
Frontiers in Plant Science

OPEN ACCESS

EDITED AND REVIEWED BY

Shawn Carlisle Kefauver,
University of Barcelona, Spain

*CORRESPONDENCE

Michael Moustakas
moustak@bio.auth.gr

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal
Frontiers in Plant Science

RECEIVED 11 October 2022

ACCEPTED 24 October 2022
PUBLISHED 14 November 2022

CITATION

Moustakas M, Guidi L and Calatayud A
(2022) Editorial: Chlorophyll
fluorescence analysis in biotic and
abiotic stress, volume II.
Front. Plant Sci. 13:1066865.
doi: 10.3389/fpls.2022.1066865

COPYRIGHT

© 2022 Moustakas, Guidi and
Calatayud. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Editorial
PUBLISHED 14 November 2022

DOI 10.3389/fpls.2022.1066865
Editorial: Chlorophyll
fluorescence analysis in biotic
and abiotic stress, volume II

Michael Moustakas1*, Lucia Guidi2 and Angeles Calatayud3

1Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki,
Greece, 2Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy,
3Instituto Valenciano de Investigaciones Agrarias, Centro de Citricultura y Producción Vegetal,
Departamento de Horticultura, Valencia, Spain

KEYWORDS

photochemical efficiency, reactive oxygen species, environmental stress, oxidative
stress, photosystem II, non-photochemical quenching (NPQ), energy partitioning
Editorial on the Research Topic

Chlorophyll fluorescence analysis in biotic and abiotic stress, volume II
Chlorophyll a fluorescence emission results from absorbed light energy that is not

dissipated as heat or not used for photosynthetic reactions in plants. Photosynthesis is

allocated into two distinct parts, the light reactions and the carbon dioxide (CO2)

fixation. In the light reactions, light energy is utilized to generate an oxidized protein

complex capable of extracting electrons from water at photosystem II (PSII), and at the

same time re-energizing the extracted electron to reduce NADP+ at photosystem I (PSI).

These ‘light harvesting’ reactions result in the formation of ATP and reducing power

(reduced ferredoxin and NADPH), and subsequent CO2 fixation through the Calvin–

Benson–Bassham cycle. Chlorophyll a fluorescence analysis can determine the amount of

absorbed light energy that is directed to photochemistry and estimates photosynthetic

efficiency under biotic or abiotic stresses (Moustakas et al., 2021; Moustakas, 2022).

Chlorophyll a fluorescence signals can be interpreted in terms of photosynthetic activity

to obtain information about the state of the photosynthetic apparatus and especially of

photosystem II (PSII) (Murchie and Lawson, 2013; Moustakas et al., 2021).

Measurements of chlorophyll a fluorescence have been extensively used to probe the

function of the photosynthetic machinery and for screening different crops for plant

tolerance to numerous stresses, and nutritional requirements (Guidi and Calatayud,

2014; Kalaji et al., 2016; Sperdouli et al., 2021; Moustakas et al., 2022a). The use of the

pulse amplitude modulation (PAM) method can principally calculate the amount of

absorbed light energy that is directed to PSII for photochemistry, which is dissipated as

heat through the non-photochemical quenching (NPQ) mechanism or dissipated by less

well characterized non-radiative fluorescence processes, that are marked as FPSII, FNPQ,

and FNO, respectively, with the sum of them to be equal to one (Kramer et al., 2004).

In the present work, we summarize the articles included in this special issue, updating

readers on the subject and discussing current applications of chlorophyll fluorescence
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analysis. Chlorophyll fluorescence analysis has been implicated

in many studies with the addition of external substances (e.g.,

proline, carbohydrates, salicylic acid, melatonin, etc.) to enhance

photosynthetic efficiency or ameliorate stress effects in plants

(Moustakas et al., 2022b). Melatonin application improved

photosynthetic activity in maize seedlings under drought stress

through a higher photochemical activity mediated by the

activation of antioxidative defense (Huang et al., 2019). The

alleviation of water stress effects by melatonin were higher when

melatonin was applied to the roots compared with a foliar spray,

indicating a melatonin signal from roots to leaves (Huang et al.,

2019). In wheat, 25 mM melatonin application alleviated the

decline in photosynthetic efficiency under water stress, by

effective protection of the photosynthetic apparatus, through

the regulation of PSII proteins and the reversible

phosphorylation of the thylakoid proteins (Lin et al.). In

cucumber seedlings, melatonin promoted chilling tolerance

through the activation of antioxidant enzymes and the

induction of carbon assimilation genes as well as by key PSI-

PSII-related genes, which alleviated damage to the

photosynthetic apparatus and decreased oxidative damage

under chilling stress (Zhang et al.).

Light is essential for photosynthesis, but excessive light can

cause oxidative damage to the photosynthetic apparatus by

producing reactive oxygen species (Takahashi and Badger,

2011). In this way, plants have evolved an array of

photoprotection mechanisms to alleviate the harmful effects of

high light intensity, and, among them, the most rapid and

efficient mechanism is represented by non-photochemical

quenching (NPQ), which is most effective in the joint presence

of the PsbS (PSII subunit S) protein and the xanthophyll cycle

(Welc et al., 2021; Ruban and Wilson, 2021). Lou et al. found

that high light intensity increased NPQ and stimulated the de-

epoxidation of violaxanthin cycle components in Phyllostachys

edulis, while the treatment of plants with dithiothreitol, a

violaxanthin de-epoxidase (VDE) inhibitor, induced a

reduction in NPQ ability, confirming the strict relationship

between violaxanthin cycle and photoprotection mechanism of

bamboo. The authors evidenced also, that extreme temperatures

(4 and 42°C) and drought stress upregulated the expression of

PeVDE in bamboo leaves. The PeVDE gene of moso bamboo

(Phyllostachys edulis) is expressed primarily in leaves and the

encoded protein has been shown to convert violaxanthin to

zeaxanthin. Transgenic plants overexpressing PeVDE showed an

enhanced photoprotection ability, higher NPQ capacity, and a

slower decline in the maximum quantum yield of photosystem II

(Fv/Fm) under high light intensity as compared with wild-type

(Col-0) plants. Lou et al. concluded that the PeVDE gene has a

positive role in the response to high light intensity in bamboo
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plants improving their photoprotection ability through the

violaxanthin cycle and NPQ.

In the context of climate change, heat stress is one of the

most important constraints limiting plant production and

quality. For wheat, an essential heat-sensitive cereal crop for

the human diet, finding a research strategy to overcome heat

stress is important (Lipec et al., 2013). Fei et al. report on a study

that aimed to characterize whether delayed sowing could

promote heat stress tolerance in winter wheat compared to

“normal” sowing. By using an agronomic, photosynthetic, and

proteomic analysis, the study evidenced that delayed sowing

improved tiller survival percentage, maintained higher

photosynthetic capacity mediated by upregulation of the

photosynthesis related proteins (PsbH and PsbR), and

increased oxygen radical scavenging capacity. These results

reveal that delaying sowing is an effective agronomy technique

for confering heat tolerance in wheat.

Overall, from the significant articles presented in this

Research Topic, it was concluded that chlorophyll a

fluorescence analysis is a widely used method that is easy,

quick, cheap, non-invasive, and highly sensitive in determining

photosynthetic efficiency and detecting the impact of stresses on

plants. The contributions included in this e-book are useful for

scientists working on the subject, outlining and explaining recent

advances on this topic.
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