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Precision detection of crop
diseases based on improved
YOLOv5 model

Yun Zhao, Yuan Yang, Xing Xu* and Cheng Sun

School of Information and Electronic Engineering, Zhejiang University of Science and Technology,
Hangzhou, China
Accurate identification of crop diseases can effectively improve crop yield.

Most current crop diseases present small targets, dense numbers, occlusions

and similar appearance of different diseases, and the current target detection

algorithms are not effective in identifying similar crop diseases. Therefore, in

this paper, an improved model based on YOLOv5s was proposed to improve

the detection of crop diseases. First, the CSP structure of the original model in

the feature fusion stage was improved, and a lightweight structure was used in

the improved CSP structure to reduce the model parameters, while the feature

information of different layers was extracted in the form of multiple branches. A

structure named CAM was proposed, which can extract global and local

features of each network layer separately, and the CAM structure can better

fuse semantic and scale inconsistent features to enhance the extraction of

global information of the network. In order to increase the number of positive

samples in the model training process, one more grid was added to the original

model with three grids to predict the target, and the formula for the prediction

frame centroid offset was modified to obtain the better prediction frame

centroid offset when the target centroid falled on the special point of the

grid. To solve the problem of the prediction frame being scaled incorrectly

during model training, an improved DIoU loss function was used to replace the

GIoU loss function used in the original YOLOv5s. Finally, the improved model

was trained using transfer learning, the results showed that the improved

model had the best mean average precision (mAP) performance compared

to the Faster R-CNN, SSD, YOLOv3, YOLOv4, YOLOv4-tiny, and YOLOv5s

models, and the mAP, F1 score, and recall of the improved model were 95.92%,

0.91, and 87.89%, respectively. Compared with YOLOv5s, they improved by

4.58%, 5%, and 4.78%, respectively. The detection speed of the improved

model was 40.01 FPS, which can meet the requirement of real-time

detection. The results showed that the improved model outperformed the

original model in several aspects, had stronger robustness and higher accuracy,

and can provide better detection for crop diseases.
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1 Introduction

Crop diseases have always been a major concern for farmers,

and they can seriously affect the yield of crops. For crop disease and

pest problems, manual methods were used in the past for pest

removal, which have great limitations, such as being time-

consuming and labor-intensive, as well as inaccurate grasp of the

type, location and number of diseases at different times. Therefore,

it is necessary to study amodel that can detect crop diseases quickly

and accurately. For the various diseases that exist in crops, scholars

have been improving and innovating artificial intelligence

techniques applied in agriculture, expecting to study an efficient

and accuratemodel. In the field of computer vision includes several

tasks such as image classification, target detection, instance

segmentation, semantic segmentation, etc., and target detection is

the most basic task among them. When convolutional neural

networks were not yet developed, most target detection research

used traditional algorithms, such as decision trees, Bayesian

classification, Adaboost and support vector machines. Some

scholars have compared the performance of both migration

learning methods and deep feature plus SVM on 11 models, and

the results showed that the latter had better results (Sethy et al.,

2020). A combined fractional-order Zernike moments (FZM) and

SVM approach was proposed to identify grape leaf diseases (Kaur

et al., 2019). Two different methods based on traditional and deep

learning were compared for extracting pepper pest and disease

features and it was concluded that the deep learning based method

has better performance (Ahmad Loti et al., 2021). A CNNs model

called LeafNet was built using different sizes of feature extraction

filters that were used to detect tea tree disease types and the average

classification accuracy of this model was improved by 29.54% and

19.39% when compared with the SVM algorithm and MLP

algorithm respectively (D.Pujari et al., 2016). Healthy and

undesirable leaves of citrus were compared using the LIBS

technique and classified using both quadratic discriminant

analysis and SVM models in order to provide an effective

nutritional evaluation method for citrus orchards (Sankaran

et al., 2015).

After that, due to the rise of convolutional neural networks,

target detection entered the period of using deep learning

algorithms, where the development of target detection went

through a process from second-order to first-order algorithms,

first-order algorithms include SSD (Liu et al., 2016) and YOLO

(Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020) family of algorithms, and

second-order algorithms include R-CNN (Girshick et al., 2014),

Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015)

algorithms. From second-order algorithms to first-order

algorithms, there are many scholars who have done various

different studies. An improved Faster R-CNN method was

proposed to detect four common diseases of tomato, and the

improved method has improved the recognition accuracy by
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2.71% over Faster R-CNN (Zhang et al., 2020). By combining the

CBAM attention mechanism, HRNet network and ASPP structure

to improve the R-CNN network, a detection algorithm was

proposed to extract small target pests at different scales in citrus

with an average recognition rate of 88.78% (Dai et al., 2021a). A

fusion of FCM-KM and Faster R-CNN was proposed to detect rice

diseases (Zhou et al., 2019). By comparing the Faster R-CNN

models of eight different pre-trained networks to detect potato

shoots, the experimental results showed that the average accuracy

of the improved Faster R-CNN improved by 5.98% over the

original Faster R-CNN (Xi et al., 2020). An algorithm called

MFaster R-CNN was implemented by constructing a hybrid loss

function using a central cost function and using four different pre-

training structures, which can improve the detection of maize

diseases in real environments (He et al., 2022). Using the Faster

R-CNN algorithm to detect diseases associated with rice leaves, the

detection accuracies of three diseases, rice blast, brown spot and

hispa, were 98.09%, 98.85% and 99.17% (Bari et al., 2021).

Compared with the second-order target detection algorithm, the

first-order algorithm has higher detection accuracy and detection

efficiency. Some scholars have provided technical support for

robotic intelligent citrus picking by pruning the backbone

network of YOLOv4 algorithm and proposing a two-way

pyramidal network (Bi-PANet) (Zheng et al., 2021). An efficient

network for detecting grape leaf pests was constructed by

combining Inception structure, depth-separable convolution and

dense connectivity structure, the accuracy of the model could reach

97.22% (Liu et al., 2020). Improved detection of tomato pests and

diseases by improving the residual unit in YOLOv3 algorithm with

92.39% accuracy of the improved algorithm (Liu andWang, 2020).

An improved Faster DR-IACNN method for detecting common

foliar diseases of grapes was proposed, which achieved 81.1%mAP

and 15.01 FPS detection speed (Xie et al., 2020). An improved

YOLOv4 method was proposed to detect plums of different

maturity in orchards for their small shape and dense growth

(Wang et al., 2022). An improved YOLO-Dense method (Wang

and Liu, 2021b) and an improved YOLOv3-Tiny model (Wang

et al., 2021) were proposed to detect tomato anomalies in complex

natural environments. A multi-scale parallel algorithm MP-

YOLOv3 was proposed to improve the detection of tomato gray

mold based on the MobileNetv2-YOLOv3 model (Wang and Liu,

2021a), and the experimental results showed that the improved

model has strong robustness in real natural environments. An

algorithm based on super-resolution image enhancement (Zhu

et al., 2021) and an algorithm combining Inception and an

improved Softmax classifier are proposed to detect grape and

apple diseases, respectively (Li et al., 2022). Enhancing feature

extraction by incorporating DenseNet interlayer density in the

YOLOv4model (Gai et al., 2021). To improve the yield of carrots, a

lightweight and improved YOLOv4 model was proposed, which

uses a variety of lightweight structures to greatly reduce the number

of parameters and the computational effort of the network
frontiersin.org

https://doi.org/10.3389/fpls.2022.1066835
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2022.1066835
(Ying et al., 2021). A class loss function based on AP-Loss (Average

Precision loss) is proposed to deal with the positive and negative

sample imbalance problem during training. The final experimental

results show that the mAP of the improved algorithm is 97.13%

(Chen et al., 2021). An improved YOLOv5 model was proposed to

improve the detection of kiwi defects by adding a small target layer,

introducing SE attention mechanism and CIoU loss function, and

the mAP of the improved model was improved by nearly 9%

compared with the original model (Yao et al., 2021). An improved

YOLOv5 model incorporating the involution bottleneck module

and the SE module was proposed (Chen et al., 2022), as well as a

lightweight YOLOv5-CS model that improves the generalization

capability of the model using image rotation coding to achieve

accurate counting of citrus by deploying it into an AI edge system

(Lyu et al., 2022).

As mentioned above, in the field of target detection, many

scholars have proposed very good ideas andmethods, which have

been applied to agriculture with good results, but there is room for

further improvement for certain agricultural disease problems,

such as for the problem of small, dense and overlapping disease

targets, many methods have high accuracy for disease detection

but also high model computation, or the opposite of both. And in

non-agricultural aspects also scholars have made research for

small target datasets, such as one proposed an attention feature

fusion structure to fuse semantic and scale inconsistent features

(Dai et al., 2021b). Then a combination ofMobileNetv2, YOLOv4

and attentional feature fusion structure has been proposed for the

detection of underwater small targets and target aggregation to

improve the accuracy by improving the attentional feature fusion

structure to better fuse features of different scales (Zhang et al.,

2021b). The detection accuracy of small aircraft and ship targets is

improved by adding an additional detection layer and introducing

union-non-maximum suppression (NMS) to the YOLOv5 model

(Tan et al., 2021). In order to enhance the utilization of shallow

convolutional features, a three-layer pyramidal network structure

based on horizontal connection fusion is established, which can

improve the detection of small targets (Lu et al., 2020). In this

paper, we hope to propose a model with low number of

parameters and high accuracy. Although the above methods are

not applied in agriculture, they are also for some small and dense

data sets, so we can get inspiration in them. In this paper, we

consider extracting feature information of disease targets from

different angles, obtaining different feature information from

different structures of different branches, and improving the

detection of disease targets by fusing feature structures

containing different semantic In this paper, we consider

extracting feature information of disease targets from different

angles, obtaining different feature information through different

structures of different branches, and improving the detection

effect of targets by fusing feature structures containing different

semantics information, and the improved model can achieve the

expected effect through continuous comparison experiments.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Materials

2.1.1 Image and data accquisition
The images used in this paper were taken from the

PlantVillage (Hughes and Salathé, 2015) public dataset. Five

crops with eight disease types were taken from the PlantVillage

dataset and manually annotated using the LableImg image

annotation tool, and a total of 1319 images were annotated. In

order to prevent the problem of overfitting and non-convergence

due to too little training data, random image enhancement

processes, including Gaussian blurring, horizontal flip, random

rotation, and random brightness adjustment, were applied to the

annotated 1319 images to expand the dataset to 4079 images.

The expanded images were divided into the training set,

validation set and test set, where the ratio of the training set to

the test set is 9:1, and 10% of the training set is used as the

validation set. The categories and numbers of diseases in the

labeled dataset are shown in Table 1.

2.1.2 Image enhancement
In this paper, we used two data enhancement methods in the

training process, one is the common data enhancement method,

such as image flipping, scaling, length and width distortion, and

color gamut transformation, and the other is the mosaic data

enhancement method. The mosaic data enhancement method is

proposed in the YOLOv4 paper, and the main idea was to crop

four images randomly and then stitch them onto one image as

training data. Although the mosaic data augmentation method

can expand the diversity of data samples and enhance the feature

extraction ability of the network, it will be detached from the real

distribution of natural images, so this paper used the mosaic data

augmentation method in the first 40% of training rounds and the

normal data augmentation method in the next 60% of rounds, so
frontiersin.org
TABLE 1 Type and number of diseases in the labeled datasets.

Type Number

Grape Black Measles 140

Grape Leaf Blight 180

Grape Black Rot 136

Peach Bacterial Spot 150

Potato Late Blight 316

Apple Black Rot 132

Apple Scab 114

Corn Northern Leaf Blight 151

Total 1319
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as to improve the training effect of the network. The mAP values

obtained using different ratios of mosaic data augmentation

methods for the improved model are shown in Figure 1. From

the figure, it can be seen that the optimal results are obtained

when using 40% of the mosaic data enhancement method.
2.2 Methods

2.2.1 Improvement of the CSP structure
Compared with the YOLOv4 model, the YOLOv5 model used

two different CSP structures in the backbone part and neck part. In

this paper, the CSP structure of the neck part of the YOLOv5s

model is improved, and the improved CSP structure is shown in

Figure 2. The original CSP structure divides the feature mapping of

the input layer into two parts, and then combines them after a series

of convolution operations, which can reduce the computational

effort and ensure the accuracy at the same time. In this paper, this

design idea was retained in the improved CSP structure, and two

lightweight structures were used to extract feature information. One

is the Ghost module (Han et al., 2020), which not only generates

more feature maps instead of normal convolution, but also has

lower computational effort. The other is the inverted residual

structure, which is proposed in the MobileNet (Howard et al.,

2017; Sandler et al., 2018; Howard et al., 2019) family of networks

and contains the main structures of deep convolution and point

convolution. The modified CSP structure divided the upper layer

input into two parts, each of which is passed through a

convolutional layer to adjust the channel dimension, after which

the output of one of the branches is passed through the Ghost

module to replace the two normal convolutional layers in the

original CSP structure, which is able to reduce the computational

effort of the model while ensuring its accuracy, and then the output

of this part was divided into two parts, one of which is passed

through an inverse residual The structure of this part was divided
Frontiers in Plant Science 04
into two parts, one was through a structure of inverted residuals,

which first makes the number of input and output channels of deep

convolution more by raising the dimensionality of one

convolutional layer, so as to extract more information. The core

of deep convolution is the number of input and output feature

matrix channels is equal to the number of convolutional kernels,

which can greatly reduce themodel computation and the number of

parameters. The other part was through a global average pooling

layer to extract global information and enhance the ability of global

information extraction. These two parts was able to extract different

feature information from the input layer separately, avoiding the

data redundancy caused by repeatedly extracting the same features.

Finally, the outputs of these three parts were stitched into the

channel dimension, and then the final number of output channels

was adjusted by a convolution layer. The improved CSP structure

was more complex than the original CSP structure, but the

computational effort was not significantly increased because some

lightweight structures were used, but the improved CSP structure

can extract more feature information and enhance the detection

effect of the model.

2.2.2 The proposed CAM structure
This paper also proposed a module called CAM, which used a

plug-and-play efficient multiscale channel attention mechanism

that improves the channel attention mechanism, namely the EPSA

module (Zhang et al., 2021a), and the structure of the CAMmodule

is shown in Figure 3. The input of both deep and shallow networks

was divided into two branches, where one branch of the deep

network extracted the global features of the network through the

global average pooling layer, and the other branch extracted the

spatial information of the multi-scale feature map through the

inverse residual structure and EPSA module. Finally, the two

branches were fused for better feature fusion of different feature

information. The shallow network’s input is divided into two

branches, unlike the deep network, because one branch of the
FIGURE 1

Different rates of mosaic data enhancement methods.
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shallow network extracted the local features through the global

maximum pooling layer, and the rest of the network was also

enhanced by the inverse residual structure and EPSA module to

extract the multi-scale feature maps. Global average pooling and

global maximum pooling produce different effects in different

layers. In the shallow network, the abstraction of the image is not

yet very high, when the image contained more texture feature

information, while as the network deepens, the resulting feature

maps become more and more abstract, when the image contained

more semantic and contextual information. Therefore, the input of

the accepted shallow network in the CAM structure was passed
Frontiers in Plant Science 05
through the global maximum pooling layer, through which some

invalid information was removed to make the obtained feature

maps more sensitive to detailed information. The input from the

deeper network was accepted through a global average pooling

layer to integrate global spatial information and obtain global

contextual information. Secondly, the CAM module also fused

the feature information of the two upper layer inputs, preserving

the feature information of the original input and supplementing the

feature information lost after the pooling operation. The CAM

module can realize the feature fusion of global and local features,

which can better fuse the features with inconsistent semantics and
FIGURE 3

CAM structure.
FIGURE 2

Improvement of the CSP Structure.
frontiersin.org
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scales, thus enhancing the extraction capability of the global

information of the network and improving the accuracy of the

network model.
2.2.3 Improvement of the bounding box
prediction method

In the YOLOv5s network model, the centroids of the preset

anchor values all fall in the upper left corner of the prediction

grid, and then are gradually shifted toward the target centroids

by the formula. The real frame is mapped onto the feature map,

and the target is predicted by the grid when the centroid of the

real frame falls in a grid. The YOLOv5s network selects two

additional grids adjacent to the grid in addition to the grid where

the centroid of the real frame is located to predict the target, so as

to increase the number of positive samples for model training.

The improved YOLOv5s network added a neighboring grid to

the original network to predict the target, and the prediction grid

used when the center point fell at different locations is shown in

Figure 4, where the green box is the real box, the black dot is the

center point of the real box, the blue box is the prediction grid

used in the original network, and the red box is an additional

prediction grid added in this paper. The additional grid can

further increase the number of positive samples and improve the

accuracy of model predictions. The Formula of the original

network for grid prediction offsets is:

bx   =   2� s txð Þ − 0:5ð Þ +   cx (1)

by   =   2� s ty
� �

− 0:5
� �

  +   cy (2)

bw = pw � 2� s twð Þð Þ2 (3)

bh = ph � 2� s thð Þð Þ2 (4)

In this paper, the above Formula (1) and (2) are improved as:

x   =   2:2� s txð Þ − 0:6 (5)

y   =   2:2� s ty
� �

− 0:6 (6)
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bx   =  

−0:5  ,       x < −0:5  

x  ,                 other    

1:5  ,           x > 1:5    

+   cx

8>><
>>:

(7)

by   =  

−0:5  ,       y < −0:5  

y  ,                 other      

1:5  ,           y > 1:5    

  +   cy

8>><
>>:

(8)

where bx , by , bw , and bh denote the locations of the predicted

target centroid and height and width, respectively. s is a Sigmoid

function that aims to limit the predicted offset to between 0 and 1.

tx and ty denote the offset of the x and y coordinates of the target

center predicted by the network relative to the upper left corner of

the grid, respectively, and cx and cy denote the x and y coordinates

of the corresponding upper left corner of the grid. When the real

target centroid falls at the center of the grid, the YOLOv5s model

predicts the target by the gridwhere the centroid is located and the

grid above and to the right of the grid where the centroid is

located.When using the previous grid of the grid where the center

point of the real target is located to predict the target, a value of

s(ty) of 1 is required according to the grid prediction offset

formula, i.e., ty needs to tend to positive infinity. When the

target is predicted using the grid to the right of the grid where

the center point of the real target is located, the value of s(tx)
needs to be 0 according to the grid prediction offset formula, i.e., tx
needs to tend to negative infinity. For these two cases, the original

model formula is difficult to take these two values, so this paper

improved the original formula by first increasing the range of

values of the original formula to include all the required values,

and then limiting the range of values so that it did not exceed the

maximum value required for the grid prediction offset, and finally

the formula obtained does not need to converge to infinity to take

the required values.

2.2.4 Improvement of the loss function
The loss of the YOLOv5s model consists of three

components, including classification loss, confidence loss, and

bounding box loss. Among them, BCE loss is used for
FIGURE 4

The prediction grid corresponding to the different positions of the real box.
frontiersin.org
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classification loss and confidence loss, and GIoU loss is used for

localization loss. The BCE loss and GIoU loss are calculated as

follows:

BCE loss  =   −
1
N

�o
N

n=1
yn � logxn + 1 − ynð Þ � log 1 − xnð Þ½ � (9)

Where yn denotes the true category, which generally takes

the value of 0 or 1, xn denotes the prediction confidence or target

probability obtained by the Sigmoid function, and N is the

number of positive and negative samples.

GIoU loss  =  1 − IoU +
Ac − u
Ac (10)

Where IoU is the intersection ratio of the area of the real

frame and the prediction frame, Ac is the minimum outer

rectangle of the real frame and the prediction frame, and u is

the area of the concatenated set of the real frame and the

prediction frame. The GIoU loss function solves the problem

that the loss is zero when the prediction frame and the real frame

do not overlap in the IoU loss function, but theGIoU loss function

also has some problems, such as when the real frame and the

prediction frame have the inclusion phenomenon The GIoU loss

function degenerates into the IoU loss function when the real

frame and the predicted frame intersect, and the slow convergence

in the horizontal and vertical directions. The DIoU loss function

solves the problems encountered by the GIoU loss function by

introducing the overlap area and the distance of the centroids, and

speeds up the convergence of the model by directly minimizing

the distance between the two target frames.The Formula of the

DIoU loss function is shown as follows:

DIoU = IoU −
r2 b, bgtð Þ

c2
(11)

DIoU   loss = 1 − DIoU (12)

Where r2(b,bgt) is the square of the Euclidean distance from the

centroid of the real frame to the centroid of the predicted frame, and

c is the diagonal distance between the closed region of the two target

frames. Although the performance of the DIoU loss function is

higher than that of the GIoU loss function, the DIoU loss function

also has some problems, for example, when the distance between

the two target frames is constant, the longer the distance of c is, the

smaller the value of the DIoU loss function is, which indicates that

the DIoU loss function may achieve the purpose of reducing the

loss function by enlarging the prediction frame, In order to solve

this problem, this paper improved the DIoU loss function by

adding the denominator of the original formula by the square of

the Euclidean distance between the real frame and the upper left

corner of the prediction frame to reduce the size of the change in the

DIoU value when the edge length of the prediction frame changes,
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thus speeding up the convergence of the model. At the same time,

this paper obtained the formula ( w
wgt − 1)2 + 1 based on parabolic

reasoning, which introduces the ratio of the width of the prediction

frame and the real frame. When the side lengths of the prediction

frame and the real frame are the same, the ratio of w
wgt will be 1,

while when the side lengths of the prediction frame and the real

frame are not the same, the ratio of w
wgt will be greater than 1 or less

than 1. Therefore, only when the prediction frame and the real

frame The formula can solve the problem that the loss value

decreases when the edge length of the prediction frame expands

or shrinks. The improved DIoU loss function is given by

DIoU = IoU −
r2 b, bgtð Þ

r2 l, lgtð Þ + c2
� w

wgt − 1
� �2

+1
� �

(13)

DIoU   loss = 1 − DIoU (14)

where r2(l,lgt) denotes the square of the Euclidean distance

between the upper left corner of the real frame and the prediction

frame, and wgt and w denote the width of the real frame and the

prediction frame, respectively. In this paper, five cases are

exemplified to demonstrate the effectiveness of the improved loss

function, as shown in Figure 5, in which the green box on the left

represents the real frame, the blue box on the right represents the

prediction frame, the black line is the center distance of the two

target frames, and the orange line is the diagonal distance of the

closed region of the two target frames. Figure 5A represents the best

match between the real frame and the predicted frame, where the

side lengths of both the real frame and the predicted frame are w

and the distance between the two framecentroids is 2w. Figures 5B–

E show the cases where the side lengths of the predicted frame

change by keeping the side lengths of the real frame and the

centroid distances of the two frames constant. Using the original

DIoU loss function formula, we calculate the DIoU values of -0.4,

-0.47, -0.25, -0.19, and -0.3 for the five figures in Figure 5. It can be

seen that when the edge length of the prediction frame is enlarged,

theDIoU value becomes larger, and thus the loss value decreases, so

that the model converges in this direction and the prediction frame

is wrongly enlarged, thus reducing the detection accuracy for small-

scale samples. The DIoU values of the five images in Figure 5 are

-0.29, -0.37, -0.43, -0.33, and -0.54 using the improved DIoU loss

function, which shows that the loss value increases when the edge

length of the prediction frame is enlarged or reduced, so that the

prediction frame trained by themodel graduallymatches the size of

the real frame.

2.2.5 Improvement of the YOLOv5s model
There are four versions of the YOLOv5 model, s, m, l, and x.

With the gradual expansion of depth and width, their

parameters and calculation volume are also gradually

increasing, and the number of parameters and computation of

the four versions of the YOLOv5 model are shown in Table 2.

YOLOv5s is one of the most lightweight models, and also has
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relatively low accuracy, while the various structures and

formulas improved in this paper can improve the The

YOLOv5s network model mainly consists of a backbone, a

neck and a head. the backbone part includes the Focus

module, the CSPdarknet53 structure and the SPP structure.

Two CSP structures are designed in the YOLOv5s model, and

different CSP structures are used for the backbone part and neck

part. The improved YOLOv5s model in this paper is shown in

Figure 6. The structural improvement was divided into two

parts, one was to use the improved CSP structure instead of the

original CSP structure in the neck of the YOLOv5s model, as

shown in the red border in Figure 6. The improved model in this

paper did not perform the splicing operation after the up-

sampling operation, but used a CAM module, and the output

of the shallow network of the backbone and the output of the up-

sampling operation were used as the input of the CAM module

respectively. The improvements in formulas and parameters

were also divided into two parts, one was the improvement of

the formula for predicting the coordinate offset of the target

centroid and adding one more prediction grid to increase the

number of positive samples, and the other was the improvement

of the loss function formula. In addition to the above

improvements, the pre-defined anchor values were also

adjusted in this paper.

The anchor values used in the original algorithm were

obtained based on the COCO dataset, and the original preset

anchor values were too large relative to the dataset used in this
Frontiers in Plant Science 08
study. A suitable anchor value could improve the accuracy of

model detection and speed up model convergence, so this study

used the IOU value as an indicator to determine the distance

between samples, with the following Formula:

d box, centroidð Þ   =   1 − IOU box, centroidð Þ (15)

The box is the target bounding box, centroid is the bounding

box selected as the center in the clustering, and IOU is the

intersection ratio between the target bounding box and the center

box of the clustering. Larger IOU values and smaller distances

indicate better anchor values are obtained. Nine sets of suitable

anchor values were obtained by re-clustering the used dataset using

the k-means algorithm, and the new anchor values were (13, 10),

(13, 14), (29, 32), (42, 39), (47, 54), (61, 46), (74, 70), (140, 115), and

(106, 365). Three sets of smaller anchor values were used to predict

larger targets, three sets of medium anchor values were used to

predict medium targets, and three sets of larger anchor values were

used to predict smaller targets. All the above improvement parts

together form the final network model in this paper.

This paper used the lightest of the four versions of the YOLOv5

model, and in order to achieve a lighter model, we compared the

effect of using the lighter network MobileNetv3 as the backbone of

the model on the experimental results based on the improved

model. Also, there weremanywidely used loss functions in the field

of target detection, and this paper compares several of them with

the improved loss function in this paper to demonstrate the

advantages of the improved loss function in this paper.
A B C

D E

FIGURE 5

(A–E) Are the real box and prediction box matching diagram when the size of the prediction box is changed.
TABLE 2 Comparison of different versions of YOLOv5 model.

Model Parameters (M) Calculation volume (G)

YOLOv5s 7.08 8.22

YOLOv5m 21.08 25.25

YOLOv5l 46.67 57.18

YOLOv5x 87.29 108.74
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3 Experimental operation
environment and model training

The experiment was performed on a windows workstation

equippedwith two Intel Xeon Silver 4210 10Core@ 2.20GHzCPUs

with 128GB of RAM and NVIDIA RTX 2080ti with 11GB of video

memory for the GPU. The experiment was also performed with

Python 3.8, pytorch 2.6, and CUDA 10.0 training environments.

In this paper, the SGD optimizer was used in the model

training process, and the momentum parameter used inside the

optimizer was set to 0.937. Since this paper used the SGD

optimizer, if the initial learning rate of the model was set too

small, it would lead to too slow convergence, so the initial

learning rate was set to 0.01, and in order to find the optimal

solution faster in the later stage of the model training, the

learning rate was adjusted in a stepwise manner. The size of

the training image input was 640×640, the number of training
Frontiers in Plant Science 09
epochs is 400, and the early stop mechanism was introduced in

the training process, which stops the model when the loss value

of the validation set does not drop more than 20 times. The early

stop mechanism was introduced in the training process to stop

the model when the loss value of the validation set does not drop

more than 20 times, so as to avoid overfitting on the training

dataset. In order to accelerate the model convergence, this paper

used migration learning for training, and the batch size was 16.
4 Experimental results and
comparative analysis

4.1 Model evaluation indicators

To obtain accurate model detection results, the trained models

were evaluated using the evaluation metrics of mAP, precision (P),
FIGURE 6

Improved YOLOv5s model.
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recall (R), average precision (AP), harmonic average F1 value (F1),

number of network parameters, calculation volume and detection

speed. The threshold value of IOU was set at 0.5, and the formulas

for P, R, AP, F1 and mAP are shown in formula (16-20).

P =  
TP

TP + FP
(16)

P =  
TP

TP + FN
(17)

AP =
Z 1

0
P Rð ÞdR (18)

F1 =
2PR
P + R

(19)

mAP =

Z Q

q=1
AP qð Þ
Q

(20)

Where TP denotes the number of correctly detected diseases,

FP denotes the number of incorrectly detected diseases, and FN

denotes the number of undetected diseases. P denotes the

proportion of all targets predicted by the model that are correctly

predicted, and R denotes the proportion of all real targets that are

correctly predicted by the model. For each disease, a P-R curve can

be drawn based on the values of Precision and Precision, and AP

represents the area under the P-R curve, and the closer the area is to

1, the better the performance. In general, Precision and Recall are

negatively correlated, and Recall tends to be low when Precision is

high, so in order to balance these two indicators, F1 value is

proposed, which represents the weighted summed average of

Precision and Recall. mAP is the average of multiple categories of

AP, which is the most commonly used evaluation index in target

detection, where mAP Q in the formula represents the number of

categories in the data set. FPS is used to evaluate the speed of target

detection, i.e., the number of images that can be processed per

second; the larger the FPS, the faster the model detection speed.
4.2 Comparative experiments of each
improvement part

The algorithm proposed in this paper was based on the

improved YOLOv5s model. The improved aspects included the

improvement of the neck CSP structure of the YOLOv5s model, a

proposed CAM structure that enables better multi-scale fusion,

the re-clustering of the anchor values, the improvement of the

bounding box prediction method, and the improvement of the

loss function. The expanded dataset was used as the training,

validation, and testing samples, and the improved model in this

paper was trained using the optimized nine sets of anchor values

and the improved loss function. The results are shown in Figure 7

for each improved part compared with the original model.
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In the figure, A indicates the use of the improved CSP structure

in the neck of the YOLOv5s model, B indicates the use of the

proposed CAM structure in the YOLOv5s model, C indicates the

optimization of the bounding box prediction method of the

YOLOv5s model, and Improved is the final improved model that

combines the above three improved parts. It can be found that the

improved mAP values for each part of the original model in this

paper are higher than the original model, and the final improved

model is obtained by combining each improved part together, and

the final improved model can get the highest mAP value.

There are eight disease types in the dataset used in this paper,

and the results of comparing the AP values obtained from training

in the improved model and the original model for each disease

type are shown in Table 3. From the table, it can be seen that the

final improved model has the best detection results for various

diseases, and the AP values are higher than the original model.
4.3 Comparative experiments of different
target detection models

In order to make the detection results more convincing, the

improved model is compared with some commonly used target

detection algorithms, such as Faster R-CNN, SSD, YOLOv3,

YOLOv4, YOLOv4-tiny, and YOLOv5s, and the obtained

experimental results are shown in Table 4. From the table, it can

be seen that the number of parameters and computation of the

YOLOv4-tiny model are substantially reduced compared with the

YOLOv4model, because theYOLOv4-tinymodel deletes part of the

structure of the YOLOv4 model, which makes the YOLOv4-tiny

model structure more lightweight, but because the YOLOv4-tiny

model structure is simpler and Faster R-CNN, as the main

representative of the second-order target detection algorithm, uses

RPN to generate candidate frames and projects the RPN-generated

candidate frames onto the feature map to obtain the corresponding

feature matrix, while the first-order target detection algorithm does

not need to generate the candidate region stage and can directly

generate The class probability and location information of the

object, so the detection speed and computation of the Faster R-

CNN algorithm is much higher compared to the first-order target

detection algorithm. The improved model in this paper can achieve

the highest accuracy with a small increase in the number of

parameters and computation. The mAP value, F1 score, recall rate

and accuracy of the improved model were improved by 4.58%, 5%,

4.78% and 4.5%, respectively, compared with the original model.

In order to better illustrate the effectiveness of the improved

model in crop disease detection, several disease detection images

wereselected,as showninFigure8.Fromthefigure, it canbeseenthat

the improved model in this paper can correctly detect the disease

locations, and also effectively avoid the problems ofmissed and false

detection for small andmultiple targets.Meanwhile, the results of the

heat map visualization of the three diseases in the dataset are shown

in Figure 9, which shows that the improved model in this paper can
frontiersin.org

https://doi.org/10.3389/fpls.2022.1066835
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2022.1066835
focus on more disease areas. In summary, the improved YOLOv5s

model proposed in this paper has the best detection effect.
4.4 Comparative experiments of different
backbone network models

MobileNetv3 network was a lightweight convolutional neural

network based on MobileNetv1 and MobileNetv2, which could

significantly reduce the number of parameters and computation of
Frontiers in Plant Science 11
themodel comparedwith other classical networks in the directionof

image classification. In order to compare the effect of using a lighter

network as the backbone of the model on the experimental results,

this paper compares the results after replacing the backbone of the

improved model from CSPDarknet53 to MobileNetv3, as shown in

Table 5. Except for replacing the backbone network with

MobileNetv3, the rest of the model structures were consistent with

the improvedmodelproposed in thispaper. Improved-MobileNetv3

was the backbone network of the improved model proposed in this

paper replacedwithMobileNetv3, and Improved-YOLOv5swas the
TABLE 3 Comparative results of 8 disease types.

Type Model AP (%) F1 Recall (%) Precision (%)

Grape Black Measles YOLOv5s 78.61 0.76 74.39 78.21

improved-YOLOv5s 90.18 0.85 81.71 89.33

Grape Leaf Blight YOLOv5s 96.30 0.91 88.18 93.27

improved-YOLOv5s 98.65 0.92 88.18 97.00

Grape Black Rot YOLOv5s 96.88 0.89 83.61 94.88

improved-YOLOv5s 98.16 0.92 85.27 99.45

Peach Bacterial Spot YOLOv5s 74.31 0.69 63.58 75.18

improved-YOLOv5s 86.05 0.76 73.46 79.33

Potato Late Blight YOLOv5s 98.34 0.97 96.09 97.79

improved-YOLOv5s 99.31 0.97 97.83 96.98

Apple Black Rot YOLOv5s 95.76 0.92 93.69 90.43

improved-YOLOv5s 98.59 0.94 94.59 93.75

Apple Scab YOLOv5s 95.03 0.89 86.27 92.15

improved-YOLOv5s 96.85 0.93 89.46 97.33

Corn Northern Leaf Blight YOLOv5s 98.56 0.92 85.19 98.92

improved-YOLOv5s 99.60 0.96 92.59 100
FIGURE 7

Comparison results of each improved part of the model.
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improved model proposed in this paper, as can be seen from the

table. Improved-MobileNetv3modelhasa significantdecrease in the

number of parameters and computation, which is 10.45% and

20.19% lower than the original model. mAP value of the

Improved-MobileNetv3 model is 2.92% higher than the original

model, but it is lower comparedwith the backbone networkwhich is

CSPDarknet53. YOLOv5s-MobileNetv3 was the replacement of the

backbone network of the original model in this paper with

MobileNetv3. From the table, we can see that the YOLOv5s-

MobileNetv3 model has the lowest number of parameters and

computation, as well as the fastest detection speed, but also the

lowest mAP value of 83.52%.

The pictures of the detection effect of this paper for apple black

rot under different backbone networks are shown in Figure 10, from

which it can be seen that the YOLOv5s-MobileNetv3 model can

detect the least number of diseases correctly although it has the

lowest number of parameters, while the Improved-MobileNetv3

model can detect most of the disease locations, and the detection

effect is second only to the Improved-YOLOv5s model. The results

of the heat map display for the three disease types for different
Frontiers in Plant Science 12
backbone networkmodels are also shown in Figure 11, which shows

that both Improved-MobileNetv3 and Improved-YOLOv5s models

were able to focus onmore disease areas, and the color degree for the

disease areas was also deeper, with Improved-YOLOv5s model

being able to The Improved-YOLOv5s model can achieve the best

detection effect. In summary, among the improved models, the

model obtained using CSPDarknet53 as the backbone network has

the most comprehensive performance, while using MobileNetv3

network as the backbone network can reduce the number of

parameters, but at the same time, the detection effectwill be reduced.
4.5 Comparative experiments of different
loss function

In this paper, the performance of the improved loss function

was verified by using several loss functions commonly used in

current target detection in the improved model to compare with

the improved loss function, and the obtained experimental

results are shown in Figure 12. The results in the figure show
A B C D

E F G

FIGURE 8

Pictures of the detection effect of apple black rot with different target detection models. (A–G) represent different target detection models.
TABLE 4 Comprehensive performance comparison.

Model mAP (%) Params (M) FLOPs (G) F1 Recall (%) Precision (%)

Faster R-CNN 65.45 28.35 473.28 0.62 69.41 57.04

SSD 84.83 24.68 30.80 0.60 48.75 93.95

YOLOv3 91.54 61.56 77.60 0.84 78.12 91.90

YOLOv4 87.21 63.98 70.78 0.78 70.42 89.79

YOLOv4-tiny 77.98 5.98 8.09 0.72 62.90 85.00

YOLOv5s 91.72 7.08 8.22 0.87 83.88 90.10

Improved-YOLOv5s 95.92 7.62 10.17 0.91 87.89 94.15
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that the highest mAP value can be achieved by using the

improved loss function in this paper, and the higher accuracy

is obtained by introducing the ratio of the Euclidean distance

between the upper left corner of the real frame and the

prediction frame and the width of the two target frames based

on the DIoU loss function to suppress the enlargement or

reduction of the prediction frame errors.
5 Discussion

In this paper, we used some common data enhancement

methods and mosaic data enhancement methods to process the

trainingdata. In this paper,we found that ifwe simply used common

data enhancement methods or mosaic data enhancement methods,

we couldn’t obtain the best results. The data enhancement method

could improve the generalization ability of the model and improve

the robustness of the model, and the mosaic data enhancement

method could greatly enrich the background of the detected objects,

but the method will cause the training images to be out of the real

distribution of the natural images, so themixture of the normal data

enhancement method at a certain ratio could make the model get

better detection results. This paper improves the CSP structure used

in the neck of the original YOLOv5s model. The original CSP

structure divided the input into two branches, and then spliced the
Frontiers in Plant Science 13
outputs of the two branches together, which could enhance the

fusion ability of the network features. The experimental results

showed that the mAP value of the model was only slightly

improved because the number of small targets in the dataset used

in this paper was the majority. For the design of the CAM structure,

the ability to extract both global and local information from the

feature map was considered. In the initial design, only one input

from the deep networkwas considered, and the inputwas allowed to

perform global average pooling and global maximum pooling

operations respectively, but the results were not satisfactory. The

later designed CAM structure then contains two parts of the input,

the shallow network had a low abstraction level and contains more

detailed information, while the deep network contained more

semantic information. The CAM structure integrates the feature

information of the shallow network and the deep network well and

enhanced the global information extraction ability of the network.

The Tanh function converges faster than the Sigmoid function, and

this paper was more efficient in predicting the The Tanh function

was used instead of the Sigmoid function in the formula involved in

predicting the coordinate offset of the target centroid,while adjusting

the value domain of the Tanh function, but it did not achieve better

results. The reasonwas that the Tanh functionwasmore sensitive to

the value of function value change between (-1,1), which tends to

level off earlier than the Sigmoid function, and the Sigmoid function

convergesmore smoothly than the gradient of the Tanh function. So
TABLE 5 Comparison results of different backbone models.

Model mAP (%) Params (M) FLOPs (G) F1 Recall (%) Precision (%) FPS

YOLOv5s 91.72 7.08 8.22 0.87 83.88 90.10 41.12

YOLOv5s-MobileNetv3 83.52 5.80 4.61 0.56 47.68 93.78 49.19

Improved-MobileNetv3 94.40 6.34 6.56 0.89 85.51 92.90 43.76

Improved-YOLOv5s 95.92 7.62 10.17 0.91 87.89 94.15 40.01
frontier
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FIGURE 9

Pictures of the heat map detection of diseased leaves under different target detection models. (A) Grape Leaf Blight; (B) Grape Black Measles;
(C) Peach Bacterial Spot.
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finally, this paper improved the formula of Sigmoid function, by

limiting the range of values of the formula to get the value needed in

this paper. In the process of improving the loss function, we tested

many formulas, some of which could solve the problem of the

prediction frame being wrongly enlarged, but would lead to the

problem of the prediction frame shrinking and the loss value

decreasing, and the model converging in the wrong direction.

There were also many other scholars who have improved the

YOLOv5 model and applied it to different datasets, for example,

some scholars had detected the presence of powdery mildew and

anthracnose in rubber trees based on the improved YOLOv5model,

and the results showed that the improved model has an average

accuracy of 70%.We trained this improvedmodel on the dataset we

used and obtained an average accuracy of 92.58%, and our improved

model gave better results compared to our own model. Other

scholars detected tomato disease images based on the improved
Frontiers in Plant Science 14
YOLOv5 model and could get 94.10% mAP. Currently, most

scholars was detecting on single or few plant diseases, while our

improved model can detect on eight plant diseases and achieve

95.92% mAP. In comparison, our improved model not only

obtained higher average accuracy but also was able to detect more

types of diseases. In the future, wewould continue to research lighter

andmore effectivemodels to detect more types of crop diseases, and

we would study the deployment of lightweight models to robots for

real-time detection.
6 Conclusion

An improved YOLOv5s model was proposed for detecting

several common crop diseases with small, dense and overlapping

crop disease targets. First, eight diseases in the PlantVillage dataset
A

B

C

FIGURE 11

Pictures of the heat map detection of diseased leaves under different backbone networks. (A) Grape Leaf Blight; (B) Grape Black Measles;
(C) Peach Bacterial Spot.
A B C D

FIGURE 10

Pictures of the detection effect of apple black rot under different backbone networks. (A) YOLOv5s model; (B) YOLOv5s-MobileNetv3 model;
(C) Improved-MobileNetv3 model; (D) Improved-YOLOv5s model.
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were manually labeled to obtain the dataset for training. Second, the

Ghostmoduleand the inverted residualblockwere incorporated into

the CSP structure of the YOLOv5s neck to construct a lightweight

CSP structure, and the improved CSP structure was able to extract

more feature information. Meanwhile, a CAM module was

constructed in which the inverse residual block and ESPA module

was fused, and feature fusion of different scale featuremaps was also

achieved by extracting global and local information from different

layer networks. Then, the number of positive samples for model

trainingwas increased by adding onemore prediction grid, while the

formula of grid predictionoffsetwasmodified so that the offset of the

center point of the prediction frame couldbe takenmore easily to the

valueunder theparticularpoint.Theproblemof slowconvergenceof

the model training and the problem of obtaining smaller loss values

by wrongly enlarging and shrinking the prediction frame during the

model training was solved by improving the formula of the loss

function. Finally, the K-menas algorithm was used to re-cluster the

dataset used in this paper to obtain the appropriate anchor values to

go for training. The experimental results showed that the improved

YOLOv5s model had stronger global information extraction

capability, better accuracy and robustness for crop disease

detection, and better identification of smaller disease targets, while

the improved model had less number of parameters and

computational effort also lays the foundation for deploying the

model to embedded or mobile devices.
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Comparison results of different loss function.
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