pre-moistened leaves of the

experimental wheat seedling. The inoculated seedlings were then
Frontiers in Plant Science 03
transferred to a closed humid container for incubation at 18 to

24oC in darkness for 16 to 24 h, and subsequently moved to a

greenhouse at 20±5oC and a photoperiod regime of 12-14 h with

fluorescent light supplementation. Evaluation of infection types

(IT) were performed at 12 days post-inoculation (dpi) as

described by Roelfs (1984) when the disease was fully

developed on the susceptible control Thatcher and Zhengzhou

5389. The identification experiment were repeated at least

three times.
Validation of adult plant resistance
in field

All wheat accessions were tested and evaluated for their

resistance at adult plant stage in the field nurseries at Baoding in

Hebei province in 2016 and 2017. In mid-October 2015 and

2016, seeds of each wheat accession were sown in single rows

according to the standard of row spacing of 30 cm and length 2

m per line. The susceptible control Zhengzhou 5389 were sown

adjacent to and around the test rows. The spore suspension was

prepared by mixing equal amounts of urediniospores of five

predominant races and adding Tween-80 at a final concentration

of 1%. The spore suspension was then sprayed on the wheat

plants in mid-April (Tillering stage) of 2016 and 2017. The

inoculated seedlings were covered with plastic film overnight to

moisturize them. Disease investigation was carried out when the

disease was fully developed about middle of May (Filling stage)

of 2016 and 2017. The infection types to the mixed races were

identified and recorded as described by Roelfs (1984).
DNA extraction and molecular
marker detection

The genomic DNA of wheat accessions were extracted

according to the modified CTAB method (Gill et al., 1991).

Eleven STS and SCAR markers for eight effective leaf rust

resistance genes in China, viz. Lr9, Lr19, Lr24, Lr28, Lr29, Lr38,

Lr45 and Lr47, were used to screen the identified resistant wheat

accessions (Table 1). PCR procedure was performed as described

by references in Table 1. PCR products were detected by 1.0% (w/

v) agarose gel electrophoresis in 1×TAE buffer and visualized

under UV transilluminator.
Results

Seedling resistance

In this study, the predominant races THTT, THTS, PHTT,

THJT and THJS were used to identify the leaf rust resistance of

112 wheat accessions at seedling stage. The identification results
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https://doi.org/10.3389/fpls.2022.1054673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1054673
showed that these wheat accessions showed different degrees of

resistance to leaf rust at seedling stage (Table 2). Seven out of the

112 wheat accession representing 6.25 % of the total accessions

(PI601428, PI542975, PI601429, PI478892, PI639450, Citr15929,

and Citr15082) exhibited immunity (IT “0”). Sixty-eight

accessions showed high resistance with ITs “;” or “1”, while 37

other accessions showed moderate resistance with ITs “X”, such

as “;1, 3” or “;, 3”. These results indicated higher resistance rates

of these wheat cultivars to Chinese P. triticinia race. The wheat

accessions with ITs “X” may be due to the specific resistance to

some of the isolates of P. triticinia.
Field resistance

To further characterize the resistance of 112 wheat

accessions to leaf rust at adult plant stage, field nursery

experiments were carried out in the wheat cropping seasons.

Ninety-nine (99) of 112 wheat accessions were resistant at adult

plant stage, which were consistent with the seedling stage

(Table 2). The remaining 13 accessions (PI601452, PI591702,

PI486145, PI542976, PI547082, PI17769, PI478892, PI516197,

PI531197, PI468977, PI469272, PI475771, and PI566924) were

susceptible to leaf rust at adult plant stage with ITs “3” indicating

that the seedling resistance, so-called whole growth period

resistance, may encountered a new phenotype. In addition, 17
Frontiers in Plant Science 04
wheat accessions (marked with asterisks in Table 2) with ITs “X”

to leaf rust at seedling stage conferred higher resistance at adult

plant stage, implying that those accessions may carry adult leaf

rust resistance genes or the heat sensitive resistance gene which

induced the resistance to P. triticinia at high temperature.
Detection of resistance genes

To further identify the leaf rust resistance genes carried by

these wheat accessions, the STS and SCAR markers of eight

effective leaf rust resistance genes in China were used to detect

the leaf rust resistance genes of these accessions. Seven leaf rust

resistance genes, Lr9, Lr19, Lr24, Lr28, Lr29, Lr38 and Lr45, were

detected in 41 of 112 wheat accessions (Figure 1-5, Table 2). No

corresponding leaf rust resistance genes were detected in the

remaining 71 accessions, indicating that other unknown or new

effective leaf rust resistance genes at seedling stage existed in

these resistant accessions. Based on marker analyses, the 41

resistant accessions carrying the tested gene can be divided into

three categories: The first type consisted of wheat accessions that

carried only a single leaf rust resistance gene. It was observed

that, 9 accessions carried Lr9, one accession carried Lr24, two

accessions carried Lr28, 6 accessions carried Lr29, and 5

accessions carried Lr45, which accounted for 22.0%, 2.4%,

4.9%, 14.6% and 12.2% of 41 resistant accessions respectively.
TABLE 1 Primers of molecular markers used to detect the wheat leaf rust resistance.

Lr gene Marker type Primer name Sequence of primer (5'-3') FragmentSize (bp) Reference

Lr9 SCAR SCS5-550F TGCGCCTTCAAAGGAAG 550 Gupta et al., 2005

SCS5-550R TGCGCCCTTCTGAACTGTAT

Lr9 STS J13/1 TCCTTTTATTCCGCACGCCGG 1100 Schachermayr et al., 1994

J13/2 CCACACTACCCCAAAGAGACG

Lr19 SCAR SCS265-F GGCGGATAAGCAGAGCAGAG 512 Gupta et al., 2006a

SCS265-R GGCGGATAAGTGGGTTATGG

Lr19 SCAR SCS253-F GCTGGTTCCACAAAGCAAA 736 Gupta et al., 2006a

SCS253-R GGCTGGTTCCTTAGATAGGTG

Lr24 STS J09/1 TCTAGTCTGTACATGGGGGC 310 Schachermayr et al., 1995

J09/2 TGGCACATGAACTCCATACG

Lr24 SCAR S1302609-F CGCAGGTTCCAAATACTTTTC 607 Gupta et al., 2006b

S1302609-R CGCAGGTTCTACCTAATGCAA

Lr28 SCAR SCS421570-F ACAAGGTAAGTCTCCAACCA 570 Cherukuri et al., 2005

SCS421570-R AGTCGACCGAGATTTTAACC

Lr29 SCAR OPY10/1 GTGACCTCAGGCAATGCA 850 Tar et al., 2002

OPY10/2 GTGACCTCAGAACCGATG

Lr38 SCAR Y38SCAR982-F GCTGAATCTGCGTATCGTCCC 982 Yan et al., 2008

Y38SCAR982-R GACTTGTTCTTCGGCGTGTTG

Lr45 SCAR PSc20H23 CGACGATCGAATCT CGGGCAAG 750 Yan, 2009

PSc20H24 GCGCCCTGCGTTGAGGAGAC

Lr47 STS PS10R GCTGATGACCCTGACCGGT 282 Helguera et al., 2000

PS10L TCTTCATGCCCGGTCGGGT
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TABLE 2 Leaf rust resistance levels at seedling and adult stages and detection results of molecular markers.

No. accessions Seeding Infection
type

Adult Infection
type

Lr gene No. accessions Seeding Infection
type

Adult Infection
type

Lr gene

1 PI 601428 0 ;1 Lr24, Lr38 57 CItr 17723 ;, 1 ;1 Lr29

2 PI 601429 0 ; Lr9 58* CItr 17831 ;1, 3 ; —

3 PI 601465 ; ; Lr9 59 CItr 17856 ;, 3 ;1, 3 —

4 PI 601606 1 ;1 Lr24, Lr38 60 CItr 17857 ;1, 3 ;1, 3 —

5 PI 595212 ; ; — 61 CItr 15075 ;1 ;1, 3 —

6 PI 17389 ;1, 3 ;1, 3 — 62 CItr 15082 0 ; Lr9

7 PI 17879 ;1 ;1 — 63 CItr 15290 ;1 ; —

8 PI 17898 ;1 ; — 64 PI 548844 ; ; Lr9

9 PI 486147 ; ; Lr24, Lr38 65 PI 548845 ;1, 3 ;1, 3 —

10 PI 486212 ; ; Lr24, Lr38 66 PI 548847 ; ; —

11* PI 486349 ;1, 3 ; — 67 PI 550697 ;1, 3 ;1, 3 —

12 PI 494101 ;1 ; — 68 PI 552813 ; ;1, 3 Lr45

13 PI 542975 0 ;1, 3 — 69 PI 543893 ; ; Lr24, Lr38,
Lr45

14 PI 542979 ; ; Lr9, Lr24,
Lr38

70 PI 547262 ;1 ;1 —

15 PI 547264 ; ;1 Lr45 71* PI 547263 1, 3 ; —

16 PI 594102 1 ;, 3 — 72 PI 555586 ; ;1, 3 —

17 PI 497988 ; ;1 — 73* CItr 3780 ;, 3 ;1 —

18 PI 17729 ; ;1 — 74 CItr 15375 ; ; Lr9

19 PI 601262 ;1 ; — 75 CItr 17264 ;1, 3 ;1, 3 —

20 PI 601263 ; ; Lr9 76 PI 564700 ; ;1, 3 —

21 PI 601366 ; ; — 77 PI 564851 ; ; Lr24, Lr29,
Lr38

22 PI 601207 ; ; — 78 PI 566923 ;1 ;1 Lr24

23 PI 601203 ;1 ; Lr24, Lr38 79 PI 577793 ; ; Lr24, Lr38

24 PI 598214 ; ;1 — 80 PI 578213 ;1 ; Lr24, Lr38,
Lr45

25 PI 599987 1 ; — 81 PI 491396 ; ; Lr9

26* PI 598209 ;1, 3 ; — 82 PI 583676 ;1 ;1 Lr29

27 PI 598211 ;1 ; — 83 PI 591560 ;1 ;1 —

28 PI 598212 ; ; — 84 PI 476974 ;1 ;1 Lr29

29* PI 298213 ;1, 3 ;1 — 85 PI 476975 ;1 ; Lr28

30 PI 486140 ;1 ; Lr45 86 PI 483469 ;1 ; Lr24, Lr38,
Lr45

31* PI 508288 ;1, 3 ; — 87 PI 596335 ;1 ; Lr24, Lr38,
Lr45

32 PI 511307 ;1 ;1 Lr24, Lr38 88* PI 601722 ;1, 3 ; —

33 PI 511308 ;1 ; Lr24, Lr38 89 PI 559376 ; ; —

34 PI 506407 ; ; Lr24, Lr38 90 PI 557537 ;1 ; Lr28

35 PI 506405 ; ; Lr29 91 PI 557538 ;1, 3 ;1, 3 —

36 PI 531246 ; ; Lr24, Lr38 92 PI 561197 ; ;1 —

37 Citr 17940 ;1 ; — 93* PI 561198 ;1, 3 ;1 —

38 PI 600974 ;1, 3 ;, 3 — 94 PI 641952 1 ;1 —

39* PI 601069 1, 3 ; — 95* PI 561200 ;1, 3 ; —

40* PI 601070 ;1, 3 ; — 96* PI 562382 1+ ; —

41 PI 601723 ; ; Lr29 97 PI 639450 0 ;1 Lr45

42 PI 601806 ;1 ;1 Lr29 98 PI 564083 ;1, 3 ;1, 3 —

43 PI 601807 ;1 ;1 — 99* PI 573003 ;1, 3 ; —

(Continued)
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The second type was made up of Lr24 and Lr38 which existed in

11 wheat accessions representing 26.8%. The third type: Lr9

+Lr24+Lr38 were detected in 1 accession, Lr24+Lr38+Lr45 in 4

accessions, Lr24+Lr29+Lr38 in 1 accession, and Lr19+Lr38+Lr45

in 1 accession, which respectively accounted for 2.4%, 9.8%,
Frontiers in Plant Science 06
2.4% and 2.4% of 41 resistant accessions. The remaining 58

materials carried unknown effective leaf rust resistance genes,

which accounted for 58.6% of 99 accessions with whole growth

period resistance. These results indicated that the utilization

ratios of Lr45, Lr24 and Lr38 were the highest among these
TABLE 2 Continued

No. accessions Seeding Infection
type

Adult Infection
type

Lr gene No. accessions Seeding Infection
type

Adult Infection
type

Lr gene

44 Citr 13684 ;1 ;1 — 100 PI 601452 ;1, 3 3 —

45 Citr 13874 ; ;1, 3 — 101 PI 591702 ;1, 3 3 —

46 Citr 14048 ; ; Lr19, Lr38,
Lr45

102 PI 486145 ;1, 3 3 —

47 Citr 15229 ; ; Lr45 103 PI 542976 ;1, 3 3 —

48 Citr 15288 ; ; Lr9 104 PI 547082 ;1, 3 3 —

49 Citr 15929 0 ; Lr9 105 PI 17769 ;1, 3 3 —

50 Citr 17262 ; ;1 — 106 PI 478892 0 3 —

51* PI 535454 ;1, 3 ;1 — 107 PI 516197 ;1, 3 3 —

52 PI 518591 ; ; — 108 PI 531197 ;1, 3 3 —

53* PI 527480 ;, 3 ; — 109 PI 468977 ;1, 3 3 —

54 PI 531244 ; ;1, 3 — 110 PI 469272 ;1, 3 3 —

55 PI 532282 1 ; Lr24, Lr38 111 PI 475771 ;1 3 —

56* PI 532912 ;1, 3 ; — 112 PI 566924 ;1, 3 3 —
fro
“0”: No chlorotic flecks or uredinia; “;”: No uredinia, but flecks or chlorosis; “1”: Small uredinia with necrosis; “3”: Moderate size uredinia with slight chlorosis; “+”: uredinia somewhat larger
than normal for the infection type; “—”: No tested gene is detected. “*”: wheat accessions with higher resistance at adult plant stage than at seedling stage.
A B

DC

FIGURE 1

PCR amplifications results of molecular markers SCS5-550F/R (A) and J131/2 (B) for Lr9, Y38SCAR982-F/R for Lr38 (C), and PSc20H23/24 for Lr45 (D) in
part of accessions. M, DL2000 Marker; TcLr9, TcLr38 and TcLr45: Thatcher near-isogenic lines with single resistance genes Lr9, Lr38 and Lr45 (Positive
control); T, Thatcher (Negative control); CK, ddH2O, Lane 1-21: PI 601428, PI 601429, PI 601465, PI 601606, PI 595212, PI 17389, PI 17879, PI 17898, PI
486147, PI 486212, PI 486349, PI 494101, PI 542975, PI 542979, PI 547246, PI 594102, PI 497988, PI 17729, PI 601262, PI 601263, PI 601366.
A B

FIGURE 2

PCR amplifications results of molecular markers SCS265-F/R(Coupling) (A) and SCS253-F/R(Repulsion) (B) for Lr19 in part of accessions. M,
DL2000 Marker; TcLr19, Thatcher near-isogenic lines with single resistance genes Lr19 (Positive control); T, Thatcher (Negative control); CK,
ddH2O, Lane 1-21, PI 601807, Citr 13684, Citr 13874, Citr 14048, Citr 15229, Citr 15288, Citr 15929, Citr 17262, PI 535454, PI 518591, PI 527480,
PI 531244, PI 532282, PI 532912, CItr 17723, CItr 17831, CItr 17856, CItr 17857, CItr 15075, CItr 15082, CItr 15290.
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accessions, with Lr45 accounted for 10.1%, Lr24 for 18.2% and

Lr38 for 18.2% in 99 resistant accessions. In addition, Lr47 was

not detected in any of the tested wheat accessions in this study.
Discussion

Races of P. triticina, especially the predominant races THTT,

THTS, PHTT, THJT and THJS from the wheat-growing regions

of China, posed serious threat to wheat production in 2011-2015
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due to high virulence to many cultivars and their widespread

distribution (Zhang et al., 2020a; Zhang et al., 2020b). According

to the field investigation and the identification of resistance to

leaf rust, the majority of main wheat cultivars in the main wheat-

growing regions were susceptible to leaf rust in China. For

instance, at least 28 main wheat cultivars cultivated in the

North China Plain, where is the largest wheat wheat-growing

region with the highest wheat yield, were found to be susceptible

to wheat leaf rust in recent years (Zhang et al., 2017a;

Zhang et al., 2017b; Zhang et al., 2019b). Most of the Chinese
A B

FIGURE 3

PCR amplifications results of molecular markers J09/1/2 (A) and S1302609-F/R (B) for Lr24 in part of accessions. M, DL2000 Marker; TcLr24,
Thatcher near-isogenic lines with single resistance genes Lr24 (Positive control); T, Thatcher (Negative control); CK, ddH2O, Lane 1-14, PI 601428,
PI 601429, PI 601465, PI 601606, PI 595212, PI 17389, PI 17879, PI 17898, PI 486147, PI 486212, PI 486349, PI 494101, PI 542975, PI 542979.
FIGURE 4

PCR amplifications results of molecular markers SCS421570-F/R for Lr28 in part of accessions. M, DL2000 Marker; TcLr28, Thatcher near-
isogenic lines with single resistance genes Lr28 (Positive control); T, Thatcher (Negative control); CK, ddH2O, Lane 1-14, PI 476975, PI 483469,
PI 596335, PI 601722, PI 559376, PI 557537, PI 557538, PI 561197, PI 561198, PI 641952, PI 561200, PI 562382, PI 639450, PI 564083.
FIGURE 5

PCR amplifications results of molecular markers OPY10/1/2 for Lr29 in part of accessions. M, DL2000 Marker; TcLr29, Thatcher near-isogenic
lines with single resistance genes Lr29 (Positive control); T, Thatcher (Negative control); CK, ddH2O, Lane 1-21, PI 548844, PI 548845, PI
548847, PI 550697, PI 552813, PI 543893, PI 547262, PI 547263, PI 555586, CItr 3780, CItr 15375, CItr 17264, PI 564700, PI 564851, PI 566923,
PI 577793, PI 578213, PI 491396, PI 583676, PI 591560, PI 476974.
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wheat cultivars, including the above mentioned, carried a few

leaf rust resistance genes such as Lr1, Lr16, Lr26, Lr37 among

others (Gebrewahid et al., 2017; Zhang et al., 2017a; Zhang et al.,

2017b; Gao et al., 2019; Zhang et al., 2019). Among these genes,

Lr1 and Lr26 were the most used leaf rust resistance gene(s) in

China. The proportions of Lr1 and Lr26 in 460 Chinese wheat

accessions were 47.8% and 33.5% respectively (Zhang, 2015),

while that of Lr26 in 116 different wheat accessions in a study by

Ren (2011) was observed to be as high as 37 %.While these genes

have lost their effectiveness (Zhang et al., 2020a; Zhang et al.,

2020b), which is key reasons for the poor resistance of wheat

cultivars to leaf rust in China, so it is necessary to screen and

identify more new sources of leaf rust resistance genes.

Wheat cultivars introduced from USA may confer different

resistance sources compared with Chinese common wheat

cultivars, due to the P. triticina predominant populations and

the frequencies of virulence to leaf rust resistance genes are

different (Kolmer and Hughes, 2017; Kolmer, 2019; Zhang et al.,

2020a; Zhang et al., 2020b). For example, the wheat cultivars

with the resistance genes Lr9, Lr21, Lr24, and Lr39 have been

released since the 1960s-1980s in the United States (Huerta-

Espino et al., 2008; Kolmer et al., 2018), but these genes are

rarely used in Chinese wheat cultivars. Some of these leaf rust

resistance genes had lost their effectiveness, for instance, Lr24 in

the United State has begun to lose effectiveness to P. triticinia

(Kolmer, 2019), but it is known to confer effective resistance in

China and until now the virulent race of P. triticinia to Lr24 is

not be found. Against above background, we used the

predominant races of Chinese P. triticina to identify the

resistance of wheat cultivars from the United States for better

and faster application in breeding. Due to the problem of

hybridization incompatibility, it is more advantageous to select

wheat resistant materials as parents for hybridization breeding

compared with wild relatives of wheat or foreign gene

introduction. Therefore, it is necessary to search for effective

leaf rust resistance genes in known wheat cultivars or lines,

especially those introduced cultivars which may have new

potential resistance sources. In this study, 112 wheat

accessions from the United States were resistant to Chinese

predominant races of P. triticina at seedling stage, which

indicated that the resistance resources of these wheat materials

in the United States were abundant and may be a good source of

resistance against wheat leaf rust in China. Moreover, the

resistance of 99 out of the 112 wheat accessions also exhibited

resistance to P. triticinia at adult plant stage, suggesting these

accessions confers whole growth period resistance to leaf rust

from seedling stage to adult plant stage. These cultivars were

therefore subjected to effective leaf rust resistance gene analysis

using molecular makers.

At present, 82 leaf rust resistance genes have been given gene

designations (Bariana et al., 2022). The leaf rust resistance genes

such as Lr1, Lr2a, Lr2c, Lr3, Lr16, Lr26, Lr11, Lr17, LrB, Lr10,

Lr14a, Lr2b, Lr3bg, Lr14b, Lr32, Lr33, Lr37, and Lr50 have lost
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the effectiveness in China from 2011 to 2015 (Zhang et al., 2020a;

Zhang et al., 2020b). A few leaf rust resistance genes such as Lr9,

Lr19, Lr24, Lr28, Lr29, Lr38, Lr45 and Lr47 still possessed their

effective resistance to inhibit most of P. triticina isolates

including those predominant races as mentioned above in

China (Zhang et al., 2020a; Zhang et al., 2020b). These leaf

rust resistance genes express effective resistance at both seedling

and adult plant stages. No or very few race have been found to be

virulent to these effective leaf rust resistance genes in China, so

gene postulation method was difficult to be used for the analysis

of these genes. While the molecular marker-assisted selection

method is preferred and convenient for leaf rust resistance genes

detection because of its rapidity and accuracy (Ding et al., 2010).

Seven effective leaf rust resistance genes, Lr9, Lr19, Lr24, Lr28,

Lr29, Lr38 and Lr45, were detected in 41 of these accessions,

which similar as the research reports that wheat cultivars with

the leaf rust resistance genes Lr9, Lr21, Lr24, and Lr39 have been

released since the 1960s-1980s in the United States (Huerta-

Espino et al., 2008; Kolmer et al., 2018). The exception to this

assertion was Lr21 and Lr39 genes. The resistance of Lr21 and

Lr39 to the Chinese predominant races of P. triticina were

relatively low due to fact that they were losing their

effectiveness (Zhang et al., 2020a; Zhang et al., 2020b).

Research findings on the identification of wheat leaf rust

resistance resources in China revealed that these effective leaf

rust resistance genes are rarely distributed and accounted for a

very low proportion in the wheat cultivars(lines) that have been

in cultivation in China (Gao et al., 2019; Ren et al., 2012; Shi,

2010; Zhang, 2015). The tested leaf rust resistance genes were

not be detected in some resistance accessions by the known leaf

rust resistance gene markers, the main reason should be due to

absent the correspondence resistance genes or maybe unknown

leaf rust resistance gene in these wheat accessions. Although

these tested effective leaf rust resistance genes were not present

in the remaining 71 resistant accessions in this study, their high

resistance phenotype indicated that these wheat accessions may

carry others undetected, known or new leaf rust resistance genes.

Therefore, all these resistant cultivars have certain potential as

breeding materials in China.

In general, leaf rust resistance genes are broadly divided into

two main categories: seedling resistance genes and adult plant

resistance genes (Riaz, 2018). Most of the designated leaf rust

resistance genes are the seedling resistance genes. These genes

are usually detected at the seedling stage and remain effective

throughout the growth stages of wheat. These genes are therefore

known as all-stage resistance genes. Adult plant resistance genes

are usually effective at the post-seedling stage. At present, among

the designated 82 leaf rust resistance genes, only 16, Lr12, Lr13,

Lr22 (alleles a, and b), Lr34, Lr35, Lr37, Lr46, Lr48, Lr49, Lr67,

Lr68, Lr74, Lr75, Lr77 and Lr78 specifically provide resistance at

the adult plant stage (Kolmer et al., 2017). Some adult plant

resistance genes are also known as slow rusting genes, such as

Lr34, Lr46, Lr67, and Lr68 because they can confer partial
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resistance or slow rusting resistance (Parlevliet and Ommeren,

1985; Zhang et al., 2019). Thirteen of the 112 seedling resistance

accessions were susceptible at adult plant stage which might have

been caused by the temperature-sensitive genes. For example,

the known temperature-sensitive leaf rust resistance genes Lr11,

Lr14a, Lr14b, Lr18, Lr20 and Lr37 were noted to be more

effective at lower temperatures (Mcintosh et al., 1995; Zhang

et al., 2008; Wang et al., 2016). This phenomenon is worth

further verification for conclusive establishment. Seventeen

wheat accessions (marked with asterisks in Table 2) with

moderate resistance at seedling stage exhibited high resistance

at adult plant stage which indicated these wheat accessions may

also carry polymeric genes with adult plant resistance gene

(Kolmer, 2019).

The long-term cultivation of single resistance gene cultivars,

especially those with single resistance gene cultivars are easy to

lose resistance to leaf rust, while wheat cultivars with multiple

resistance genes are more durable (Mcintosh, 1992). In this

study, 18.2% of the resistant accessions carried polymeric genes,

mainly including five types of polymeric genes, Lr24+Lr38, Lr9

+Lr24+Lr38, Lr24+Lr38+Lr45, Lr24+Lr29+Lr38 and Lr19+Lr38

+Lr45, among which the wheat accessions that carried polymeric

genes Lr24+Lr38 were the most numerous. These wheat

accessions showed high resistance at both seedling stage and

adult plant stage, especially those accessions with polymeric

genes were very valuable for breeding cultivars with resistance

throughout the whole growth period. The rational utilization of

polymeric genes can inhibit the predominant virulence race,

stabilize the pathogen population by directional selection, and

thus reduce the incidence and epidemic of leaf rust disease, and

make the resistance of cultivars more durable (Staskawicz et al.,

1995). Therefore, it is the future trend of wheat breeding to select

polymeric leaf rust resistance genes with effectiveness, high

resistance, and good comprehensive traits. In addition, the

balance between yield traits and resistance traits is also

important, and we need to pay attention to the coordination

between them. In order to improve the level of leaf rust

resistance of wheat cultivars, it is necessary for us to pyramid

those effective leaf rust resistance genes into new cultivars

without affecting other agronomic traits.
Conclusion

In the present study, we identified the seedling and adult

plant resistance of 112 wheat accessions introduced from the

U.S. National Plant Germplasm System using a mixture of

Chinese predominant P. triticinia races THTT, THTS, PHTT,

THJT and THJS. Seven effective resistance genes Lr9, Lr19, Lr24,

Lr28, Lr29, Lr38 and Lr45 singly or in combination were found

in 41 wheat accessions. Our study will provide theoretical
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guidance for rational using some of these wheat accessions as

resistance material or variety to breeding program.
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