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Plants release a set of chemical compounds, called exudates, into the

rhizosphere, under normal conditions and in response to environmental

stimuli and surrounding soil organisms. Plant root exudates play

indispensable roles in inhibiting the growth of harmful microorganisms, while

also promoting the growth of beneficial microbes and attracting symbiotic

partners. Root exudates contain a complex array of primary and specialized

metabolites. Some of these chemicals are only found in certain plant species

for shaping the microbial community in the rhizosphere. Comprehensive

understanding of plant root exudates has numerous applications from basic

sciences to enhancing crop yield, production of stress-tolerant crops, and

phytoremediation. This review summarizes the metabolomics workflow for

determining the composition of root exudates, from sample preparation to

data acquisition and analysis. We also discuss recent advances in the existing

analytical methods and future perspectives of metabolite analysis.

KEYWORDS

root exudates, rhizosphere, metabolomics, sampling, multivariate analysis
Introduction

The term “rhizosphere” is commonly used to describe the soils modified by plant

roots and the area around a plant root (plant-root interface) that is inhabited by a

population of several organisms (Hartmann et al., 2008). The rhizosphere is one of the

most significant hotspots of the plant ecosystem, determining nutrient acquisitions and

pathogens control (Kuzyakov and Razavi, 2019). The chemicals released by plant roots in

the exudates, include high and low molecular weight compounds from diverse chemical

classes, such as amino acids, organic acids, alcohols, polypeptides, sugars, phenolics,

enzymes, proteins, and hormones (Baetz and Martinoia, 2014). The amount and nature

of the released exudates are influenced by many factors, such as plant taxa, age, root
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morphology, climatic conditions, nutrient availability, and biotic

factors, e.g. soil microorganisms, herbivorous attacks or other

neighboring plants (Sasse et al., 2018).

Since chemical compounds released in the root exudates

shape the interaction between the plant and the surrounding

environment, comprehensive metabolomics studies of plant root

exudates are of great importance for basic science as well as for

applications in enhancing crop resilience and improving stress

tolerance (Escolà Casas and Matamoros, 2021). Albeit the

progress that has been recently made in plant metabolomics,

comprehensive analysis of a metabolome in the rhizosphere is still

challenging. Despite the growing number of reviews

demonstrating potential plant-microbiome interaction (Jacoby

and Kopriva, 2019; Trivedi et al., 2020; Pang et al., 2021; Gupta

et al., 2022; Trivedi et al., 2022), sampling root exudates (Oburger

and Jones, 2018; Pantigoso et al., 2021), and analysis of exudates

(Van Dam and Bouwmeester, 2016; Canarini et al., 2019; Escolà

Casas and Matamoros, 2021), relatively few reviews have

attempted to integrate the strategies for metabolomics analysis

of plant root exudates from sample preparation to data analysis.

Thus, this review presents a concise overview for

metabolomics methods used in studying the chemistry of root

exudates (Figure 1A). We discuss the existing sampling methods

and extraction and describe how extracted samples are subjected

to analysis using different analytical techniques. Moreover, we

highlight the most commonly used methods that are based on

hyphenated analytical methods, such as chromatography, either

liquid chromatography (LC) or gas chromatography (GC),

coupled to mass spectrometry (MS), as well as nuclear
Frontiers in Plant Science 02
magnetic resonance (NMR). We also cover data mining

strategies that are required for processing and evaluation.

Finally, we discuss data analysis by multivariate statistical

approaches for biological interpretation.
Overview of root exudates in
organismal communications

Living organisms could generally shape their local biotic

environment. Indeed, plants utilize their root exudate to

modulate nearby growth conditions, change the soil

environments, recruit beneficial microbes for their survival,

and communicate with microorganisms (Figure 1B)

(Lugtenberg and Kamilova, 2009). Although many aspects of

this process are still arguable (Reinhold-Hurek et al., 2015),

numerous lines of evidence have reported the ability of the plant

microbiome to regulate plant growth and development in

response to different stresses (Lugtenberg and Kamilova,

2009). Moreover, plant root exudates also positively impact

plant development and enhance fitness in response to plant

pathogens (Yuan et al., 2018; Mavrodi et al., 2021). On the other

hand, more than 40% of the carbon fixed during photosynthesis

is released by plant roots in the form of exudates, secretions, and

lysates (Badri and Vivanco, 2009), with highly variable

compositions depending on plant species and environmental

conditions (Phillips et al., 2004; De-La-Peña et al., 2008).

Primary metabolites include sugars, amino acids, polypeptides,

proteins, carboxylic acids, and fatty acids, have been well-
A B

FIGURE 1

(A) Schematic representation of collection and high throughput analysis of metabolites secreted by plant roots. (B) Illustration of specialized
compounds in the root exudates for organismal communications. The flowering plant represents the root parasitic weed Striga hermonthica
growing on cereal roots.
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characterized in the exudates of plant roots, which essentially

serve as vital carbon, nitrogen, and energy sources for

competitive root colonization and suppression of pathogenic

soil microorganisms (Kamilova et al., 2005; Lugtenberg and

Kamilova, 2009). Apart from supporting microbial

proliferation, these exudate metabolites are also responsible

the formation of distinct microbial assemblages in the

rhizosphere (Berendsen et al., 2012).

Besides primary metabolites, countless secondary/specialized

metabolites, generally overlooked compounds with significant

bioactivities, are present in the root exudates (Jacoby and

Kopriva, 2019; Pang et al., 2021), functioning as stimulants,

inhibitors, or signaling molecules (Baetz and Martinoia, 2014;

Fiorilli et al., 2019). For example, benzoxazinoids released by

maize roots act as important herbivore and pathogen resistance

factors and trigger rhizosphere colonization by the bacterium

Pseudomonas putida (Neal et al., 2012; Pétriacq et al., 2017). In

addition, root released camalexin and coumarins can increase

plant growth and positively affect root microbiota under nutrient-

limited conditions (Koprivova et al., 2019; Harbort et al., 2020). In

addition, the carotenoid-derived plant hormones strigolactones

(SLs) are important rhizosphere signals in the communication

with arbuscular mycorrhizal (AM) fungi (Fiorilli et al., 2019; Ito

et al., 2022), while the AM symbiosis is also regulated by several

carotenoid-derived signaling molecules, such as zaxinone and

blumenols (Wang et al., 2018; Wang et al., 2020; Wang et al.,

2021). Notably, the biosynthesis and/or exudation of these

specialized metabolites are highly correlated to nutrition

deficiency, especially phosphate and nitrogen, suggesting the

beneficial functions of plant-microbe interactions (Fiorilli et al.,

2019; Wang et al., 2020; Ablazov et al., 2022; Votta et al., 2022).

However, SLs are also used by root parasitic plants, such as Striga

that causes up-to 10 billion yield losses in Africa (Jamil et al.,

2022), to localize a suitable host and coordinate their germination

with its presence (Wang et al., 2022). The dependency of obligate

root parasitic plants on host released SLs has been recently used to

control these weeds by inducing their seeds germination in the

absence of the host by applying SL analogs, a promising strategy

referred to suicidal germination (Jamil et al., 2020; Jamil et al.,

2022). These examples highlight the importance of secondary

metabolites in rhizosphere organismal communications and the

need for more research to uncover and understand the ecological

function of released specialized metabolites. This knowledge could

very useful for engineering root exudate compositions to attract

beneficial microbiome, improve pathogen defense and enhance

tolerance to abiotic stress (Li et al., 2021; Zhou et al., 2022).
Sample preparation

Plant metabolomics methods have been used for identifying

primary and specialized metabolites in root exudates. Several

existing methods for collection of root exudates have been
Frontiers in Plant Science 03
described and reviewed (Oburger and Jones, 2018; Vives-Peris

et al., 2020; Pantigoso et al., 2021; Wang et al., 2022). However,

the collection approaches vary substantially among studies due

to limitations in the accessibility of roots or experimental scales.

The method used for root exudates collection depends on the

objective of the study, such as SL research (Wang et al., 2022).

Sampling can be done either from soil-grown plants or

hydroponic culture systems. In soil, the chemical composition

of root exudates usually varies due to adsorption on soil

particles. Further, it can be altered when subjected to

microbial degradation (Vives-Peris et al., 2020). In addition,

the plant exudation profile is also dynamic and influenced by the

composition of the surrounding microbiome (Oburger and

Jones, 2018).

One of the main advantages of in vitro cultures over field

conditions is the higher reproducibility, which is required for

crucial studies on the effects of abiotic stress factors, including

nutrient availability, temperature, moisture content, and osmotic

status (Vranova et al., 2013). While the samples are obtained, in

case of in vitro cultures, from a hydroponic system or liquid

medium, collection of samples from plant grown in soil requires

the use of sorption filters buried in the ground close to roots

(Haase et al., 2007). Methods to collect leachate samples from

greenhouse pots have also been established (Zhu et al., 2016;

Pantigoso et al., 2021). Collection of root exudates from in situ in

natural growing environment can lead to partial disruption of

roots during collection, inducing stresses and causing sample

contamination from the rhizosphere and the collection of

metabolites that are not specific to the target exudation profile

(e.g., microbial metabolites) (Vranova et al., 2013; Pantigoso

et al., 2021). Additionally, changes in the physical characteristics

of the soil can lead to severe changes in the root exudation profile

(Sasse et al., 2018; Miller et al., 2019).

One of the major disadvantages of the in vitro cultures is the

interference from the exogenously supplemented nutrients and

ions in analysis. This has been avoided in some studies through

collection of exudates from plants immersed in distilled water

(Badri et al., 2013b). Further, one of the major limitations of in

vitro grown plants is that the morphology and physiology of the

roots is different from soil-grown plants, due to the lack of

natural conditions such as soil clods and microorganisms

(Vranova et al., 2013; Miller et al., 2019; Wang et al., 2019).

To mimic plant’s natural environment in soil, sterile artificial

soil mixtures (e.g. silica sands) suspended in liquid medium have

been introduced more than 50 years ago (Harmsen and Jager,

1962; Curl and Truelove, 1986). The introduction of synthetic

soil particles provides mechanical forces simulating natural

settings (Vranova et al., 2013). To better simulate soil

environment, microorganisms have been also introduced to

the in vitro growing systems. Novel methods for non-

destructive in situ and in vitro collection of root exudates have

also been introduced and improved (Phillips et al., 2008; Gao

et al., 2018). Spatial dynamics of the root exudates is quite
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challenging to analyze, however, soil-based sampling approaches

of unaltered soluble exudates from the whole root system include

using Soil-Hydroponic-Hybrid as well as rhizoboxes in

combination with a root exudate collecting tool (SOIL-REC)

(Oburger et al., 2014; Canarini et al., 2016; Oburger et al., 2022).

To better discriminate target-specific metabolites from the root

exudation profile, the utilization of isotope labelled substrate

(e .g . 13CO2 incubation to quanti tat ively trace the

photosynthesis-assimilated carbon) has been comprised to

obtain labelled exuded metabolites (Seto et al., 2014; Simon

and Haichar, 2019; Chen et al., 2022).

Since the exudation profiles differ depending on plant

development, the targeted stage should be carefully defined

prior to the collection of the root exudates (Chaparro et al.,

2013). The plants should be removed from growth media, rinsed

with water to get read of adhering media and transplanted in

water for a pre-defined time (Badri et al., 2013a; Ray et al., 2018;

Jin et al., 2019; Wang et al., 2019). The collected samples are

pooled to have enough biological replicates, and the final

solution is filtered and subjected to analysis. Sampling root

exudates in salt solutions can result in high background

matrix, particularly, when sample concentration is necessary

prior to analysis (Oburger and Jones, 2018). Thus, sampling root

exudates in water reduces the effect of salts. However, sampling

in distilled water can damage the root cell membranes, altering

the exudate concentrations. This can be reduced by submerging

the roots in water solution for few minutes prior to final

sampling (Oburger and Jones, 2018). In addition, by using

reverse phase C18 silica columns for sample collection can also

reduce the salt content (Wang et al., 2022). Further, filtration

(through membrane filters, < 0.45 or 0.2 mm) or centrifugation is

done to remove root debris. The samples can be concentrated to

remove excess water through freeze-drying (lyophilization),

while enough biological replicates should be considered (Salem

et al., 2020). The inclusion of quality control (QC) samples, such

as pooled samples allows for following metabolite recovery and

technical errors during sample preparation and analysis

(Broadhurst et al., 2018; Martins et al., 2018).
Analytical methods for metabolite
profiling of root exudates

Traditional photochemistry methods for extraction,

fractionalization, purification and identification of pure chemical

compounds require tens of kilograms of plant material in a

laborious and time consuming process (Salem et al., 2020).

Thus, these methods might not be suitable for labor sensitive

and high throughput analysis of hundreds to thousands of

metabolites in root exudates. Plant metabolomics represents

large scale analysis of all metabolites within biological samples

(Salem et al., 2020). Plant metabolomics methods have been used

for identifying diverse metabolites for basic and applied research.
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The most widely used methods in plant metabolomics

include gas chromatography coupled to mass spectrometry

(GC-MS), liquid chromatography-MS (LC-MS) and nuclear

magnetic resonance spectroscopy (NMR). Other techniques

such as capillary electrophoresis-MS (CE-MS), Fourier

transform-near-infrared (FT-NIR) spectroscopy, MS imaging

(MSI), and live single-cell mass spectrometry (LSC-MS) were

also reported (Pang et al., 2021). Combination of the

aforementioned methods may provide complementary

information for in-depth analysis of metabolites. Since MS-

and NMR-based detection methods are the most frequently

used techniques in recent years, we summarize their

applications, advantages and disadvantages in Table 1. Besides

MS and NMR, non-destructive physical methods such as FT-

NIR spectroscopy can also be quick, cheap, and easy to use

method for the identification of functional groups in specific

metabolites. However, further optimization in sample

preparation is indispensable for better spectral quality (Dias

et al., 2016). Further, MSI-based techniques were utilized to

directly depict the spatial distribution of metabolites in the

rhizosphere of Zea mays L. plants, Brachypodium distachyon

roots, Arabidopsis seedlings, Asparagus roots, tomato roots and

Marchantia polymorpha gemmalings (Sasse et al., 2020;

Korenblum et al., 2020; Döll et al., 2021; Gomez-Zepeda et al.,

2021; Lohse et al., 2021). Additionally, LSC-MS allows for the

detection of hundreds of plant-specific metabolites acquired

from a single plant cell, discriminating them from those

produced by soil microbes (Masuda et al., 2018; Taylor

et al., 2021).
Data processing and analysis

Metabolomics experiments generate very complex data, the

vast majority of which are derived from biological significance,

while others from sample processing, background noise and

contaminations also contribute to the obtained data (Duan and

Qi, 2015). MS-based analysis is the most technical and

conventional platform used for large scale analysis of

metabolites, but it is not the most reliable for structural

confirmation when compared to NMR (Salem et al., 2020).

The raw data obtained from plant metabolomics studies are

not suitable for direct analysis and need to go through processing

strategies to obtain pure spectra including noise filtering,

smoothing, deconvolution, peak alignment (Duan and Qi,

2015; Tahir et al., 2019). Processing of MS raw data for

metabolomics analysis requires several steps, including file

format conversion for the vendor-dependent binary format

(e.g.wiff,.D,.RAW … etc.) into other common formats (e.g.

NetCDF, mzML, mzXML … etc.) for further processing.

Several open source and commercial software and web-tools

are currently available for MS (e.g. XCMS, MZmine, MSDIAL,

OpenMS, Decon2LS,…etc.) data processing (Salem et al., 2020).
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TABLE 1 The key differences between the most frequently used techniques in plant metabolomics.

Techniques Metabolites coverage Advantages Disadvantages

GC-MS Thousands of metabolites, mainly, volatile organic compounds, fatty acids, sugars, nucleotides, organic acids
and amino acids

▪ Sensitive for
volatile
metabolites

▪ Availability of
standard
libraries for
identification

▪ Relatively
inexpensive
instrumentation

▪ High
reproducibility

▪ Insensitive for
thermo-
labile
metabolites

▪ Analysis is
destructive
in
nature

▪ Derivatiztion is
necessary for
non-volatile
metabolites

▪ Matrix and
Ionization
dependent
response

▪ Novel
compound
identification
is difficult

LC-MS Thousands of most organic and some inorganic metabolites, particularly, secondary metabolites ▪ Sensitive for
thermo-labile
and polar
metabolites

▪ Superior for
targeted
analysis

▪ High number
of
detected
metabolites

▪ Direct injection
without
separation is
possible

▪ Affected by high
salt
content

▪ Analysis is
destructive
in
nature

▪ Limited
structural
information

▪ Many detected
metabolites
often
remain
unidentified

▪ Less
reproducibility
and
robustness

NMR Hundreds of metabolites, from most organic classes ▪ Minimal
sample
preparation

▪ Independent of
matrix
effects

▪ Powerful in
structural
elucidation

▪ Identification
of
novel
compounds

▪ Non-
destructive in
nature

▪ Permits in vitro
and
in vivo flux
analysis

▪ Precise
quantification

▪ Less sensitivity
than
MS

▪ Peak overlap
▪ Expensive

instrumentation
▪ Structural

elucidation
is very
complex
Frontiers in Pla
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Data pretreatment strategies such as scaling and normalization

reduce the systematic bias, while maintaining the biological

variation. Data scaling aims at minimizing the impact of

dimension differences (e.g. different concentration of

metabolites) giving all variables the same weighting, reducing

the bias and improving the predictive ability of statistical models

(Gromski et al., 2015).

Identifying marker metabolites and their biological

significance is achieved through in-depth multivariate and

univariate data analysis strategies (Gorrochategui et al., 2016;

Rosato et al., 2018). To generate an overview of the relationship

among the datasets, unsupervised analysis is a type of

multivariate machine learning algorithm that attempts to

analyze a dataset without prior knowledge of sample grouping.

Principal component analysis (PCA) and hierarchical cluster

analysis (HCA) are the most extensively used multivariate

unsupervised statistical methods. Additionally, multiple

machine learning algorithms have been developed for

supervised analysis including partial least squares (PLS)

regression, PLS-Discriminant Analysis (PLS-DA), linear

discriminant analysis (LDA), K-nearest neighbor analysis

(KNN), random forests (RF) and artificial neural networks

(ANN) that contribute to the identification of potentially

significant marker metabolites. Several open source as well as

commercial web tools and softwares, such as MetaboAnalyst,

Cytoscape, SIMCA (Umetrics) and SPSS (IBM), offer

comprehensive metabolomics data analysis, visualization, and

biological interpretation (Peters et al., 2018).

The complex and diverse chemistry of plant metabolites

makes the identification process very challenging. Further,

several plant specialized metabolites have no commercially-

available standards, and also many have not been recorded by

spectral databases. Most of the existing metabolomics databases

do not contain a satisfying proportion of plant metabolites. The

metabolite annotation, according to the Metabolomics

Standards Initiative (MSI) (Sumner et al., 2007; Blaženović

et al., 2018), is divided into four levels: 1) the first level:

confidently identified compounds based on co-characterization

with authentic samples; 2) the second level: putatively annotated

compounds based on spectral similarity with spectral libraries;

3) the third level: putatively characterized compound classes,

and 4) the fourth level: unidentified or unclassified unknown

compounds. Although plant metabolites are diverse in their

chemistry, they are composed of basic structural units with

different substitutions e.g. flavonoids, fatty acids, alkaloids,

terpenoids, and coumarins. Compounds that originate from

the basic building unit will produce similar fragmentation

pattern, allowing the determination of compound class and

deduction of the substitution (Perez De Souza et al., 2020).

In GC/MS, several mass spectral libraries of standard

compounds have been established. In addition, the

chromatographic behavior and retention time can be

converted to a more robust retention index giving an
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additional parameter for structural identification. Huge

number of libraries for GC-MS analysis is available, including

Golm Metabolom Database, Wiley, NIST, and Fiehn GC-MS

library (Vinaixa et al., 2016). Standard mass spectra libraries for

LC-MS are limited, and the metabolite identification is more

dependent on the availability of authentic standards. Thus,

metabolite identification is mainly based on chromatographic

pattern of the target class, isotope pattern-assisted prediction of

the molecular formula as well as MSn fragmentation pattern.

Searching using various databases such as PubChem,

ChemSpider, MassBank, HMDB, KEGG, NIST, WILEY,

METLIN, MoNa, mzCloud, GNPS and ReSpect, among others,

provide information about the possible structures (Blaženović

et al., 2018). For the annotation of unknown molecules, in silico

fragmentation tools such as MS-FINDER, MetFrag, CFM-ID

and CSI : FingerID are recommended (Blaženović et al., 2018).

Further, bioinformatics tools based on molecular networking,

such as GNPS, are powerful in structural elucidation of known

and novel compounds of interest based on spectra similarity

(Quinn et al., 2017; Perez De Souza et al., 2020).

Diverse databases provide detailed information about

metabolomics data collected from multiple platforms along

with searching, visualization, downloading tools and/or

implementing biological relationships between metabolites

through metabolic pathways. Examples are Plant Metabolome

Database (PMDB), KNApSAcK, Metaboanlyst, PlantCyc

database, Metabolomics.jp, KEGG, BioCyc, among others

(Rosato et al., 2018). Recent advances in bioinformatics tools

and other computer-aided approaches play a central part in

systems biology approaches (Kumar et al., 2017). The concept of

integrated omics is gaining much attention in the last decade as a

System Biology tool for unraveling the holistic molecular

perspectives of the complex biological processes (Pinu et al.,

2019). Metabolites are directly closer to the phenotype than

genes and proteins; thus they directly reflect the biochemical

pathways. Different approaches for multi-omics data integration

alongside their limitation have been extensively reviewed (Fondi

and Liò, 2015; Misra et al., 2019; Pinu et al., 2019).
Concluding remarks: Challenges
and future perspectives

Metabolites from root exudates play important roles in

mediating organismal interaction and response to environmental

stresses. Studies have revealed that root-released metabolites can

shape the root microbiome, and in turn, the microbiome has an

impact on the host plant metabolome. However, little is known

about the temporal and spatial dynamics of the root exudate profile.

Root exudation is mostly analyzed from hydroponic cultures due to

the chemical complexity of soil. Hence, analysis of metabolites from

root exudates under normal physiological conditions with more

natural settings is necessary. The choice of sampling strategy,
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sampling duration, time of collection, plant type as well as plant

developmental stage will ultimately have a great impact on the

obtained exudation profiles. The recent developments in the

analytical approaches and methods in the metabolomics field

have increased our understanding of the chemistry of root

exudates. Several techniques such as GC-MS, LC-MS, CE-MS,

FT-NIR, and NMR have been used for analysis of different classes

of metabolites secreted by plant roots. Distinguishing plant-specific

metabolites from those produced by associated microbes is a great

challenge in analysis. However, the recent analytical developments

such as mass spectrometry imaging (MSI), matrix-assisted laser

desorption ionization (MALDI), laser ablation electrospray

ionization (LAESI) and live single-cell mass spectrometry (LSC-

MS) allowed metabolite analysis at a single-cell level, enabling the

discrimination of plant-specific metabolites from those produced by

associated microbiomes.

Aside from the recent advancements in metabolite data

acquisition, several bioinformatics tools have been developed

for peak annotation, statistical analysis, multi-omics data

integration and potential molecular biomarker discovery.

Though these improvements, the annotation of a whole

metabolome is still challenging. A key bottleneck in metabolite

characterization is the progress of metabolite annotation. Next,

the strategies for integration of metabolomics with other omics

approaches have not provided in-depth understanding of

molecular interactions. Thus, the development of further

machine learning computational approaches such as neural

networks is stilled needed. Generating specialized databases for

the chemistry of the root exudates is also important.

The current studies obtained so far will help us for better

understanding of plant-microbiome interactions and should

shape the future for crop breeding and sustainable crop

production. However, many biological questions remain to be

answered for deeper insights into the role of root exudates in

shaping the organismal communications. For example, which

species of the microbiome are attracted by a specific metabolite?

How the combination of primary and specialized metabolites

shape the plant microbiome? What are the dynamic changes of

exudate metabolites at different developmental changes? Which

classes of plant metabolites are secreted for attracting beneficial

microbiome and which ones repel pathogenic microbiome?Why
Frontiers in Plant Science 07
different plant species attract different microbiomes? Which

classes of released metabolites are consumed by microbes?

Answering these questions will significantly increase our

knowledge about the ecological and physiological aspects of

this largely overlooked aspect in plant’s life and may allow us

to engineer the microbiome and increase plant’s pathogen

defense, towards improving crops performance and decreasing

the ecological and economic costs of agriculture.
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