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Biotechnology can provide a valuable tool to meet UN Sustainable

Development Goals and U.S. initiatives to find climate solutions and improve

agricultural sustainability. The literature contains hundreds of examples of

crops that may serve this purpose, yet most remain un-launched due to high

regulatory barriers. Recently the USDA revised its biotechnology regulations to

make them more risk-proportionate, science-based, and streamlined. Here,

we review some of the promising leads that may enable agriculture to

contribute to UN sustainability goals. We further describe and discuss how

the revised biotechnology regulation would hypothetically apply to

these cases.
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Introduction

The UN Sustainable Development Goals (SDG) are critically important for humanity

and the planet (United Nations, 2015). Agricultural innovation can positively contribute

to many of these goals such as ending hunger, promoting sustainable agriculture or clean

energy, to name a few (Secretary-General, 2019). Through Executive Order #14008

(Executive Office of the President, 2021), the Biden Administration prioritized building a

modern sustainable infrastructure and an equitable clean energy future demonstrating a

commitment to many of these same goals.

Biotechnology has contributed to agricultural sustainability through traits that reduce

over the top insecticide application. (Brookes and Barfoot, 2017). Regulatory barriers

have limited both diverse trait development and developers who use biotechnology
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(Bradford et al., 2005; Hoffman, 2021). In May 2020, the U.S.

Department of Agriculture (USDA) issued revised

biotechnology regulations that offer a more risk-proportionate

approach and are expected to spur innovation while ensuring

products are safe for agriculture and the environment. Below, we

review key changes in the revised regulations, illustrate their

application using examples of promising leads in the literature,

and show how they are likely to spur trait development that hold

promise for improving agricultural sustainability and addressing

some climate challenges.
Changes in USDA’s revised
biotech regulation

Under the revised regulations, and using Plant Protection Act

authority, USDA considers whether an organism developed using

genetic engineering poses an increased plant pest risk relative to a

suitable comparator (USDA-APHIS, 2020). Several key changes

contribute to more risk-proportionate regulation for plants created

using genetic engineering. First, the revised regulations establish

three exemptions for certain modifications a plant developed using

genetic engineering may contain.1

These exemptions are based on types of modifications that

commonly occur during conventional breeding (USDA-APHIS,

2020; Hoffman, 2021). Basing the exemptions on specifically

described modifications, rather than a risk assessment, allows

developers to objectively assess whether their plants meet the

criteria exemption.

Second, the revised regulations establish an exemption for a

plant-trait-mechanism of action (MOA) combination that

USDA previously reviewed and determined not to pose a plant

pest risk. This provision eliminates the burden of unnecessary

re-reviews of plants whose risks were already considered.2

Third, the revised regulations establish a risk-based

approach called regulatory status review (RSR) to determine

whether a non-exempt plant is regulated. A key difference

between RSR and the previous petition process is that RSR

uses problem formulation and risk assessment to evaluate the
1 The SECURE rule (15) exempts plants containing a single modification

where1) “the genetic modification is a change resulting from cellular

repair of a targeted DNA break in the absence of an externally provided

repair template; or2) the genetic modification is a targeted single base pair

substitution; or3) the genetic modification introduces a gene known to

occur in the plant’s gene pool or makes changes in a targeted sequence

to correspond to a known allele of such a gene or to a known structural

variation present in the gene pool.

2 Developers can request a confirmation from APHIS that a modified

plant qualifies for an exemption and is not subject to the regulations in 7

CFR part 340. USDA APHIS | Confirmation Letters accessed 09.27.22
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characteristics and risk of the plant prior to a formal

determination to continue to exercise oversight (Hoffman,

2021). Under the revised regulation, a developer can elect to

undergo the RSR process prior to field testing. USDA expects

that the RSR process will be an effective means to winnow the

potentially riskier plants developed using genetic engineering

from the less risky ones without imposing substantial regulatory

burdens on the less risky ones (Hoffman, 2021). Among other

things, USDA considers whether a genetic modification to a

plant will increase the likelihood of harm to non-target species

beneficial to agriculture or will increase the distribution or

exacerbate the impact of plant pests that may be associated

with that plant. USDA will undertake an initial review to

efficiently distinguish plants developed using genetic

engineering that do not pose plausible pathways to increased

plant pest risk from those that do and, thus, require further

evaluation. This initial review, which is based on a description of

the plant, the trait, and the MOA, does not initially require field

data. When USDA finds a plant does not pose plausible

pathways to increased plant pest risk during the initial review

phase, developers can attain regulatory certainty early in product

development, which helps developers raise venture capital to see

a product through to launch.3
Biotechnology crop development
under the legacy regulation

In 2008-2012, the mean cost for discovery, development, and

authorization of a new crop created using genetic engineering

was $136 M, where regulatory requirement costs averaged

$35.1M, and the mean duration to bring a crop to market was

13.1 years (McDougall, 2011). The high-cost developments and

long duration reduce return on investment. Consequently, the

technology has principally been used on large acreage crops

(corn, soybean, cotton, alfalfa, sugarbeet, potato, and canola)

engineered with relatively few traits. Of the 136 petitions granted

non-regulated status by the USDA, 109 were from those 7 major

crops, and 80 had no traits other than either herbicide or insect

resistance4. Under the legacy regulations, not all crops created

with genetic engineering fell under the regulations. In 2010,

USDA instituted a process known as “Am I Regulated” (AIR

process), which provided a voluntary mechanism for developers

to obtain USDA’s opinion about whether a plant was subject to
3 USDA APHIS | Plant-Trait-Mechanism of Action (MOA) combinations

that have been determined by APHIS not to require regulation under 7

CFR part 340.accessed 09.27.22. USDA APHIS | Confirmation Letters

accessed 09.27.22

4 USDA APHIS | Petitions for Determination of Nonregulated Status

accessed 09.27.22
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regulation5. During the last 10 years (2011-2020), the number of

organizations using the AIR process increased nearly 4 fold

relative to the petition process, while the number of different

crops considered increased greater than 5 fold (Hoffman, 2021),

suggesting the legacy regulation created a significant barrier to

market development of any crop that fell under the regulations.

We expect that the new more risk-appropriate regulation will

lead to the commercialization of additional crops and traits.

Current literature shows hundreds of proofs of concept for

traits with potential to meet SDGs. The examples we provide:

exclude plants currently subject to regulation as most have

associated Confidential Business Information claims; only

include crop plants tested either in the field or greenhouse; and

include one representative example when the same plant-trait-

MOA was discussed in more than one paper. For each example,

we considered whether the plant would likely qualify for an

exemption (Table 1) or likely be evaluated under the RSR

process (Table 2) based on the information in the paper

(Supplementary Table 1 provides additional information on the

MOA). Importantly, these considerations are meant to give an

approximation of traits relevant to sustainability goals that are ripe

for development; they are not and should not be construed as

regulatory decisions since we may be missing key details.
Traits that may promote sustainable
agriculture and/or mitigate adverse
impacts of climate change

Producing more with fewer resources

Producing more food with fewer resources directly supports

SDGs associated with reducing poverty, ending hunger, climate

action, and conservation (SDGs #1, #2, #6, #13, and #15).

Knockout (KO) strategies in corn, rice, soybean, tomato, and

wheat have been used to delete quantitative trait loci (QTL)

negatively associated with yield (Zhou et al., 2019), a subfamily

of ABA receptors (Miao et al., 2018), or genes that change plant

architecture to allow denser planting (Tian et al., 2019), changes

in spike inflorescence architecture (Wang et al., 2022),

simultaneous increases in panicle number and tiller number

(Song et al., 2022; Huang et al., 2018), timing of flowering (Cai et

al., 2020), or result in more fruit and less shoot per plant

(Rodrıǵuez-Leal et al., 2017). Such plants are likely exempt

from regulation and have been shown to increase yield in

initial studies without increasing inputs.

USDA would evaluate crops developed with transgenic

modifications under the RSR process, as in the case of tobacco

engineered for increased production through reduced

photorespiration (Cavanagh et al., 2022) or acceleration of the
5 USDA APHIS | Regulated Article Letters of Inquiry accessed 09.27.22
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relaxation of non-photochemical quenching during sun-shade

transitions (De Souza et al., 2022). Likewise, KOs of all

homoeologous alleles in polyploids that increase production

would be evaluated under the RSR process, as in the case of

canola (Yang et al., 2018; Karunarathna et al., 2020; Zheng et al.,

2020) and tef (Beyene et al., 2022). Diploid rice with a KO of 3

different cytochrome P-450 genes to increase production

(Usman et al., 2020b) may qualify for exemption depending

on whether the individually exempt traits are stacked by

breeding (which could be exempt) or molecularly (which

would require RSR). Overexpression of a transcription factor

in rice was shown to increase both yield and resistance to blight

by Xanthomonas (Liu et al., 2019).
Reduced postharvest losses

The Food and Agriculture Organization (FAO) estimates

that 14% of the world’s food is lost from production before

reaching the retail level (FAO, 2019). Reducing postharvest

losses could increase food availability and could free land for

conservation (SDGs #12, #2, #15). Developers have used genome

editing to increase a tomato’s shelf life by either KO of pectate

lyase (Uluisik et al., 2016), polygalacturonse (Nie et al., 2022) or

by recreating the allele of a known delayed fruit deterioration

mutation (Yu et al., 2017). Each of these tomato varieties would

likely qualify for exemption.
Increased disease tolerance

FAO estimates that annually 20-40 percent of global crop

production is lost to pests (FAO, 2019). Increasing disease

tolerance could result in increased food and could reduce the

volume of crop protection chemicals applied for disease control

supporting SDGs related to protecting human health, the land,

and water related ecosystems (SDGs #2, #3, #15, #6).

Pathogens often exploit susceptible plant genes to facilitate

their infection (Van Schie and Takken, 2014). KOs have been

used on a variety of susceptible genes to increase disease

tolerance in apple (Pompili et al., 2020), barley (Hoffie et al.,

2022), canola with the susceptibility gene only in the A genome

(Pröbsting et al., 2020), cassava (Gomez et al., 2019), corn (Liu

et al., 2022), cucumber (Chandrasekaran et al., 2016), rice (Zhou

et al., 2018), tomato (Nekrasov et al., 2017), and watermelon

(Zhang et al., 2020a) (Table 1). Increased resistance to wheat

stem rust Ug99 was conferred into wheat (T. aestivum) by

introducing resistance genes from either einkorn wheat (T.

monococcum) (Chen et al., 2018) or durham wheat T.

turgidum (Zhang et al., 2017b), both of which are in the wheat

gene pool. These examples and others in banana, rice and

tomato (Tripathi et al. 2019; Macovei et al., 2018; Ortigosa et

al., 2019; Zhou et al 2022b) would likely be exempt
frontiersin.org

https://doi.org/10.3389/fpls.2022.1055529
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hoffman 10.3389/fpls.2022.1055529
In other instances, developers have used strategies that

involve multiple modifications or the use of transgenes to

increase disease resistance, which USDA would likely evaluate

under the RSR process. KOs of susceptibility genes in canola

(Sun et al., 2018), citrus (Peng et al., 2017), cotton (Zhang et al.,

2018b) and wheat (Zhang et al., 2017c; Koller et al., 2019; Li et

al., 2022b) conferred resistance to various diseases. Multiple

promoter deletions in several sugar transport genes conferred

broad spectrum resistance in rice to several races of bacterial

blight (Oliva et al., 2019). With respect to transgenes, broad

resistance to three rice diseases was accomplished by

transcriptional and translational controlled expression of the

Arabidopsis NPR1 gene (Xu et al., 2017). Expression of
6 q-a-confirmation-process.pdf (usda.gov) p.3-4.
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transgenes to confer host induced gene silencing has shown

promise in controlling fungi, nematodes (Kong et al., 2022), sap

sucking and chewing insects, and viruses (Koch and

Wassenegger, 2021) and Crispr-Cas lines targeting virus coat

proteins have conferred resistance to viruses (Tashkandi et

al. 2018).
Increased tolerance of abiotic stress

Climate change is expected to have a net negative impact on

agricultural productivity (Raza et al., 2019). Traits that could
TABLE 1 Crops that may contribute to sustainable agriculture that could potentially qualify for USDA regulatory exemption.

Trait Distinct
MOAs

Crops SDG

Better suitability for urban agriculture 1 tomato 2, 11, 15

breeding innovation 8 alfalfa, cabbage, corn, cucumber, potato, sorghum, tomato, wheat 1, 2, 9

domestication 2 canola, ground cherry 1, 2, 3, 9,
11, 15

improved nutrition 10 Cassava, pennycress, rice (4), soybean, tomato(3) 2, 3, 15

increased disease tolerance 14 apple, banana, barley, canola, cassava, corn, cucumber, rice (3),
tomato, watermelon, wheat (2)

1, 2, 13, 15

increased tolerance of abiotic stress 4 rice (4) 1, 2, 13, 15

increased yield 11 corn, rice (7), soybean, tomato, wheat 1, 2, 11, 15

reduced postharvest losses 3 tomato (3) 1, 2, 11, 12,
15

increased yield and increased tolerance to abiotic stress 2 rice (2) 2, 13, 15

improved nutrition increased disease tolerance 1 soybean 2, 3, 15

increased yield and reduce fertilizer requirement 1 rice 2, 13, 14,
15

increased yield, better suitability for urban agriculture 5 Tomato (4), ground cherry 2, 3, 11, 13,
15

increased yield and increased tolerance to abiotic stress and
reduced fertilizer requirement

1 rice 2, 13, 15

Total 63
7 CFR part 340.1(b)(4)

fron
Table 1 represents a tally of all the plant-trait MOAs listed in Supplementary Table 1 that could potentially qualify for exemption under USDA’s revised biotechnology regulation. Plant-
Trait-MOAs for representative cases from the literature where crops could contribute to UN sustainable goal are listed in Supplementary Table 1. In each case, a high-level category
corresponding to column 1 of this table was assigned, as was the SDGs that could be impacted by the launch and adoption of that crop. Column 2 lists the distinct number of MOAs
responsible for the phenotype categorized in column 1. The UN sustainability goals listed in the table are as follows:
Sustainability Development Goals (SDG)
#1 ending poverty
#2 ending hunger
#3 good health
#9 industry innovation and infrastructure
#11 resilient and sustainable cities
#12 sustainable consumption and production
#13 climate action
#14 life below water
#15 life on land
Currently the exemptions under the revised regulation allow a single modification to a pair of homologous chromosomes per life cycle. Multiple modifications based on stacking traits
through conventional breeding qualify for the exemption, but molecular stacks do not. Therefore, a single change to all homoeologous alleles in a polyploid presently do not qualify for the
exemption.6

It should be noted that there are opportunities to expand the exemptions when new information emerges demonstrating such modifications are possible by conventional breeding.7
tiersin.org
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help crops adapt to climate change include tolerance to heat,

drought, and salinity.

Table 1 lists 4 cases for increased abiotic tolerance, all in rice,

that would likely qualify for an exemption based on partial

deletions (Liu et al., 2020a; Santosh Kumar et al., 2020) or KO

(Zhang et al., 2019) of endogenous transcription factors or

addition of an allele of Sub1, a transcription factor within the

rice gene pool that confers tolerance to flooding (Xu et al., 2006).

KO of an ABA receptor increased both yield and tolerance to

drought (Usman et al., 2020a) and a triple KO of a putative auxin

transport protein, a QTL negatively associated with yield, and a

MYB30 transcription factor increased both yield and cold

tolerance (Zeng et al., 2019).

Tolerance to environmental stress has been conferred by

overexpression of transcription factors that turn on genes in the

stress response (Casaretto et al., 2016). Other strategies with

successful proof of concept include reducing stomatal opening
Frontiers in Plant Science 05
(Głowacka et al., 2018), increasing specific protein turnover

(Alfatih et al., 2020), overexpressing glutaredoxins (Sprague

et al., 2022), and modulating stress related signaling (Zang

et al., 2018). In all these cases, crops yield better than the

comparator under abiotic stress. In some cases, the modified

plants yield better than controls even in the absence of stress

(Beznec et al., 2021; Esmaeili et al., 2021; Yu et al., 2021; Sprague

et al., 2022). Examples likely requiring an RSR are included in

Table 2 representing 27 cases from banana (Sreedharan et al.,

2013), barley (Hughes et al., 2017), canola (Wu et al., 2020),

corn (Shi et al., 2017; Nuccio et al., 2015), cotton (Mishra et al.

2017), poplar (Li et al., 2018b), potato (Yu et al., 2021), rice

(Shim et al., 2018; El-Esawi and Alayafi 2019; Liu et al. 2020b;

Caine et al., 2019; Zhang et al., 2018a; Jiang et al., 2019; Park et

al., 2020; Joshi et al., 2019; Selvaraj et al. 2017; Selvaraj et al.,

2020, Usman et al., 2020a), soybean (Ribichich et al., 2020),

tobacco (Sharma et al., 2019), tomato (Yin et al. 2018), and
TABLE 2 Crops that could contribute to sustainable agriculture that would undergo regulatory status review.

Trait Distinct MOAs for
RSR

Crops SDG

breeding innovation 2 canola, rice 1, 2, 9, 15

domestication 3 canola, kiwi, wild tomato 1, 2, 3, 15

improved nutrition 18 banana, camelina, canola (4), cotton (3), potato (2), sorghum sugarcane
tomato (3), wheat (2)

2, 3, 14, 15

increased pest tolerance 11 canola, citrus, cotton, rice (2), soybean, tomato (2), wheat (3) 1, 2, 13, 15

increased tolerance of abiotic stress 19 banana, barley, canola, corn (2), poplar, rice (5) soybean, tobacco (2),
tomato, wheat (4)

1, 2, 13, 15

increased yield 6 canola (3), soybean, tef, tobacco 1, 2, 13, 15

reduced fertilizer requirement 2 rice, tomato 1, 2, 6, 13, 14,
15

improved nutrition, reduced postharvest loss 1 tomato 1,2,3,11,12,15

improved nutrition and net zero aviation fuel 1 pennycress 3, 6, 7, 13, 14,
15

increased yield and increased quality 1 rice 1, 2, 3, 15

Increased yield and increased disease tolerance 1 rice 1, 2, 15

increased yield and increased tolerance to
abiotic stress

14 corn (2), cotton (2), rice (7), potato, wheat (2) 1, 2, 13, 15

increased yield and reduce fertilizer
requirement

2 rice, wheat 1, 2, 6, 13, 14,
15

Total 80
f

Table 2 represents a tally of all the plant-trait MOAs listed in Supplementary Table 1 that would likely be evaluated by the RSR process under USDA’s revised biotechnology regulation at 7
CFR part 340. Plant-Trait-MOAs for representative cases from the literature where crops could contribute to UN sustainability goals are listed in Supplementary Table 1. In each case, a
high-level category corresponding to column 1 of this table was assigned as was the SDGs that could be impacted by the launch and adoption of that crop. Column 2 lists the distinct number
of MOAs responsible for the phenotype categorized in column 1. The UN sustainability goals listed in the table are as follows:
Sustainability Development Goals (SDG)
#1 ending poverty
#2 ending hunger
#3 good health
#6 clean water
#7 affordable clean energy
#9 industry innovation and infrastructure
#13 climate action
#14 life below water
#15 life on land
rontiersin.org
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wheat (El-Esawi et al., 2019; Zhang et al., 2017a; Mega et al.,

2019; Zhou et al. 2022a; González et al., 2019).
Reduced fertilizer requirement

Fertilizer costs are among the most expensive inputs for a

farmer (Langemeier et al., 2019) and they represent one of the

largest energy expenditures for agriculture (Amenumey and

Capel, 2014). Agriculture nutrient runoff is a significant

contributor to impairment in assessed rivers and streams

(US-EPA, 2018), and the single largest source of nutrient

pollution to the Gulf of Mexico’s “dead zone” (Ribaudo et al.,

2011). Unabsorbed nitrogen by crops leads to increased

production of nitrous oxide, a greenhouse gas which is 300

times more potent than carbon dioxide (Sisharmini et al.,

2019). Crops that require less fertilizer input could

contribute to clean water and streams, climate action, life

below water, life on land, and to ending poverty by reducing

fertilizer costs (SDGs #6, #13, #15, #1). Expression of rice GR4

transcription factor from its own promoter results in increases

in nitrogen use efficiency (NUE) and yield (Li et al., 2018c).

Rice with C-terminal indels in the gene lonely guy (OsLOG5),

which catalyzes the formation of active cytokinin from inactive

forms, led to increased yields under well-watered, drought,

normal nitrogen and low nitrogen (Wang et al., 2020). Both

may qualify for exemption.

Examples likely to require RSR evaluation include increased

NUE in rice by expression of a cucumber alanine

aminotransferase under the control of a rice root specific

promoter (Sisharmini et al., 2019), increased NUE in rice

through co-overexpression of the rice nitrate transporter

(OsNRT2.3a) and its partner protein (NAR2.1a) under the

control of the CaMV35S promoter (Chen et al., 2020),

increased tolerance to potassium deficiency in rice by

overexpression of a rice peroxiredoxin gene (Mao et al., 2018),

and increased tolerance to phosphate deficiency in tomato by

expression of choline oxidase from the bacteria, Arthrobacter

globiformis (Li et al., 2019).
Improved nutrition

Increasing the nutritional value of crops is consistent with

good health and well-being (SDG #3) and has been

accomplished through KO strategies likely qualifying for

exemption in diploids and RSR in polyploids. Healthier fatty

acids have been made in oil crops (eg. (Haun et al., 2014; Jarvis

et.al, 2021; Okuzaki et al. 2018; Jiang et al., 2017). Other
Frontiers in Plant Science 06
improvements in nutrition include low reducing sugars

(potato) (Clasen et al., 2016), high amylose (rice) (Sun et al.,

2017), high gamma aminobutyric acid (tomato) (Nonaka et al.,

2017), increased vitamin D3 (tomato) (Li et al., 2022a), increased

ascorbic acid (tomato) (Do et al., 2022; Zheng et al., 2022), high

isoflavone (soybean) (Zhang et al., 2020b), high carotenoid

(banana, rice, and tomato) (Paul et al., 2017; Li et al., 2018d),

increased protein (canola) (Xie et al., 2020; Zhai et al., 2020),

high anthocyanin (tomato) (Butelli et al., 2008), and high iron

(Wheat) (Connorton et al., 2017).

In some cases, the crop was made healthier by reducing an

anti-nutrient. KO of key transporter proteins resulted in plants

that had low uptake of cadmium (Tang et al., 2017) or cesium

(Nieves-Cordones et al., 2017). Cotton seed was engineered to be

gossypol free thereby creating a new food source by making the

meal and oil suitable for human and animal consumption

(Sunilkumar et al., 2006; Janga et al., 2019; Li et al., 2021).

Other toxic substances eliminated or reduced from crops include

steroidal glycosides in potato (Nakayasu et al., 2018), erucic acid

in pennycress (Mcginn et al., 2019), lignin in sugarcane (Kannan

et al., 2018), kafirin (a difficult protein to digest) in sorghum (Li

et al., 2018a), reduced phytic acid in canola (which increases the

bioavailability of phosphate in feed) (Sashidhar et al., 2020),

reduced cyanide in cassava (Juma et al., 2022), and reduced

amylose (rice) and reduced gluten wheat which is of benefit to

some on restricted diets (Sánchez-León et al., 2018; Yunyan

et al., 2019).
Domestication

Domestication of wild crops through centuries of breeding and

selection has inadvertently reduced genetic diversity (Smýkal et al.,

2018), limiting traits beneficial for sustainable agriculture. With an

understanding of domestication traits, genome editing can rapidly

improve agronomic performance of wild relatives by reuniting lost

but desirable traits, such as stress tolerance, with agronomically

valuable characteristics (Zsögön et al., 2018). For example, in a wild

relative of tomato, an initial attempt has been made to make a new

tomato variety by introducing six domestication traits that resulted

in improvements in fruit number, size, shape, nutrient content and

plant architecture (Zsögön et al., 2018). Similar examples are seen

in alternative crops such as pennycress (Mcginn et al., 2019),

ground cherry (Lemmon et al., 2018) and kiwi (Varkonyi-Gasic

et al., 2019), and in standard crops such as canola and tomato

(Braatz et al., 2017; Zhai et al., 2019; Kwon et al., 2020). The KO

strategies used in (Lemmon et al., 2018; Zhai et al., 2019; Kwon

et al., 2020) might qualify for exemption while the RSR process is

more likely for the others named above.
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Breeding innovations

Hybrid corn seed is almost exclusively grown in the U.S.

because of its dramatic increases in yield and vigor (Nielsen,

2020). Widespread use of hybrid seed technology occurred first in

corn because the crop’s separate male and female flowers

simplifies the hybridization procedure. In crops where hybrid

seed is not economically viable because flowers have both male

and female organs (perfect flowers), yield gains have typically

languished relative to hybrid seed crops (Perez-Prat and Van

Lookeren Campagne, 2002). In crops with perfect flowers, KO

strategies have been used to introduce male sterility and/or

eliminate self-incompatibility (Li et al., 2016; Li et al., 2017; Ye

et al., 2018; Ma et al., 2019; Okada et al., 2019; Dai et al., 2022; Ye

et al., 2022; Chen et al., 2019; Cigan et al., 2017) to enable efficient

hybrid seed production. All female plants were produced in

cucumber by KO of a gene required for carpel development

(Hu et al., 2017) all of these would likely qualify for exemption.

Potato, normally a tetraploid, is being reinvented into a diploid

inbred line-based crop that will help achieve yield and vigor gains

seen in other hybrid crops (Jansky et al., 2016; Hosaka and

Sanetomo, 2020). Recently, apomixis was engineered in rice

(Khanday et al., 2019). This trait will enable hybrid seeds to be

propagated clonally thereby dramatically reducing the cost of

hybrid seed. It involves the KO of three genes and the expression

of a normally pollen-specific gene in the egg cell so it would be

evaluated under the RSR process. These outcomes contribute to

industry innovations (SDG #9) and are expected to facilitate the

development of new crops with increased yields and tolerance to

abiotic and biotic stresses consistent with numerous other SDGs.
Urban agriculture

Urban vertical farming has been touted as a means to

increase agricultural sustainability through demonstrated

increases in agricultural productivity, food safety, biosecurity

and reduced inputs (water, fertilizer, and pesticides), land use,

and transportation costs (SDG #11) relative to outdoor

agriculture (Benke and Tomkins, 2017) (SDGS #2, #3, #6, #11,

#13-15). Using controlled environments with recycling of

nutrients and water, renewable energy, and automation,

vertical farming may also offer solutions to climate change and

labor shortages that have plagued outdoor agriculture.

Genome editing has been used to create tomato varieties

more suitable to controlled environment production (Klap et al.,

2017; Soyk et al., 2017; Ueta et al., 2017; Tomlinson et al., 2019;

Kwon et al., 2020). The tomato varieties described in the urban

agriculture section would likely be eligible for exemption

provided the traits were combined by breeding.
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Discussion

In this paper, we provide over 140 examples of crops that

were created with biotechnology that could contribute to UN

sustainability goals. This survey represents just a fraction of the

traits being developed to improve sustainability and/or other

purposes. Furthermore, traits that show promise in one species

frequently prove to be valuable in improving closely related

species. Considering that there are hundreds of crops related to

those in Tables 1 and 2 (Khoshbakht and Hammer, 2008), it

implies that tens of thousands of new crop varieties can be

created based on the examples listed in Tables 1 and 2 alone. We

estimate that over 60 of the described crop varieties would likely

qualify for exemption from USDA oversight. For the remaining

crops that would likely be evaluated through the RSR process,

the regulatory pathway will be more risk-proportionate, science-

based, product-based and streamlined compared to the former

petition process (Hoffman, 2021). We already see academics

interested in developing products that could successfully

navigate the revised regulations. For example, although the

Martin lab published the successful creation of a high

anthocyanin tomato in 2008 (Butelli et al., 2008), they did not

seek regulatory approval in the United States until April 2021

when the RSR process became first available for tomatoes and

they received regulatory clearance September 2022.

Based on the large number of promising crop-trait-MOA

combinations that have been discovered and the more

streamlined, risk-proportionate, and science-based oversight in

USDA’s revised regulation, we fully expect to see diverse

developers advance more traits that may help promote

sustainability. Whether they are ultimately commercialized

may depend on overcoming other obstacles including

requirements from other regulatory authorities, social

understanding and acceptance, and on their economic

viability. Both United States Food and Drug Administration

(FDA) and Environmental Protection Agency (EPA) continue to

play a role in the approval of biotechnology crops in the United

States and are actively considering how to streamline their

regulations regarding genome editing (OSTP, 2017). EPA has

proposed an exemption for certain plant incorporated

protectants created through biotechnology that could have

otherwise been created through conventional breeding (US-

EPA, 2012), while FDA has produced a plant and animal

biotechnology innovation action plan and intends to update

existing procedures for voluntary premarket consultations (US-

Food and Drug Administration, 2018). Several countries (Brazil,

Columbia, Argentina, Chile, Israel, Australia, and Japan) do not

regulate some genome edited crops lacking foreign DNA as

Genetically Modified Organisms (GMOs) and several other

countries are considering adopting a similar approach
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(Schmidt et al., 2020). As the number of like-minded countries

grow, regulatory obstacles are expected to diminish.
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