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Resilience of hop (Humulus
lupulus L.) to salinity, heat and
drought stresses: A mini-review

Roberto Marceddu, Alessandra Carrubba* and Mauro Sarno

Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
Over recent years, the cultivation of hops (Humulus lupulus L.) has spread widely

in the Mediterranean, also affecting the southern regions of Spain and Italy with a

typical semi-arid climate. Several and recent studies have investigated the

responses of this species to the main abiotic stresses, which is an aspect of

absolute relevance to the knowledge of the adaptive capacity of hops to the

growing conditions of a new cultivation environment. Moreover, given the fact

that hops’ phytochemical composition is determined primarily by genetic and

environmental factors, and that the species is perennial, the lack of knowledge

on the effects of abiotic stress could be reflected in subsequent years, which

means multi-year economic risks. This review work therefore aims to showcase,

based on an in-depth investigation of the available literature, the response of hop

to the main abiotic stresses, and the effect of these on productive and qualitative

crop performances. The data presented will be useful to the understanding of

constraints and to the identification of useful coping strategies to the cultivation

of hops in semi-arid Mediterranean environments.
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Introduction

According to the prediction on climate models for the southern Mediterranean

regions, a decrease in winter precipitation and an increase in the number of heat waves

compared to previous decades will take place in next years (Beniston et al., 2007). Indeed,

Earth surface temperature is expected to rise gradually on a global scale, and major

changes are likely to occur in the hydrological and energy cycles (IPCC, 2001). Therefore,

in the next decades, mankind will probably experience dramatic and threatening changes

in regional extreme weather and climate events. Being “fixed” to their growth substrate,

plants are supposed to be particularly exposed to changes in the frequency and intensity

of extreme events (i.e., heat waves, heavy precipitation, droughts, etc.) (Christensen and

Christensen, 2003; Goyette et al., 2003; Beniston, 2004; Schär et al., 2004; Ulbrich et al.,

2001). An additional constraint is linked to the frequent simultaneous occurrence of two,
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or three, abiotic (and biotic) stressors, whose combination is

mostly lethal to crops (Mittler, 2006), as much as that this

“combined stress” is considered as a new and special complex

stressor (Bai et al., 2018).

However, almost all vascular plants have developed in time

several morphological and physiological adaptations to enable

their survival under harsh conditions. Open field crops are

almost always subjected to stressors coming from the

surrounding environment, and that is the reason why it’s very

hard that field crops on farms achieve their full yield potential,

and huge yield gaps are highlighted, e.g., when field crops are

compared to crops grown for experimental purposes (Lobell

et al., 2009; Van Ittersum et al., 2013).

On the other side, the need to assess the climatic effects on

quality is particularly relevant for some crops in which

technological quality derives mainly from the aromatic-sensory

and gustatory components (Ahmed et al., 2014).

In hop (Humulus lupulus L.) several breeding programs have

focused on improving agronomic performances, introducing

characteristics such as resistance to biotic and abiotic stressors,
Frontiers in Plant Science 02
reduced growth capacity (“dwarf” varieties), together with the

improvement of yields and organoleptic characteristics of

production (Hampton et al., 2001). To date, although

numerous studies have already confirmed the excellent

productive and qualitative response of hops grown in the

Mediterranean environments (Mongelli et al., 2015; Rossini

et al., 2016; Ruggeri et al., 2018; Marceddu et al., 2020; Rossini

et al., 2021; Figures 1, 2), there’s still the lack of knowledge on the

effects of abiotic stresses on hop yield and quality. Since hop is a

perennial crop, abiotic stresses might reflect in cone yields in

subsequent growing seasons, representing a multi-year

economic risk for farmers who decide to invest in this crop in

a new environment such as the southern regions of

the Mediterranean.

Hops are mainly cultivated for the beer industry as a source

of secondary metabolites (i.e., a-acids, b-acids and aromatic

oils), which give the characteristic bitterness and aroma, as well

as antimicrobial properties to the brewing products (Neve,

1991). These substances are contained in the lupulin glands

that develop mainly in the female inflorescences, and their
FIGURE 1

Pictures taken during the first year of hop cultivation in a Sicilian semi-arid environment at the “Sparacia” farm (37°38’07” N; 13°45’47” E; 450 m
a.s.l.), Department of Agricultural, Food and Forest Sciences (D/SAAF), University of Palermo.
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amount increases as reproductive plant stages go on (i.e., from

the appearance of cones to their full growth) (de Keukeleire

et al., 2007).

Several studies have been carried out on the factors

influencing the biosynthesis of these compounds. The

biosynthesis of a-acids, b-acids and prenylated flavonoids

involves extremely complex biosynthetic pathways (Goese

et al., 1999; Paniego et al., 1999; Okada and Ito, 2001), that

can be affected in many steps by several external factors, such as

area of cultivation, phytosanitary status and age of crops (Jelıńek

et al., 2012; Matousěk et al., 2016; Morcol et al., 2020; Eriksen

et al., 2021). It appears that, as with other plant secondary

metabolites, both the genotype and the environment play a key

role in determining their final concentration (Almaguer et al.,

2014; Moore et al., 2014; Morcol et al., 2020).

This review work, therefore, aims to present the response of

hop to three common abiotic stresses (salinity, heat, and

drought), and the effects of these on crop productive and

qualitative performances.
Salinity stress

Among all the abiotic stressors, salinity is one of the major

threats to crops’ productivity in semi-arid environments, due to

its increased occurrence in farms with irrigated crops (Flowers,

2004). Salt stress persistence throughout plants’ growth cycles
Frontiers in Plant Science 03
might lead to co-occurrence with other stressors, either abiotic

or biotic, way more than drought or heat stress, which often

occurs at various intermittent periods either preceding or

following pathogen infection (Kissoudis et al., 2014). In

general, all plants respond to saline stress with morphological

and physiological modifications, responsible for the adaptation

of the osmotic potential, thanks to the involvement of different

genes and pathways (Julkowska and Testerink, 2015). Also, plant

hormones appeared to have a key role in the response to salinity

stress as reported by several researchers in different plant species

(Golldack et al., 2014; Ryu and Cho, 2015; Tao et al., 2015).

However, limited research has been devoted to studying the

basis of salinity tolerance in hops. Unquestionably, this species

might adapt to multiple hostile conditions, determined by the

presence of abiotic stressors such as salinity, activating all those

mechanisms already well defined for most vascular plants, i.e.,

the alteration of cytoplasmic free Ca2+, the activation of Ca2

+/calmodulin-dependent kinase, the production of secondary

signaling molecules such as reactive oxygen species (ROS) and

abscisic acid (ABA), and the activation of the salt overly sensitive

(SOS) pathway for regulation and maintenance of ion

homeostasis (Julkowska and Testerink, 2015).

In a field study with hops cultivars over a range of different

cultivation sites, Dabbous-Wach et al. (2021) assessed the good

acclimatization of German hop cultivars to the Corsican

environment one year after planting, even though high levels

of soil salinity were detected in most of the growing sites. A
FIGURE 2

Hop bines before 2022 harvest at the “Sparacia” farm (37°38’07” N; 13°45’47” E; 450 m a.s.l.), Department of Agricultural, Food and Forest
Sciences (D/SAAF), University of Palermo.
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noticeable change in plant morphology was detected after the

first year of cultivation: some plants showed a shortening of side

shoots, and, considering the lower number of cones in the side

shoots per plant, also reduced cone yields. From the

phytochemical point of view, the essential oil of these

genotypes showed a higher amount of myrcene (characterized

by spicy and balsamic herbal notes) and a−humulene (woody

notes), and lower a−selinene (herbal notes). Hence, a definite

compositional and aroma difference was assessed between hops

grown in the coastal areas and others from inner Corsica;

although salinity could not be claimed as the only cause of

these variations, it was certainly involved in the combined co-

presence of the high salinity of soils, water scarcity, and wind,

acting as a multiple stressor on cultivated plants. Interestingly, it

appeared that not all the varieties reacted in the same way, as

they have not been directly improved for salinity resistance,

showing also very important information for growers to make a

proper choice of hop cultivars that suit better to the local

growing conditions, and that would be consistent with the

outcomes of a recent research carried out in a semi-arid

Mediterranean environment (Carrubba et al., 2022).
Drought and heat stress

Numerous molecular and metabolic-related studies found

that plants’ responses to the combination of heat and drought

stress are unique and should be evaluated jointly rather than

individually (Pnueli et al., 2002; Rizhsky et al., 2002; Rizhsky et al.,

2004; Suzuki et al., 2005; Potopová et al., 2021). That is the reason

for these stressors to be presented jointly in this paragraph.

In a Mediterranean environment, characterized by high

temperatures throughout all hop growth season, an inverse

correlation was shown between plant growth and productivity

and heat accumulation, especially in the vegetative development

stages (Marceddu et al., 2020). High temperatures (HT) and low-

water (LW) stress during the growing season have consistently

been shown to decrease hop cone yield and bitter acid content of

cones (Srečec et al., 2004; Mozny et al., 2009; Nakawuka et al.,

2017; Donner et al., 2020).

A recent study carried out by Donner et al. (2020) found a

significant negative correlation between summer air temperature

and a−acids content in several Czech cultivars (cv. “Saaz”,

“Sladek” and “Premiant”). Mozny et al. (2009) also highlighted

a decrease in cone yield in growing seasons with low

precipitation and a decreased a-acids content in cv. “Saaz”

hops during high-temperature years. Similar reductions in

cones and a-acids yields under combined LW and HT

conditions were also found in the cv. “Aurora” in Croatia

(Srečec et al., 2004) and Slovenia (MacKinnon et al., 2020). In

a study carried out by Nakawuka et al. (2017) in the Washington

State (U.S.), a significant decrease in cone yields under reduced

irrigation was assessed, even though no significant effect was
Frontiers in Plant Science 04
assessed on bitter acid content in several American varieties (e.g.,

“Mt Hood”, “Columbus”, “Chinook”, and “Willamette”).

Nevertheless, limited research has been carried out on hop

mechanisms and structural traits resulting from drought stress

(Gloser et al., 2013; Korovetska et al., 2014; Korovetska

et al., 2016).

On a general basis, it is well known that the main effects of

drought stress on plant growth and development are determined

by water relation disorders as well as modification of water use

efficiency, with a major impact on the relative water content in

green tissues, leaf water potential, osmotic potential, pressure

potential and transpiration rate (Farooq et al., 2009; Farooq

et al., 2012). Changes in the pH, ABA, and sulphate

concentration in xylem sap were suggested as long-distance

drought signals also for hop plants (Gloser et al., 2013;

Korovetska et al., 2014; Korovetska et al., 2016), even though

there is still no certainty about the role of these metabolites in the

drought response of the species. In a trial carried out by Kolenc

et al. (2016), the drought stress response of two Slovenian hop

cultivars grown in pots was assessed by combining physiological

studies and proteomic analysis. According to these findings, hop

plants showed decreased transpiration rate and water potential

during reduced water availability, experiencing a decrease in

photosynthesis due to stomatal and non-stomatal limitation and

a strong decrease in photosynthetic proteins and proteins of the

energetic metabolism, affecting plant fitness in general. Also, a

very interesting study was carried out by Eriksen et al. (2021) who

looked at physiological traits and differential gene expression in

leaf, stem, and root tissue in plants of the cv “Cascade” exposed to

HT stress, LW stress, and a combination of both. In the above

experiment, the cultivation trial took place in growth chambers

where the imposed stress conditions were able to impress

substantial changes to the transcriptome. Significant reductions

in the expression of numerous genes were detected, which resulted

in a decrease in agronomically important secondary metabolite

biosynthesis, e.g., bitter acids. However, as reported by the same

Authors, other studies found no reductions in a−acids content
under LW stress (Nakawuka et al., 2017) or cultivar-specific

reactions to LW and HT stresses (Donner et al., 2020),

suggesting possible cultivar-based differences in the temperature

tolerance range, that could be exploited to develop breeding lines

with increased resilience to abiotic stress.

Heat stress-wise, it is known that plants exposed to high

temperatures might manifest various symptoms, deriving from

the drastic limitation of their photosynthetic activity (Berry and

Bjorkman, 1980). Allakhverdiev and coworkers (2008) identified

three components of the photosynthetic system that are sensitive

to heat damage, namely the photosystems themselves, the ATP-

generating electron transport chain, and the carbon assimilation

process. According to other research also, heat resulted to affect

photosystem II by causing the dissociation of Manganese (Mn)

from the oxygen-evolving complex, but also by disrupting the

distribution of absorbed light energy from the light-harvesting
frontiersin.org
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complex (Enami et al., 1994; Enami et al., 1998; Nash et al., 1985;

Pastenes and Horton, 1996).

The disruption of membrane fluidity caused by heat, also,

determines the breakdown of the thylakoid membrane integrity,

which leads to disruptions in the electron transport chain and

ATP synthesis (Gounaris et al., 1983; Inaba and Crandall, 1988).

Moreover, HT stress was found responsible for the destruction

of the Rubisco activase protein, leading to the inactivation of the

carboxylating enzyme and, therefore, to the disruption of carbon

assimilation (Salvucci et al., 2001; Salvucci and Crafts-Brandner,

2004; Sharkey, 2005). In six hop cultivars exposed to HT (within

a range of temperatures from 15 to 45°C), Eriksen et al. (2020)

highlighted that all the tested plants achieved maximal carbon

assimilation at temperatures ranging from 21 to 39°C without

the availability of water being a limiting factor. When the

temperatures reached and overpassed 41°C, all plants

experienced severe stress, showing decline in carbon

assimilation, due to multiple effects on the cell, including

damage to photosystem II (PSII), damage to membrane

integrity as reflected in electrolyte leakage at high

temperatures, and declines in Rubisco activity probably due to

deactivation of Rubisco-activase enzyme. According to these

findings, “Cascade” and “Southern Brewer” appeared to be better

candidates for use as breeding lines to improve abiotic stress

tolerance than “Chinook”, which appeared to be particularly

susceptible to extreme heat stress.
Conclusions

Biosynthesis pathways of secondary metabolites in hops, and

therefore concentration levels in cones, proved very sensitive to

stress conditions such as salinity, LW and HT. Such sensitivity is

variable according to many factors, including genotype, intensity

and duration of stress, the simultaneous occurrence of two or

more stressors, but also phenology of the plant. For example, the

stage of cone development is one of the most crucial for flavor

compounds biosynthesis in hops, therefore representing a key
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moment for the success of hop cultivation. Even though HT

stress is difficult to avoid in the field, LW stress should be

minimized in irrigated systems during this period. In this sense,

agrotechnical care is an essential tool to obtain satisfactory

production levels, above all when those to be managed are

new crops in new areas of cultivation. The findings from the

research above might represent valuable information for growers

developing hopyards in the increasingly warm regions of the

Mediterranean. However, it also emerged that some hop

genotypes are better adapted than others to environmental

constraints, and are, therefore, more suitable to highly

demanding cultivation areas. The proper choice of the right

variety given the environmental context is a key point to

successfully manage this challenging crop.
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of hop-yields due to compound drought and heat events over European key-hop
regions. Int. J. Climatol. 41(Suppl. 1), E2136–E2158. doi: 10.1002/joc.6836

Rizhsky, L., Liang, H., and Mittler, R. (2002). The combined effect of drought
stress and heat shock on gene expression in tobacco. Plant Physiol. 130 (3), 1143–
1151. doi: 10.1104/pp.006858

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R.
(2004). When defense pathways collide. the response of arabidopsis to a
combination of drought and heat stress. Plant Physiol. 134 (4), 1683–1696.
doi: 10.1104/pp.103.033431

Rossini, F., Loreti, P., Provenzano, M. E., De Santis, D., and Ruggeri, R.
(2016). Agronomic performance and beer quality assessment of twenty hop
cultivars grown in central Italy. Ital. J. Agron. 11 (3), 180–187. doi: 10.4081/
ija.2016.746

Rossini, F., Virga, G., Loreti, P., Iacuzzi, N., Ruggeri, R., and Provenzano, M. E.
(2021). Hops (Humulus lupulus l.) as a novel multipurpose crop for the
Mediterranean region of Europe: Challenges and opportunities of their
cultivation. Agriculture 11 (6), 484. doi: 10.3390/agriculture11060484

Ruggeri, R., Loreti, P., and Rossini, F. (2018). Exploring the potential of hop as a
dual purpose crop in theMediterranean environment: Shoot and cone yield fromnine
commercial cultivars. Eur. J. Agron. 93, 11–17. doi: 10.1016/j.eja.2017.10.011

Ryu, H., and Cho, Y. G. (2015). Plant hormones in salt stress tolerance. J. Plant
Biol. 58 (3), 147–155. doi: 10.1007/s12374-015-0103-z

Salvucci, M. E., Osteryoung, K. W., Crafts-Brandner, S. J., and Vierling, E.
(2001). Exceptional sensitivity of rubisco activase to thermal denaturation in vitro
and in vivo. Plant Physiol. 127 (3), 1053–1064. doi: 10.1104/pp.010357
Frontiers in Plant Science 07
Salvucci, M. E., and Crafts-Brandner, S. J. (2004). Mechanism for deactivation of
Rubisco under moderate heat stress. PHYSIOLOGIA PLANTARUM 122, 513–19.
doi: 10.1111/j.1399-3054.2004.00419.x

Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., et al. (2004).
The role of increasing temperature variability in European summer heatwaves.
Nature 427 (6972), 332–336. doi: 10.1038/nature02300

Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis:
importance of thylakoid reactions, rubisco deactivation, reactive oxygen species,
and thermotolerance provided by isoprene. Plant Cell Environ. 28 (3), 269–277.
doi: 10.1111/j.1365-3040.2005.01324.x
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