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Flowering is an important factor to ensure the success of plant reproduction,

and reasonable flowering time is crucial to the crop yield. BBX transcription

factors can regulate several growth and development processes. However,

there is little research on whether BBX is involved in flower formation and floral

organ development of pineapple. In this study, AcBBX5, a BBX family gene with

two conserved B-box domains, was identified from pineapple. Subcellular

localization analysis showed that AcBBX5 was located in the nucleus.

Transactivation analysis indicated that AcBBX5 had no significant toxic effects

on the yeast system and presented transcriptional activation activity in yeast.

Overexpression of AcBBX5 delayed flowering time and enlarged flower

morphology in Arabidopsis. Meanwhile, the expression levels of AtFT,

AtSOC1, AtFUL and AtSEP3 were decreased, and the transcription levels of

AtFLC and AtSVPwere increased in AcBBX5-overexpressing Arabidopsis, which

might lead to delayed flowering of transgenic plants. Furthermore,

transcriptome data and QRT-PCR results showed that AcBBX5 was

expressed in all floral organs, with the high expression levels in stamens,

ovaries and petals. Yeast one-hybrid and dual luciferase assay results showed

that AcBBX5 bound to AcFT promoter and inhibited AcFT gene expression. In

conclusion, AcBBX5 was involved in flower bud differentiation and floral organ

development, which provides an important reference for studying the

functions of BBX and the molecular regulation of flower.

KEYWORDS

pineapple (Ananas comosus (L.) Merr.), B-box, expression profiling, flowering,
floral organ
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Introduction

Flowering, the symbol of vegetative development to

reproductive development is an important factor to ensure the

success of plant reproduction (Khan et al., 2014). The transition

from vegetative stage to reproductive stage is precisely regulated

by external environmental signals and internal developmental

states (Albani and Coupland, 2010; Wang et al., 2021).

Appropriate flowering time is crucial for the crop yield and

quality (Roux et al., 2006). Flowering studies are the most

extensive in Arabidopsis, and mainly involved photoperiod,

vernalization, gibberellin, autonomic, ambient temperature and

age-related pathways (Albani and Coupland, 2010; He, 2012;

Cheng et al., 2017). Flowering is a very complex physiological

process, which is regulated and coordinated by multiple genes

(Liljegren et al., 1999).

BBX transcription factors have a wide range of functions and

play important roles in flower initiation, light morphogenesis,

anthocyanin synthesis and abiotic stress tolerance (Almada et al.,

2009; An et al., 2020; Li et al., 2021). For example, CmBBX24

regulates flowering time and tolerance to freezing and drought

stress in chrysanthemum by regulating GA biosynthesis (Yang

et al., 2014). AtBBX20 interacts with HY5 to activate the gene

expression and promote light morphogenesis (Wei et al., 2016).

MdBBX22 and MdBBX33 in apple are involved in MDHY5-

mediated signal transduction and regulate anthocyanin

accumulation (An et al., 2019; Plunkett et al., 2019).

CONSTANS (CO) in Arabidopsis is the first BBX protein to

be identified in plants. Flowering locus T (FT) genes receive

signals from the photoperiodic regulatory center CO under long

day conditions, which drives the transition from vegetative to

reproductive growth in Arabidopsis (Putterill et al., 1995).

However, CO could also inhibit FT-induced flowering by

affecting TERMINAL FLOWER1 (TFL1) expression under

short-day conditions (Luccioni et al., 2019). Interestingly, in

rice, Hd1 is a CO homolog that promotes flowering under short-

day conditions but inhibits flowering under long-day conditions

(Yano et al., 2000; Kojima et al., 2002; Hayama et al., 2003). In

flower formation pathway, BBX protein is strongly conserved

among different plants. In addition to CO, other BBX proteins

are also involved in the regulation of flower formation in plants.

In Arabidopsis, both AtBBX6 and AtBBX24 are positive

regulators of flower formation (Hassidim et al., 2009; Li et al.,

2014), while AtBBX4, AtBBX7 and AtBBX32 delay flower

formation (Cheng and Wang, 2005; Tripathi et al., 2017).

OsCOL4, OsBBX14 and OsCOL9 in rice delayed the heading

through repressing the Ehd1 pathway under SD and LD

conditions (Lee et al., 2010; Bai et al., 2016; Liu et al., 2016).

BvCOL1 in sugar beet also causes early flowering under LD

conditions (Chia et al., 2008).

Pineapple is one of the world’s famous tropical fruits.

Spraying ethephon to induce flower formation is currently the

most widely used method in pineapple production
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(Min and Bartholomew, 1997). At present, there are some

excellent pineapple varieties that cannot be widely promoted

in the market due to the difficulty in regulating the maturation

time (Turnbull et al., 1999). Therefore, studying the molecular

mechanism of flower formation induced by ethylene in

pineapple can provide theoretical support for perinatal

regulation and new variety cultivation. In recent years, several

genes regulating flowering such as AcERS and AcETR (Li et al.,

2016), AcERF (Zhang et al., 2021a), AcTrihelix (Wang et al.,

2022), AcBBX (Ouyang et al., 2022) have been isolated from

pineapple, but however, the research on its functional

mechanism is still not in-depth.

BBX genes are involved in the determination of flowering

time through photoperiod, and there are few studies on flower

formation in response to the hormone regulation (Putterill et al.,

1995; Yano et al., 2000). Previous studies have found that

AcBBX5 was found in the pineapple BBX family study to have

an expression peak at 12 h and 7 w after ethylene induced

flowering of pineapple. AcBBX5 may be involved in ethylene

induced flower formation and flower morphogenesis in

pineapple (Ouyang et al., 2022). Here, AcBBX5 was identified

from the BBX family analysis of pineapple, and found it may

regulate flower formation of pineapple. The sequence

characteristics and expression characteristics of AcBBX5 were

analyzed by bioinformatics, subcellular localization and

transcriptional activation assay. AcBBX5 overexpression,

expression characteristics and regulatory mechanism were

further analyzed. All these data lay a foundation for the

further study of floral formation regulation network

in pineapple.
Materials and methods

Plant materials and treatments

Ananas comosus L. cv. Comte de Paris was used as

experimental material, and grown in pineapple resource

nursery, Zhanjiang, China. The uniform pineapple plants (15-

month-old) were treated with 30 mL 200 mg/L ethephon to

induce flowering, and the control group with the same amount

of water instead. The flower organs including petals, ovary,

stamens, sepals and styles were collected separately in

pineapple. All samples were performed with three biological

replications and immediately frozen in liquid nitrogen and then

stored at −80 °C until further use.
RNA extraction and RT-qPCR assay

Total RNAwas extracted with Polysaccharide Polyphenol Plant

RNA Extraction Kit (Huayueyang, China) according to the

manufacturer’s instructions. After detecting the concentration and
frontiersin.org
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quality of RNA by NanoDrop™ One/OneC Spectrophotometer

(Thermo Fisher Scientific, USA), reverse transcription was carried

out through the Revert Aid First-Strand cDNA Synthesis Kit

(Thermo Fisher Scientific, USA). RT-qPCR was performed with

ChamQ Universal SYBR qPCR Master Mix (Vazyme, China) on

LightCycler 480 II (Roche, Switzerland). AcActin was used as an

internal reference gene of pineapple. The reaction conditions for

RT-qPCR consisted of predegeneration (95°C for 2 min), circular

reaction (95 °C for 10 s, 58 °C for 30 s, 40 cycles) and Dissociation

curve (95 °C for 15 s, 60 °C for 60 s, 95 °C for 15 s). All experiments

incorporated three biological samples and three technical replicates.

The relative expression levels of each gene were evaluated by using

the 2−DDCt method (Rao et al., 2013).
Bioinformatics analysis

The AcBBX5 protein sequence of pineapple was obtained

from pineapple Genome Database (http://pineapple.

zhangjisenlab.cn/pineapple/html/index.html) (Xu et al., 2018).

The protein sequences of other species were all derived from

NCBI (National Center for Biotechnology Information). MEME

online site was used to analyze the conserved motifs (Bailey et al.,

2009). The phylogenetic tree was constructed by neighbor-

joining (NJ) method in MEGA 6.0 software, and the bootstrap

value was set at 1000 replications (Hall, 2013).
Subcellular localization and
transcriptional activities

The coding sequence of AcBBX5 was introduced into the

pCAMBIA2300-GFP vector digested with Kpn I and Xba I

restriction enzymes to generate the construct 35S::AcBBX5-

GFP. After sequencing correctly, it was transformed into

Agrobacterium tumefaciens strain GV3101. The epidermal cell

transformation of tobacco leaves was injected with the A.

tumefaciens carrying out with the recombinant vector. After

incubation in the dark for 12 h at 25 °C, the tobaccos were

transferred to normal growth for 24–36 h. The fluorescence

signal was observed by a confocal scanning microscope Ax-io-

Imager_LSM-800 (Zeiss, Germany) under excitation of 488 nm.

A yeast assay system was used to examine the transcriptional

activity of AcBBX5. Nde I and Sal I were selected as restriction sites,

and the coding sequences of AcBBX5 were inserted into the bait

vector pGBKT7 by homologous recombination. Following the

manufacturer’s protocol, the recombinant vectors were transferred

into AH109 strain yeast and cultured on SD/-Trp medium at 30 °C

for 2–3 days. Single colonies were selected for amplification culture

and then transferred to SD/-Trp and SD/-Trp/-His/-Ade solid

media for further culture. Three days later, X-a -Gal was added

to observe whether the colony was blue.
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Transformation and screening of AcBBX5
transgenic plants

Arabidopsis thaliana (ecotype Colombia) grown under

conditions of 21 ± 1°C (day/night, 16/8 h) and used for

heterologous transformation in this study. pCAMBIA2300-

GFP-AcBBX5 vectors (the recombinant vectors were used for

subcellular localization) were used to transform into Arabidopsis

via the floral dip method (Clough and Bent, 1998). Empty

vectors were transformed as control. The seeds of the T0

generation were harvested and screened on plates containing

MS medium with 50 mg/L kanamycin sulfate and then further

verified the transgenic plants by PCR amplification. The T3

generation transgenic Arabidopsis lines were used for

subsequent phenotype observation and functional analysis. To

detect the expression levels of the AcBBX5 and some flowering-

related genes in transgenic and control plants, 28-day-old

seedlings of both transgenic and control Arabidopsis plants

were collected for qRT-PCR analysis.
Results

Characterization analysis of AcBBX5

To investigate the function of the AcBBX5 protein, we first

identified and cloned AcBBX5 from the ‘Paris’ pineapple by RT-

PCR. The coding sequence of AcBBX5 was 603 bp in length,

encoding 197 amino acid residues. In order to better understand

the properties of AcBBX5, the amino acid sequence of AcBBX5

was analyzed. The results showed that AcBBX5 and its

homologous proteins in other species all contained two B-box

conserved domains, and contained motif 1, motif 2 and motif 4

in conserved motif analysis (Figure 1A). However, compared

with homologous protein sequences of other species, AcBBX5

sequence was significantly shorter and lacks motif 3, which was

common in other sequences. Interestingly, the positions of

motifs 1 and 2 in the sequence almost overlapped with those

of the two B-box conserved domains, and both motifs 1 and 2

might represent B-box conserved domains. Furthermore,

multiple sequence alignments with homologous amino acid

sequences in Arabidopsis, rice, pear, cucumber and tomato

revealed that the amino acid sequence similarity between

AcBBX5 and homologous proteins in other species were 24.8%

(AtBBX22), 24.53% (CsaBBX14), 24.27% (OsBBX16), 22.93%

(PbBBX18), and 25.60% (SlBBX22), respectively (Figure S1).

The low sequence similarity is probably due to the absence of a

fragment at the C-terminal of AcBBX5 relative to homologous

sequences of other species.

The function of BBX protein has been studied in many

plants. Collinearity analysis of pineapple with rice, grape, and

banana revealed that pineapple AcBBX5 has one homologous
frontiersin.org
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gene pair in rice and banana, but two in grape (Figure 1). In

order to investigate the role of AcBBX5 protein in flower

formation, 18 BBX proteins that have been confirmed to be

involved in flower formation regulation were selected to

construct phylogenetic tree (Figure 1 and Table S1). Among

them, there were six BBX proteins promoting flowering

(BvCOL1, AcBBX18, HvCO1, VvCO, AtBBX6 and CmBBX8)

and 9 delayed flowering proteins (AtBBX32, AtBBX7, BvCOL1,

CmBBX24, FaBBx28c1, OsBBX14, OsBBX15, OsCOL9,

OsBBX27 and PvCO1). AtBBX1 and OsBBX18 are genes that

can both promote and inhibit flower formation. Phylogenetic

tree analysis showed that AcBBX5 and delayed flowering

proteins (CmBBX24 and OsBBX14) clustered in the same

branch, suggesting that their functions may be similar.

AcBBX5 may have the function of delaying flower formation

as CmBBX24 and OsBBX14.
Subcellular localization and
transcriptional activation activity of
AcBBX5

Subcellular localization information is of great significance to

our understanding of protein function. To investigate the

subcellular localization of the AcBBX5 protein, 35S::AcBBX5-GFP

protein was transiently expressed in Nicotiana benthamiana leaves

(Figure 2). Under confocal microscope, the GFP fluorescence of the

control vector was distributed in the nucleus and the cell

membrane, while the fluorescence signals of 35S::AcBBX5-GFP

were detected in only the nucleus. The results indicate that
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AcBBX5 localizes in the nucleus, and may act as a transcription

factor in the nucleus to participate in the transcriptional regulation

of other gene expression.

The detection of transcriptional activation and yeast toxicity

provides a foundation for further exploring the mechanism of

AcBBX5. The complete coding region of AcBBX5 was fused to

the GAL4-binding domain in the pGBKT7 vector, and expressed

in the yeast strain Y2H. The pGADT7-T and pGBKT7-53

vectors served as the positive control, while the empty

pGBKT7 vector was negative control. As shown in Figure 3,

the positive control strains and the yeast cells with the pGBKT7-

AcBBX5 vectors grew extremely well on both SD/-Trp and SD/-

Trp/-His/-Ade medium, and could turn blue on medium coated

with X-a-gal, whereas those negative control strains were unable
to grow on SD/-Trp/-His/-Ade medium, which confirms that

AcBBX5 has no significant toxic effects on the yeast system and

exhibited transcriptional activation activity in yeast.
Overexpression of AcBBX5 significantly
delays the flowering time in Arabidopsis

Previous studies have found that AcBBX5 had a high

expression peak at 7 w after ethylene induction, which was the

stage of floret development (Ouyang et al., 2022). To evaluate

whether AcBBX5 is involved in flower formation, overexpressed

Arabidopsis transgenic lines of AcBBX5 were constructed.

Transgenic plants carrying pCAMBIA2300-GFP empty vector

were used as negative control. Three highly expressed lines were

selected from T3 homozygous positive transgenic lines (OE-3,
B

C D

A

FIGURE 1

Characterization of AcBBX5 sequence in pineapple. (A) Motif analysis of AcBBX5 proteins. Different colored boxes represent the different types
of motifs. (B) Domain analysis of AcBBX5 proteins. (C) Syntenic relationships of AcBBX5 in pineapple with rice, grape and banana. (D)
Phylogenetic analyses of AcBBX5. Phylogenetic tree based on BBX proteins involved in flower formation regulation.
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OE-9 and OE-13) by PCR amplification and QRT-PCR to study

their characteristics (Figure 4A). All three AcBBX5 transgenic

lines flowered significantly later than control Arabidopsis, and

rosette numbers were significantly higher than those of control. In

the long day (16 h light/8 h dark) condition, the control plants

with about 18 rosette leaves began to blossom about 18 days after
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transplanting. The overexpressed OE-3, OE-9 and OE-13

bloomed at about 58, 50 and 29 days after transplanting, and

the number of rosette leaves was about 37, 25 and 23, respectively

(Figure 4B). We also detected the transcript levels of AcBBX5 in

T3 lines of OE-3, OE-9 and OE-13 Arabidopsis respectively, and

found that expression levels of AcBBX5 in different transgenic
FIGURE 3

Transcriptional activation activity analysis of AcBBX5 in yeast. The empty vector pGBKT7 was transformed into yeast as the negative control;
pGADT7-T and pGBKT7-53 were co-transformed into yeast was used as a positive control.
B

A

FIGURE 2

Subcellular localization of AcBBX5 in tobacco leaf cells. (A) Vectors for AcBBX5 subcellular localization analysis. (B) AcBBX5 was localized in
tobacco leaf epidermal cells. 2300-GFP and 2300-AcBBX5-GFP plasmids were transformed into tobacco. The dark field, bright field and merge
field were shown in the left, middle and right panels, respectively.
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lines were significantly increased. Interestingly, the flowering time

was negatively associated with the expression of AcBBX5 in

transgenic Arabidopsis plants (Figure 5). These results indicated

that overexpression of AcBBX5 in Arabidopsis leaded to a serious

delay in flowering time.

In order to better understand the molecular mechanism of

AcBBX5 involved in flowering time regulation, the cDNAs of

AcBBX5 transgenic Arabidopsis lines as template were used to

analyze the genes involved in flower regulation in Arabidopsis by

QRT-PCR (Figure 5). Seven genes involved in the determination of

flowering time and flower development were searched from the

Arabidopsis flowering database (http://www.phytosystems.ulg.ac.
Frontiers in Plant Science 06
be/florid/). Compared with the control plants, the expression

levels of FT, SUPPRESSOR OF OVEREXPRESSION OF CO1

(SOC1), FRUITFULL (FUL) and SEPALLATA3 (SEP3) genes

promoting flower formation in Arabidopsis were inhibited in

overexpressed lines, while the expression levels of FLOWERING

LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) genes

negatively regulating flower formation were significantly increased

in transgenic Arabidopsis plants. These results further confirmed

that AcBBX5 repressed flower formation in Arabidopsis by

regulating the expression of other floral genes and this might

suggest the possibility that AcBBX5 represses flowering

in Pineapple.
B

A

FIGURE 4

Ectopic expression of AcBBX5 in Arabidopsis. (A) Phenotypes analysis of T3 transgenic Arabidopsis with AcBBX5. (B) Days to flowering and
number of rosette leaves at flowering in transgenic plants (n=8). Asterisks indicate significant differences. (*P < 0.1, **P < 0.05, based on
Student’s t-test).
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Overexpression of AcBBX5 can enlarge
the floral morphology of the transgenic
Arabidopsis

In addition to delay flowering, florets were also larger in

AcBBX5 transgenic lines compared to control lines at full
Frontiers in Plant Science 07
flowering (Figure 6). To test whether AcBBX5 is involved in

floral organ development, transcriptome data and QRT-PCR

were used to analyze floral organs of pineapple, including sepal,

ovary, stamen, petal and pistil. The results demonstrated that

AcBBX5 was specifically expressed in the floral organ with

higher expression levels in stamen and petals. The results
FIGURE 5

Expression analysis in transgenic Arabidopsis plants. RT-qPCR analysis of AcBBX5 and genes involved in flowering, including AtSEP3, AtSVP, AtCO, AtFLC,
AtSOC1, AtFUL and AtFT, in transgenic Arabidopsis plants (n=3). Asterisks indicate significant differences. (*P < 0.1, **P < 0.05, based on Student’s t-test).
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showed that AcBBX5 was specifically expressed in floral organs,

with higher expression levels in stamens and petals. The

phenotypic characteristics of AcBBX5 were evaluated by

comparing the sepal and petal sizes of AcBBX5 and control

(35S-COL) flowers. Compared with the control plants, the width

of petals and sepals in the transgenic plants was larger,

suggesting that AcBBX5 was also involved in floral

organ development.
AcBBX5 regulates the expression of AcFT
in pineapple

To further identify the genes directly regulated by AcBBX5 in

pineapple flower formation, yeast one-hybrid assay was

performed to determine whether AcBBX5 could bind to the

promoter of AcFT. PB42AD-AcBBX5 and Placzi-proAcFT

vectors were combined to transform yeast strain EGY48.

PB42AD/Placzi- proAcFT and Placzi/PB42AD-AcBBX5 were

used as negative control. The transformed yeast showed blue

color in SD/Trp-Ura- medium containing X-Gal, but the

negative control did not. This result indicated that AcBBX5

could bind to the promoter of AcFT (Figure 7A). In addition, the

reporter (pGreenII0800-LUC-proAcFT) and effector plasmid

(35S:AcBBX5) were constructed and a dual luciferase (LUC)

assay was performed in N. benthamiana leaf cells to examine

whether AcBBX5 could activate the AcFT promoter. As expected,

in the LUC reporter assays, the fluorescence signal was

significantly attenuated in sites infected by AcBBX5 and AcFT

promoters compared with the negative control, and the activity

of the promoter expressed by the LUC/REN ratio was

significantly reduced relative to the control (Figure 7B). In

conclusion, AcBBX5 can bind to the AcFT promoter and

inhibit its expression, thereby inhibiting the flower formation

of pineapple.
Discussion

The BBX gene family is widely involved in plant growth and

development and response to the environment. AcBBX5 is a

member of the pineapple AcBBX family (Ouyang et al., 2022).

Here, conserved domain analysis confirmed that AcBBX5 and

other orthologous proteins contain two conserved B-box

domains at the N-terminus (Figure 1A). Motif analysis

identified two conserved B-box domains containing a different

conserved motif (Figure 1B). Based on the difference in amino

acid sequence identity of the b-box motif and the specificity of

zinc binding amino acid residues, it is divided into two types: B-

box 1 and B-box 2 (Crocco and Botto, 2013). Plant B-box

domains can form heterodimers within the BBX protein

family or with other proteins, and play an important role in

mediating protein interactions and regulating the gene
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expression (Gangappa et al., 2013). For example, PpBBX18 in

pear forms a heterodimer with PpHY5 via two b-box domains,

thereby inducing PpMYB10 transcription and regulating

anthocyanin biosynthesis (Bai et al., 2019). Subcellular

localization analysis showed that AcBBX5 protein was located

in the nucleus of epidermal cells of Nicotiana benthamiana

leaves (Figure 2) and had transcriptional activation activity in

yeast (Figure 3), suggesting that AcBBX5 gene has general

characteristics of transcription factor and may be involved in

the transcription level of other genes. However, Figure S1 shows

that the sequence length of AcBBX5 was significantly shorter

than the others. In addition, except for AcBBX5, which has only

3 conserved motifs, other homologous proteins have at least 6

conserved motifs (Figure 1A). These imply that the function of

AcBBX5 may be different from that of homologous genes in

other species.

BBX genes are involved in the determination of flowering

time (Putterill et al., 1995; Yano et al., 2000). AtBBX24, CmBBX8

and HvCO1 are the BBX genes that have been shown to promote

flower formation. AtBBX24 overexpression not only reduces the

expression level of FLC, but also activates FT and SOC1

expression, which leads to early flowering in Arabidopsis

under long- and short-day conditions (Li et al., 2014). In

summer chrysanthemum, overexpression of CmBBX8

accelerated flowering under long- and short-day conditions.

CmFTL1 can act as floral inducer in long day conditions, and

CmBBX8 promotes flowering through binding with CORE

element (CCACA) of the CmFTL1 promoter (Wang et al.,

2020). In barley, HvCO1 overexpression up-regulated HvFT1,

which may promote flowering by activating HvFT1. But it has no

promoting effect on Arabidopsis thaliana (Armstead et al.,

2005). In this study, overexpression of AcBBX5 gene in

Arabidopsis delayed flowering time (Figure 4). BBX has also

been reported to inhibit floral formation in other species. In rice,

OsBBX14 delays heading date via different ways under long and

short-day conditions. OsBBX14 delays heading date by

promoting the expression of Hd1 under long day conditions.

However, under short day conditions, it acts as a repressor of

Ehd1 to delay heading date (Bai et al., 2016). CmBBX24 may

inhibit flowering in Chrysanthemum Morifolium by negatively

regulating the expression of GA biosynthetic genes (GA20ox and

GA3ox) and photoperiodic flowering pathway genes (GI, PRR5,

CO, FT and SOC1) (Yang et al., 2014). OsBBX14 and CmBBX24,

which inhibit flower-forming genes, cluster on the same branch

of the evolutionary tree with AcBBX5 (Figure 1D), suggesting

that genes of the same classification or more closely related genes

may have similar functions.

Molecular studies on flowering have focused on FT, FLC, CO

and SOC1 genes. In addition to AtBBX24 (Li et al., 2014), which

has been shown to regulate FLC, FT and SOC1, AtBBX7/AtCOL9

has been reported to inhibitCO and FT expression and delay floral

transition in Arabidopsis (Cheng and Wang, 2005). The

heterodimerization between BBX28 and CO affects the
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FIGURE 6

Phenotypes and expression characteristics of floral organs in transgenic Arabidopsis. (A) Transcriptome data. (B) RT-QPCR. Se, Sepal; Pe, Petal;
St, Stamen; Ov, ovary; St, Style; Pu, Fruit; Rc, Root; and Wc, Leaf. (C–F) Phenotypes characteristics of floral organs. (G) Statistical analysis of
floret height, floret width, petal length, petal width, sepal length and sepal width of AcBBX5 transgenic lines and control lines (n=3). Asterisks
indicate significant differences. (*P < 0.1, **P < 0.05, based on Student’s t-test).
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activation of FT transcription by CO, which negatively regulates

Arabidopsis flower formation (Liu et al., 2020). In this study, the

relative expression levels of positive regulators of flower formation

(FT, SEP3, SOC1 and FUL) were inhibited in Arabidopsis

transgenic lines, while negative regulators of flower formation

(FLC and SVP) were higher than control lines (Figure 5). This

further confirmed that AcBBX5 overexpression inhibited

flowering in Arabidopsis. However, the relative expression of

CO in the Arabidopsis transgenic lines was almost no different

from that in the control, indicating that AcBBX5 does not

negatively regulate flower formation by inhibiting CO expression.

Yeast one-hybrid and dual luciferase assay results found that

AcBBX5 is transcriptional activator (Figure 3), but it can bind to

the promoter of FT gene and inhibit its expression (Figure 7).

Similarly, previous studies on transcription factors in other

species have also confirmed that transcription factors with

transcriptional activation activity can also act as repressors

under certain conditions. In grape hyacinth, MaBBX51

interfered with the binding of MaHY5 to the promoters of

MaMybA and MaDFR, thereby inhibiting anthocyanin

biosynthesis (Zhang et al., 2022). VvMYB30 in grapevine

competes with activator VvMYB14 to bind to common

binding sites in VvSTS15/21 promoter, controls stilbene

biosynthesis in grapevine (Mu et al., 2022). In grape,

VvMYB30 competed with the activator VvMYB14 to bind to

characteristic binding sites in the VvSTS15/21 promoter to effect

stilbene biosynthesis (Mu et al., 2022). In Arabidopsis, AtBBX24
Frontiers in Plant Science 10
inhibited anthocyanin accumulation by interfering with the

binding of HY5 to the promoter of related genes in anthocyanin

biosynthesis (Job et al., 2018). AtBBX19 negatively regulated

flowering time by interfering with CO binding to FT through

physical interaction with CO proteins (Wang et al., 2014). In view

of this, BBX5 may act as a weak activator, which binds to the FT

promoter of the target gene and occupies a limited binding site to

block the binding of some strong activators, thus inhibiting the

expression of FT gene. This speculation still needs further

systematic experimental verification.

A trait is regulated by multiple genes, and a gene may be

involved in the regulation of multiple traits. Here, AcBBX5 may

not only regulate the flower formation of pineapple (Figure 4),

but also promote the growth and development of floral organs

(Figure 6). BBX gene is one of the many genes involved in flower

organ growth and development. However, there are few studies

on the BBX gene in flower organs. In rose, RhBBX28 is a key

player in regulating petal senescence, and overexpression of

RhBBX28 produces smaller flowers than WT (Zhang et al.,

2021b). In the present study, AcBBX5 overexpression also

showed differences in flower size in Arabidopsis. But in

contrast to RhBBX28, overexpression of AcBBX5 produced

larger flowers than the control (Figure 6). Transcriptome and

quantitative data showed that AcBBX5 was highly expressed in

petals, suggesting that AcBBX5 may play a role in petal

development. Further studies and sufficient experimental

evidence are needed to prove the specific regulatory mechanism.
B
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FIGURE 7

AcBBX5 binds to AcFT promoter and negatively regulates its expression. (A) Yeast one-hybrid assay to test whether AcBBX5 could directly bind
to the promoters of AcFT (B) Schematic diagram of effector and reporter structures used for dual luciferase assay. LUC, firefly luciferase. REN,
Renilla luciferase. P35S and T35S, the promoter and terminator of CaMV35S, respectively. (C) The comparison of luciferase activity (n=3).
Asterisks indicate significant differences. (*P < 0.1, **P < 0.05, based on Student’s t-test). (D) Representative bioluminescence image of AcBBX5
activation on the AcFT promoter in tobacco leaves.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1060276
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ouyang et al. 10.3389/fpls.2022.1060276
Conclusions

In this study, AcBBX5, a member of the BBX family, is

identified as a negative regulator of floral formation in

Arabidopsis and may be involved in floral organ development.

Subcellular localization and transcriptional activation analysis

showed that AcBBX5 was located in the nucleus and had

transcriptional activation potential. The relative expressions of

FT, SOC1, FUL and SEP3were decreased, and FLC and SVPwere

increased in AcBBX5-overexpressing Arabidopsis. In addition,

AcBBX5 was expressed in different floral organs of pineapple,

but highly expressed in stamens, ovary and petals. Yeast one-

hybrid and a dual luciferase assay results confirmed that

AcBBX5 bound to AcFT promoter in pineapple and inhibited

the expression of AcFT gene. These data will enrich the known

regulatory network of BBX in different plants and provide

information on the regulation of flowering and floral organ

development in pineapple.
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