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MePAL6 regulates lignin
accumulation to shape cassava
resistance against two-spotted
spider mite

Xiaowen Yao1,2†, Xiao Liang1,2*†, Qing Chen1,2*†, Ying Liu1,2,
Chunling Wu1,2, Mufeng Wu1,2, Jun Shui1,2, Yang Qiao1,2,
Yao Zhang1,2 and Yue Geng1,2

1Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/
Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural
Affairs, Haikou, Hainan, China, 2Sanya Research Academy, Chinese Academy of Tropical Agriculture
Science/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season
Reproduction Regions, Sanya, Hainan, China
Introduction: The two-spotted spider mite (TSSM) is a devastating pest of

cassava production in China. Lignin is considered as an important defensive

barrier against pests and diseases, several genes participate in lignin

biosynthesis, however, how these genes modulate lignin accumulation in

cassava and shape TSSM-resistance is largely unknown.

Methods: To fill this knowledge gap, while under TSSM infestation, the cassava

lignin biosynthesis related genes were subjected to expression pattern analysis

followed by family identification, and genes with significant induction were

used for further function exploration.

Results: Most genes involved in lignin biosynthesis were up-regulated when

the mite-resistant cassava cultivars were infested by TSSM, noticeably, the

MePAL gene presented the most vigorous induction among these genes.

Therefore, we paid more attention to dissect the function of MePAL gene

during cassava-TSSM interaction. Gene family identification showed that there

are 6 MePAL members identified in cassava genome, further phylogenetic

analysis, gene duplication, cis-elements and conserved motif prediction

speculated that these genes may probably contribute to biotic stress

responses in cassava. The transcription profile of the 6 MePAL genes in

TSSM-resistant cassava cultivar SC9 indicated a universal up-regulation

pattern. To further elucidate the potential correlation between MePAL

expression and TSSM-resistance, the most strongly induced gene MePAL6

were silenced using virus-induced gene silencing (VIGS) assay, we found that

silencing of MePAL6 in SC9 not only simultaneously suppressed the expression

of other lignin biosynthesis genes such as 4-coumarate–CoA ligase (4CL),

hydroxycinnamoyltransferase (HCT) and cinnamoyl-CoA reductase (CCR), but

also resulted in decrease of lignin content. Ultimately, the suppression of

MePAL6 in SC9 can lead to significant deterioration of TSSM-resistance.
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Discussion: This study accurately identified MePAL6 as critical genes in

conferring cassava resistance to TSSM, which could be considered as

promising marker gene for evaluating cassava resistance to insect pest.
KEYWORDS

cassava, two-spotted spider mite, PAL gene family, lignin biosynthesis, VIGS,
mite-resistance
1 Introduction

Cassava (Manihot esculenta Crantz) is a tuber crop that is

widely cultivated in more than 100 countries (Parmar et al.,

2017). Due to its high environmental adaptability, cassava is one

of the most resilient crops as food, feed and biomass energy that

served more than 800 millions of people all over the world (Wu

et al., 2022; Amelework and Bairu, 2022). By 2017, the global

cassava production will increase to 322 million tons and the

planting area will be 26 million hectares (FAOSTAT, 2019).

China’s total cassava import in 2017 stood at $82.5million and

ranked number one in the world (Otekunrin and Sawicka, 2019).

The two-spotted spider mite (TSSM; Tetranychus urticae;

Acari: Tetranychidae) is the one of the most polyphagous insect

pest and poses serious threat to many crops including cassava

(Migeon et al., 2010). In China, yield losses that caused by TSSM

usually ranged from 50 to 70% (Ngongo et al., 2022). To date,

pesticide application is still the routine approach to control

TSSM. However, the dense canopy of the cassava plant make the

pesticide difficult to target, moreover, the inappropriate

pesticides application may also lead to resistance problem

(Van Leeuwen et al., 2008). Biological control is also an

alternative strategy, and considerable efforts had been made to

control cassava mites in the past decades (Herren and

Neuenschwander, 1991; Gutierrez et al., 1988; Onzo et al.,

2005). Nevertheless, the unstable control efficiency and

relatively high cost at the startup, as well as the weak
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compatibility with other control method (i.e., chemical

control) hinder the extension of this technology (Collier et al.,

2007). Utilization of pest-resistant plant provides an economical,

effective, environmental-friendly strategy for cassava pests

management. There are several studies aiming to screen or

identify mite-resistant cassava varieties (Bellotti et al., 1999;

Bellotti et al., 2012; Parsa et al., 2015). In addition, mapping

mite-resistance genes in cassava genome also make good

progress (Nzuki et al., 2017; Ezenwaka et al., 2018; Ezenwaka

et al., 2020). However, the control methods mentioned above

were basically focused on cassava green mite (theMononychellus

spp.), in contrary, studies on TSSM were relatively limited. To

demonstrate why certain plant was resistant to insect pests could

promote the development of control strategy, however, the

molecular-based mechanism of cassava resistance to TSSM

were largely unknown.

Lignin is the one of the most abundant biopolymer in plant

(Jeffrey, 2014). As a complex phenolic polymer, it can enhance

both the rigidity and thickness of the cell wall (Vanholme et al.,

2008). Thus, lignin is recognized as an important defensive

barrier against pests and diseases. Lignin was reported to be

associated with the maize resistance to second-generation of

European corn borer (Ostrinia nubilalis) (Buendgen et al., 1990).

Lignin accumulation in the root was regulated by the ethylene-

and phenylpropanoid-dependent pathway, which may induce

tomato and Arabidopsis resistance to the root-knot nematode

penetration (Fujimoto et al., 2015). In addition, local lignin

deposition as well as salic acid biosynthesis was modulated by

Walls Are Thin (WAT) genes, which will participate in cotton

resistance against Verticillium dahlia (Tang et al., 2019). Apart

from lignin, several intermediate compounds during lignin

biosynthesis also possess the pest resistance capacity. For

examples, the resistant cotton varieties presented high content

of ferulic acid, which significantly delayed the larval weight gain

and increased the mortality of cotton bollworm (Helicoverpa

armigera) (Mao et al., 2007), moreover, targeted metabolome

analysis showed higher elevation of trans-cinnamic acid, caffeine

and ferulic acid after the Malus sieversii resistant strains were

infested by Agrilus mali (Mei et al., 2020).

The lignin biosynthesis pathway, which was embedded in

the phenylpropane pathway, was regulated by a battery of
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specific genes. The lignin biosynthesis pathways were well

illustrated in several plant species including Arabidopsis

thaliana (Vanholme et al., 2012), tobacco (Shi et al., 2022),

poplar (Shen et al., 2021), tomato (Zhang et al., 2017), pepper (Li

et al., 2019), and cassava (Ding et al., 2020). Phenylalanine

ammonia-lyase (PAL, E.C. 4.3.1.5) is the first key enzyme in the

biosynthesis of lignin and other various phenolic compounds

like polyphenols and phenolic acids (Ritter and Schulz, 2004).

The expression of PAL in plant usually associates with

environmental stress, abiotic and biotic factors such as

pathogen infection (Joshi et al., 2022), mechanical damage

(Liu, M. M. et al., 2017), ultraviolet radiation (Pluskota et al.,

2005), chemical treatment (Song and Ebizuka, 1996) and

extreme temperatures (Ratanamarno et al., 2005), may

significantly alter the transcription or enzymatic activity of

PAL. In addition, PAL is a micro gene family with multiple

genes that has been identified and extensively studied in various

plants (Wu et al., 2017). Studies have shown that different PAL

genes perform different functions. The pal1 and pal2 genes were

contributed to anthocyanin pigmentation in A. thaliana, and

mutants of those two genes produced yellowish seeds and were

highly sensitive to UV-B light (Huang et al., 2010). Transfection

of Pyrus bretschneideri genes PbPAL1 and PbPAL2 into A.

thaliana caused a remarkable elevation of lignin content and

thickening of the cell walls of intervascular fibers and xylem cells

(Li et al., 2019). Overexpression of Ipomoea batatas gene IbPAL1

conferred chlorogenic acid accumulation in sweet potato leaves,

which would stimulate secondary xylem cell expansion in stems,

and inhibited storage root formation (Yu et al., 2021). The

McPAL3 gene in noni fruit (Mofinda citfifolia) was confirmed

to be a key gene involved in the accumulation of scopoletin, as

consistent change trend between scopoletin content and total

PAL activity were detected while the plant was treated with

ethylen (Wang, H. et al., 2021). In addition, several groups of

transcription factors i.e., MYB (myeloblastosis) (Xie et al., 2020),

bHLH (basic helix-loop-helix) (Du et al., 2018) and WRKY

(Wang, Q. et al., 2021 ), are also essential for regulating the lignin

biosynthesis pathway.

During plant-herbivorous pest interaction, although the

expression patterns of PAL genes had been elaborated (Duan

et al., 2014; Fujimoto et al., 2015; Veronico et al., 2018), there is

lack of robust evidence of their function in pest resistance.

Moreover, the PAL gene family in cassava has not been

identified and genetically characterized yet, so far as we know,

the biological functions of PALs in cassava are still mysterious.

To fill this knowledge gap, we aim to systematically identify the

PAL gene family in cassava, and their chromosomal locations,

collinearity, classification, evolution, and expression patterns

were analyzed. Furthermore, the expression patterns of the

identified PAL family genes were evaluated when cassava

plants were under TSSM-infestation, moreover, the most

strongly induced genes were used to validate their functions in

lignin biosynthesis and TSSM-resistance. This study could
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excavate crucial gene that participates in shaping cassava

resistance to TSSM, which could be used for evaluating

cassava resistance to TSSM, and moreover, assist in the

molecular breeding of TSSM-resistant cassava.
2 Materials and methods

2.1 Cassava materials

Three TSSM-resistant cassava cultivars (C1115, Miandian

and SC9) and three TSSM-susceptible cassava cultivars (SC205,

Bread and BAR900) that were identified in our previous study

(Liang et al., 2022) were supplied by the National Cassava

Germplasm Nursery of China, Chinese Academy of Tropical

Agricultural Sciences (CATAS). Cassava stem of about 20 cm

length were vertically planted with nutritive soil (equal quantity

of soil, peat and perlite) in the pot and grown in a greenhouse for

TSSM-resistance identification. The light/dark photoperiod was

set as 14 h/10 h, temperature was maintained at 28 ± 1°C, and

relative humidity was kept at 75 ± 5%.
2.2 TSSM rearing, infestation and
sample collection

TSSM rearing was conducted based on our previously study

(Chen Q. et al., 2022). Three mature and healthy cassava leaves

with identical growth status from the middle of the 3-month-old

plants were selected, and 50 healthy 1-day old female adult mites

were infested on abaxial leaves of either resistant or susceptible

cassava cultivars, besides, petioles were coated with lanolin to

avoid TSSM escape. Leaves without TSSM infestation, 1 day post

infestation (dpi) and 4 dpi were sampled (make sure all the mites

were eliminated from the sampled leaves). Each treatment

repeated three times (Three plants for one treatment, and each

plants sampled three leaves).
2.3 RNA extraction and qPCR analysis

Total RNA was extracted from 0.1g of leaf sample using a

RNAprep Pure Plant plus Kit (Polysaccharides & Polyphenolics-

rich, Tiangen, China). RT EasyMix for qPCR (+2-Step gDNA

Erase-out, Tolobio, China) was used for first-strand cDNA

synthesis. The qPCR reaction system was prepared according to

the 2×Q3 SYBR qPCR Master Mix kit (Tolobio, China). The

qPCR reactions were performed in 10 mL volume in QuantStudio

6 Flex (Thermo Fisher, America) with three biological replicates as

described previous. PAL, 4-coumarate–CoA ligase (4CL),

shikimate O-hydroxycinnamoyltransferase (HCT), trans-

cinnamate 4-monooxygenase (C4H), caffeoylshikimate esterase

(CSE), caffeoyl-CoA O-methyltransferase (CCoAOMT), caffeic
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acid 3-O-methyltransferase (COMT), ferulate-5-hydroxylase

(F5H), cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol

dehydrogenase (CAD), Using the Primer5 to design specific

primers according to the conservative domain of lignin

biosynthesis gene. The qPCR primers were shown in

Supplementary Table S1, MeActin was used as reference gene.

The RT-qPCR conditions were: an initial denaturation for 2 min

at 95°C, followed by 40 cycles of denaturation at 95°C for 5 s and

annealing at 60°C for 30 s, and a final elongation step at 72°C for

60 s. For the melting curve analysis, a dissociation step cycle (65°C

for 5 s, and then an increase of 0.5°C every 10 s up to 95°C) was

used. The relative gene transcription was calculated based on the

comparative 2-DDCt method (Livak and Schmittgen, 2001).
2.4 Determination of enzyme activity and
lignin content

The activities of lignin biosynthesis pathway enzymes, such

as PAL, 4CL, CCR and HCT, and the lignin content were all

analyzed using ELISA kits (Shanghai Enzyme-linked

Biotechnology Co., Ltd, Shanghai, China) according to the

manufacturer’s instructions (Guo et al., 2022). Each treatment

repeated three times.
2.5 Identification of MePAL genes in
cassava genome

The whole cassava genome sequence (v.8.0) and annotation

were derived from the phytozome database1. The Hidden

Markov Model profile of Aromatic amino acid lyase

(PF00221) was retrieved from Pfam2 (Finn et al., 2015). The

TBtools program (Chen et al., 2020) was used to search for

Aromatic amino acid lyase in cassava genome, and then the

predicted putative domains were further confirmed by the NCBI

Conserved Domain Database3. The MW (molecular weight) and

pI (theoretical isoelectric point) of these identifiedMePAL genes

were predicted by ExPASy4 (Artimo et al., 2012). Finally, each

identifiedMePAL gene was mapped on the chromosome, and all

the MePAL genes were named consecutively (start with

MePAL1) according to the orders of the chromosomes.
2.6 Chromosomal mapping, gene
structure and conserved motif analysis

The chromosomalmapping, gene structures and conservedmotif

analysis were visualized using the Tbtools. The locations of these

MePAL genes were determined by querying the cassava genome. In

addition, the conserved motifs among all MePAL genes were

identified via online software MEME5 (Bailey et al., 2015).
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2.7 Cis-acting regulatory element
analysis

The 2,000 bp sequences from upstream of the transcription start

site ATG were extracted as the putative promoter region, and then

PlantCare6 (Higo et al., 1999) database were used to screen and

identify the cis-acting regulatory elements. The components predicted

by the PlantCare online tool were first screened, and the unannotated

components were eliminated while the annotated component were

sorted out, after that, the components with consistent functions

shared with the identical function annotations, and element

visualization was conducted by using Tbtools.
2.8 Phylogenetic analysis, gene
duplication, multiple alignments and
synteny analysis

Phylogenetic analysis of PAL genes from four plant species,

i.e., M. esculenta, Ricinus communis, Hevea brasiliensis and A.

thaliana, were conducted by MEGA (version 11.0). A

phylogenetic tree was constructed with the neighbor-joining

method and the parameters were Jones-Taylor-Thornton model,

pairwise deletion, and 1,000 bootstrap replicates. Circos program

(Krzywinski et al., 2009) was used to illustrate the relationships of

duplicated genes. The collinearity analysis of PAL genes between

M. esculenta and other three species were detected by One Step

MCScanX. KaKs was used to calculate the nonsynonymous

replacement rate (Ka) and synonymous replacement rate (Ks),

where Ka/Ks1 means positive selection, Ka/Ks1 means purifying

selection and Ka/Ks = 1 means neutral evolution.
2.9 Virus-induced gene silencing (VIGS)
in cassava followed by TSSM infestation

The TSSM-resistant cassava cultivar SC9 was used as the

transfected plant. For vector construction, 300 bp MePAL6 and

300 bpMeCHI (cassava chelatase subunit I gene that accounts for

chlorophyll synthesis) DNA fragments were cloned and linked

into CsCMV-NC vector as described by Tuo et al. (2021), and

SGN-VIGS7 (Fernandez-Pozo et al., 2015) online tool was used to

select the targeted regions. After silencing of MeCHI, the leaves

were supposed to be chlorosis and whitening, which is used as a

positive control (Tuo et al., 2021). CsCMV-NC (empty plasmid)

was used as a negative control to detect the effect of no-load on

cassava plants. All the plasmids (recombinant or empty plasmids)

were transformed into Agrobacterium-competent cell GV3101

and cultured in a constant temperature incubator at 28°C for 2-3

days. Once the positive control present obvious chlorosis and

whitening symptoms, the leaves of MePAL6-silenced lines were

sampled and the silenced efficiency was measured.
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2.10 Performance of MePAL6-silenced
cassava lines against TSSM infestation

After confirming the silencing of the MePAL6 gene, mites

were inoculated on the MePAL6-silenced and negative control

plants, according to the method described above (Section 2.2).

The TSSM infestation symptoms were recorded on 0, 1 and 4

dpi, respectively. In addition, the TSSM-resistance levels of each

tested plant were evaluated (conducted on 4 dpi) according to

the mite damage index method (Supplementary Figure S1).

Furthermore, the expression of other MePAL members, the

downstream lignin biosynthesis genes and the lignin content

in MePAL6-silenced lines were also detected. The primer

information was listed in Supplementary Table S1.
2.11 Statistical analysis

All data analyses were performed using the SPSS (Version

26.0), and statistical analysis was conducted using one-way

analysis of variance (ANOVA) with Tukey’s honestly

significant difference (HSD) multiple comparison test.

Pearson’s correlation test was used to calculate the correlation

coefficients among mite damage indexes, transcription of genes,

enzyme activities and lignin contents at 4 dpi. Significant

and highly-significant difference were considered if P-values

were < 0.05 and < 0.01, respectively.
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3 Results

3.1 Influence on lignin biosynthesis
pathway while cassava was infested by
TSSM

After TSSM infestation, the transcription of lignin

biosynthesis pathway genes (Figure 1A) in TSSM-resistant

and TSSM-susceptible cassava cultivars presented distinct

patterns (The mite damage indexes which were used to

interpret the resistance level of each tested cultivars was

presented in Figure 1B). The transcriptions of MePAL,

Me4CL, MeCCoAOMT, MeCCR and MeCAD in three TSSM-

resistant cultivars (C1115, Miandian and SC9) were

significantly increased over time (P < 0.05), while the

transcriptions of MeC4H, MeHCT, MeCSE and MeF5H in

certain TSSM-resistant cultivars (SC9 and Miandian) were

first increased (1 dpi) and then decreased (4 dpi). In

addition, the gene transcription in the three TSSM-

susceptible cassava cultivars (SC205, Bread and BRA900)

showed inconsistent change pattern with MePAL as an

exception, in which the transcriptions were continuously

increased (1.21- to 2.31-fold relative to those before

infestation), in comparison, the transcriptions of MePAL in

TSSM-resistant cultivars were much higher after TSSM

infestation (3.83- to 6.49-fold relative to those before

infestation) (Figure 1C).
A

B D

C

E

FIGURE 1

Influence on lignin biosynthesis pathway while TSSM-resistant and TSSM-susceptible cassava cultivars were infested by TSSM. (A) The potential
schematic diagram of lignin biosynthesis pathway in cassava. The biosynthesis genes, the intermediate products and the final different forms of
lignin products were marked with blue letters, white frames and yellow frames, respectively; (B) The mite damage indexes and the
corresponding resistance levels of the tested cassava cultivars; (C) Changes in transcription of ten lignin biosynthesis genes; (D) Changes in
activity of four enzymes involved in lignin biosynthesis pathway; (E) Changes in lignin content. Different letters above standard error bars
indicate significant differences based on ANOVA followed by Tukey’s HSD multiple comparison test (p < 0.05) within the same time point.
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Enzyme activities were analyzed to examine whether the

transcription and post- transcription of the lignin pathway genes

showed identical change trend. The four genes, i.e., MePAL,

Me4CL, MeCCR and MeHCT that showed stable and significant

elevation of transcription were selected. The result illustrated

that only PAL demonstrate significantly higher enzyme activity

in the TSSM-resistant cultivars compared with the susceptible

ones, which was consistent with the transcription levels.

However, the rest of three genes did not show consistency

between gene transcription and enzyme activity, besides, the

activities of 4CL, CCR and HCT in TSSM-resistant cultivars

were not necessarily higher than those of susceptible

ones (Figure 1D).

After TSSM infestation, the elevation of lignin contents in

C1115-(R), Miandian-(R) and SC9-(R) posed a hysteretic

manner, as compared with those before infestation, the lignin

contents remained unchanged on 1 dpi but significantly

increased on 4 dpi (P < 0.05). It is noteworthy that the lignin

contents in SC205-(S) and BRA900-(S) did not showed

statistically difference (P < 0.05), although Bread-(S) possessed

constitutively low lignin content before mite infestation, TSSM

infestation would significantly trigger the lignin accumulation.

In comparison, during TSSM-cassava interaction, especially on

long term exposure (4 dpi), the lignin contents in all the resistant

cultivars were significantly higher than the susceptible

ones (Figure 1E).

Correlation analysis was conducted among mite damage

indexes, transcription of genes, enzyme activities and lignin

contents. It was noticeable that the gene transcriptions and

lignin contents were moderately- and highly-correlated with

mite damage, while the enzyme activities only showed pretty

low correlation with mite damage (Table 1).
3.2 Identification of MePAL gene family
in cassava

A total of 6 MePAL proteins were characterized from cassava

and named them fromMePAL1 to MePAL6. These 6 MePALs all

contained the aromatic amino acid lyase domain based on Pfam

analysis. MePAL protein lengths were ranged from 703 (MePAL2)
Frontiers in Plant Science 06
to 790 (MePAL4) amino acids, MW were from 64.47 to 86.14

kDa, and pI were from 5.93 to 6.31. In addition, subcellular

localization of MePALs was predicted by WoLF PSORT108. Only

MePAL1 were localized on the endoplasmic reticulum, while the

remaining MePALs were localized on the chloroplast. More

detailed information including MePAL gene annotation, gene

accession, chromosome locus, protein length, MW, pI of all

identified MePAL were shown in Supplementary Table S2. To

further investigate the chromosomal distribution of the MePAL

genes, the DNA sequence of each MePAL was obtained using

Blastn in cassava genome database, and these 6MePAL genes were

mapped on 6 chromosomes (Figure 2A).

The amino acid sequences of PALs deriving from three

Euphorbiaceae plant species, i.e., M. esculenta, R. communis,

H. brasiliensis together with a model plant A. thaliana were used

to construct a phylogenetic tree by using neighbor-joining

method. All the PALs from different plant species were

clustered into 4 groups. Group 1 contained the largest PAL

gene members (8 PALs), followed by Group 2 and Group 4 with

5 PALs. The 6 MePALs were evenly distributed in each group

which contained at least one PAL gene (Figure 2B), In addition,

it is noteworthy that MePAL6 were clustered with all the 4

AtPAL genes in Group 1, indicating that the evolution

conservation between MePAL6 and AtPALs, moreover, as the

PAL gene function in all the three Euphorbiaceae plants were not

identified so far, while the function of AtPALs in dealing with

environmental stress had been well-studied (Wanner et al.,

1995), based on the above information, we assumed that

specific gene in cassava (i.e., MePAL6) which was clustered

together with the AtPALs maybe responsible for abiotic or

biotic stresses.
3.3 MePAL gene structures, conserved
motifs and cis-acting regulatory
element analysis

The exon/intron organization and conserved motifs of all

MePAL genes were analyzed. Eight conserved motifs with

multiple repeats were identified among the 6 MePAL

proteins, besides, the motifs number was ranged from 9
TABLE 1 Correlation among mite damage indexes, transcription of genes, enzyme activities and lignin contents.

Transcription level Enzyme activities Lignin content Mite damage index

Transcription level 1 -0.09NS 0.399 NS -0.541*

Enzyme activities 1 -0.86 NS 0.149 NS

Lignin content 1 -0.719**

Mite damage index 1

NS indicates non-significance, one asterisk and two asterisks indicate significant (P < 0.05) and highly-significant difference (P < 0.01), respectively.
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(MePAL4) to 14 (MePAL1, MePAL5), although MePAL4

contains only 9 motifs, it possessed the longest amino acid

sequence among all MePALs (Figure 3A), in addition, sequence

alignment indicated that the similarity of the 6 MePAL

proteins was 77.01% (Supplementary Figure S2). All MePAL

genes had 2 exons and 2 introns, except for MePAL6, which

had only one intron (Figure 3B).

PlantCARE database was used to characterize the cis-

acting regulatory elements (CAREs) of each MePAL gene.

Light responsiveness and MYB elements were presented in

all 6 MePALs. Furthermore, CAREs related to hormone

responses were also identified, such as Methyl jasmonate

(MeJA)-responsiveness, abscisic acid responsiveness and

gibberellin-responsive element. Interestingly, the CAREs of

some MePALs also contained elements related to biotic and

abiotic responses, including wound-responsive element,

anaerobic induction, MYB binding site involved drought-

inducibility, defense and stress responsiveness. In summary,
Frontiers in Plant Science 07
diverse hormone and environmental factors might affect the

expression of MePAL genes (Figure 3C and Supplementary

Table S3).

To reveal the expansion mechanism of the MePAL genes,

CDS of all MePAL genes were subjected to Blastn within the

cassava genome. Totally, 8 pairs (5MePAL genes) of segmental

duplications as well as 8 pairs of fragment duplications

(MePAL1/MePAL2, MePAL1/MePAL3, MePAL1/MePAL4,

MePAL1/MePAL5, MePAL2/MePAL3, MePAL2/MePAL4,

MePAL2/MePAL5 and MePAL3/MePAL4) were identified

(Figure 3D). In addition, the Ka/Ks values of all gene

pairs were less than 1.0, which indicated that these genes

evolved under purification selection (Supplementary Table

S4). In addition, to detect the synteny of PAL genes, a

collinearity analysis between M. esculenta and other plant

species using TBtools were performed. Finally, 7 paired

collinearity relationships between 5 MePAL and 4 AtPAL

genes were established, 15 paired collinearity relationships
A

B

FIGURE 2

The chromosomal locations and phylogeny of MePALs. (A) Chromosomal locations of the six MePAL genes. The chromosomes were presented
as narrow rectangles, and color bars within the rectangles denoted the M. esculenta chromosome density. Scale bars on the left indicated the
chromosome lengths (Mb); (B) Phylogenetic tree of the 6 MePAL proteins. The tree was constructed by using MEGA X based on the full-length
amino acid sequences from M. esculenta (Me) (marked with stars), R. communis (Rc) (marked with circles), H brasiliensis (Hb) (marked with
triangles) and A thaliana (At) (marked with boxes). All nodes had significant bootstrap support based on 1,000 replicates. The tree was
constructed with cut-off value of 50%. Genes that distributed in the same clusters were shadowed with different colors.
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A B

D

E

C

FIGURE 3

Conserved motifs, gene structures, Cis-acting element and gene duplicate of the MePAL genes. (A) MEME analysis revealed the conserved
motifs of the MePAL proteins. The colored boxes at the bottom denoted 8 motifs; (B) Structures of the six MePAL genes. The yellow boxes,
black lines, and green boxes represented exon, intron, and UTR (untranslated region), respectively; (C) Prediction of cis-acting elements and
visualization with Tbtools, the colored boxes at the bottom indicated the predicted elements; (D) Circos diagram of the MePAL duplication pairs
in M. esculenta. The outer boxes indicated the gene density of each chromosomes, and the interior orange and grey curves indicated the
collinearity relationships among MePAL genes and all the genes in the chromosomes, respectively; (E) Collinearity analysis between M. esculenta
and A thaliana, M. esculenta and H brasiliensis, M. esculenta and R. communis. The interior red curves indicated the collinearity relationships of
MePAL genes between two plant species, while the grey curves indicated the collinearity relationships of all the genes in the chromosomes
between two plant species, respectively.
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between 6 MePAL and 6 HbPAL genes, and 16 paired

collinearity relationships between 6 MePAL and 4 RcPAL

genes (Figure 3E).
3.4 The transcription patterns of the 6
MePAL genes when SC9-(R) underwent
TSSM infestation

In order to delicately speculate the transcription patterns of

the 6 identified MePAL genes, primers were designed mapping

to the specific regions of each gene (Supplementary Table S1).
Frontiers in Plant Science 09
After TSSM infestation., the transcriptions of most MePAL

genes (MePAL1, MePAL2, MePAL4 andMePAL6) significantly

increased over time, while the transcription of MePAL3

significantly decreased, and the transcription of MePAL5 did

not show statistically difference (P < 0.05) (Figure 4). In

particular, the transcription of MePAL6 increased by

approximately 6-fold (at 4 dpi), which was the most strongly

induced gene (Figure 4). Take into account the vigorous

induction as well as the function similarity with model plant

(Section 3.2), the MePAL6 gene, was finally selected to clarify

the potential function associated with TSSM-resistance

in cassava.
FIGURE 4

Transcription level of six MePAL genes in SC9-(R) after TSSM infestation. Different letters above standard error bars indicate significant
differences based on ANOVA followed by Tukey’s HSD multiple comparison test (p < 0.05) within the same time point.
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3.5 Effects of MePAL6 silencing on lignin
biosynthesis and performance on
TSSM resistance

To study the roles ofMePAL genes in lignin biosynthesis and

TSSM-resistance, a MePAL6-silenced line CsCMV-MePAL6

(treatment) was constructed by using VIGS. The chlorosis and

whitening phenotype of CsCMV-MeCHI line (positive control)

indicated the effectiveness of viral inoculation on silenced plant

(Supplementary Figure S3). In addition, the transcription of

MePAL6 in CsCMV-MePAL6 were drastically reduced

compared with negative control CsCMV-NC (Figure 5A)

(Silenced efficiency was approximately 78.35%). Furthermore,

as the VIGS target region ofMePAL6 showed high identity to the

rest of 5 MePAL genes, thus, their transcriptions were also

investigated. qPCR analysis showed that MePAL2 and

MePAL5 were also suffered transcription depression, while the

transcription of MePAL1, MePAL3 and MePAL4 were not
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suppressed but were increased at certain timepoints after

TSSM infestation (Figure 5A).

Influence on the expression of downstream genes involved in

lignin biosynthesis pathway were also examined. The

transcription of Me4CL and MeCCR in the CsCMV-MePAL6

line significantly increased on 4 dpi, nevertheless, it was still

significantly lower than that of negative control CsCMV-NC. In

addition, MeHCT was also induced after TSSM-infestation, but

there was no significant difference between CsCMV-MePAL6

line and CsCMV-NC (Figure 5B). Moreover, enzyme activities

were analyzed to examine whether the transcription and post-

transcription of the downstream genes showed identical change

trend. Results indicated that compared with control, the PAL

activity inMePAL6-silenced line was significantly decreased (P <

0.05), nevertheless, it still can be induced under TSSM-

infestation (Figure 5C). By contrast, the activities of 4CL, CCR

and HCT between control and MePAL6-silenced line basically

did not show significant differences (P < 0.05) (Figure 5C).
A

B

C

FIGURE 5

Effects of MePAL6 silencing on lignin biosynthesis pathway and TSSM-resistance performance of cassava. (A) Transcription changes of six
MePAL genes (MePAL1-MePAL6) in MePAL6-silenced cassava lines while under TSSM infestation; (B) Transcription changes of downstream lignin
biosynthesis genes (Me4CL, MeCCR and MeHCT) in MePAL6-silenced cassava lines while under TSSM infestation, the simplified lignin
biosynthesis pathway was presented on the left, and the investigated downstream genes were labeled; (C) Enzyme activity changes of PAL, 4CL,
CCR and HCT in MePAL6-silenced cassava lines while under TSSM infestation. Different letters above standard error bars indicate significant
differences based on ANOVA followed by Tukey’s HSD multiple comparison test (p < 0.05) within the same time point.
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Distinct TSSM infestation symptoms were observed

between MePAL6-silenced line and control. During short-

term exposure to TSSM, there were only very slight white

and yellow spots on both two lines without difference in

symptom. However, on 4 dpi, the MePAL6-silenced line

suffered serious TSSM infestation symptoms, where dense

TSSM damage spots covering the whole leaf, by comparison,

there was no symptom deterioration in the control plant

(Figure 6A). Moreover, the mite damage index of MePAL6-

silenced line was 68.51% (the TSSM-resistant level was

identified as ‘susceptible’), which was higher than that in

CsCMV-NC (21.35%, the TSSM-resistant level was identified

as ‘resistance’), indicating the TSSM-resistance level of SC9 was

shift from resistance to susceptible, after silencing of lignin

biosynthesis gene MePAL6 (Figure 6B). In addition, before

TSSM infestation, the lignin content in MePAL6-silenced line

was significantly lower than that in control, suggesting

silencing of MePAL gene would decrease the lignin

production. Moreover, after TSSM infestation, the lignin

content in both two cassava lines significantly increased, but
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the CsCMV-NC presented higher lignin accumulation,

especially when exposed to TSSM for a long term (4 dpi)

(Figure 6C). We speculated that the decrease of lignin content

might be the reason of TSSM-resistance deterioration.
4 Discussion

4.1 The lignin biosynthesis pathway was
significantly induced in TSSM-resistant
cassava cultivars

Lignin and its intermediate products are crucial defensive

substances coping with pest infestation. By serving as physical

and chemical barrier, effective accumulation of lignin can

significantly enhance plant resistance (Lee et al., 2019). A battery

of genes participates in lignin biosynthesis (Figure 1A), and those

genes could be significantly induced during insect pest invasion.

The expression levels of the PAL, 4CL, COMT and CAD genes in

the lignin synthesis pathway increased significantly after Panax
A B

C

FIGURE 6

Performance of MePAL6 silencing lines against TSSM infestation. (A) The TSSM infestation symptom of MePAL6 silencing lines and negative
controls. The “zoom in” areas of plants after mite infestation on 0, 1, 4 days were indicated by red dashed boxes. (B) Identification of mite
damage index after 4 dpi in MePAL6 silencing lines and negative controls. (C) Changes in lignin content in MePAL6-silenced cassava lines while
under TSSM infestation. Different letters above standard error bars indicate significant differences based on ANOVA followed by Tukey’s HSD
multiple comparison test (p < 0.05) within the same time point.
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notoginseng was inoculate with fungal (Yang et al., 2022).

Transcriptomic analysis depicted that when Chinese chestnut

(Castanea mollissima) in response to the chestnut gall wasp

(Dryocosmus kuriphilus) infestation, the majority of genes

associated with the lignin biosynthesis pathway, including PAL,

CAD, CCOAOMT, COMT and HCT were significantly upregulated

(Zhu et al., 2019), besides, identical genes with similar upregulation

was found in the study regarding soybean-bean pyralid larvae

interaction (Zeng et al., 2017). Similar to former studies, here we

noticed that almost all the lignin biosynthesis pathway genes were

significantly induced while cassava plants encountered TSSM-

feeding stress, probably imply the universality of lignin-based

defense response in different plants.

The pest-resistant and pest-susceptible plants usually display

distinct expression pattern of lignin synthesis genes. For

instances, the expression level of PAL increased rapidly after

insect-resistant rice cultivars was infested by small brown

planthopper (Nilaparvata lugens), and was significantly higher

than the susceptible varieties (Duan et al., 2014), in another

study conducted by Panatda (Jannoey et al., 2017), higher

expression of C4H in resistant rice variety than the susceptible

one also can be observed. In addition, when infested by root-

knot nematode, both resistant and susceptible tomato cultivars

showed expression elevation of lignin biosynthesis genes (PAL,

C4H, HCT and F5H) at early times (2–4 dpi), and the induction

was faster and greater in resistant cultivars after infection

(Veronico et al., 2018). Similarily, in present study, stronger

gene induction on TSSM-resistant cassava cultivars was also

observed, which probably indicated the significance of lignin

pathway contributing to cassava resistance to TSSM.

Furthermore, as the MePAL gene demonstrated the most

robust induction (in both transcription and enzymatic level)

among all the lignin biosynthesis genes, we therefore focused on

revealing the potential function of MePAL in conferring cassava

resistance to TSSM.
4.2 Gene family identification indicated
the six MePAL genes in cassava present
conservative function in dealing with
environmental stress

PAL is encoded by a small gene family, and different PAL

genes usually have multiple functions (Shine et al., 2016). For

examples, there were 4 PAL genes identified in A. thaliana, and

three of them (AtPAL1, AtPAL2, and AtPAL4) were highly

expressed in lignifying cells-rich inflorescent stems, whereas

AtPAL3 was expressed at a very low level, indicating only the

former three genes involved in lignin biosynthesis (Raes et al.,

2003). There are 14 PALs identified in potato (Solanum

tuberosum), among them StPAL1, StPAL6, StPAL8, StPAL12,

and StPAL13 functioned in the stress defense against high
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temperature and drought, while StPAL1, StPAL2, and StPAL6

participated in chemical defense mechanisms (Mo et al., 2022).

In pepper (Capsicum annuum) only CaPAL1 was found to be

responsible for defense against microbial pathogens (Kim and

Hwang, 2014). Although the genome of cassava had been

sequenced, the gene family identification of PAL has not been

carried out yet, the function of PAL in cassava is

largely unknown.

In this study, six MePAL genes were identified in cassava

genome, and these six MePAL genes were distributed on six

chromosomes, which were located at the top or bottom of

chromosomes. The PAL gene family is represented as a mini-

family in most plants, for examples, there are four genes in

A.thaliana (Cochrane et al., 2004), five genes in Populus

trichocarpa (Shi et al., 2013), nine genes in Oryza sativa (Gho

et al., 2020), fifteen genes in Vitis vinifera (Zhao et al., 2021) and

seven genes in Camellia sinensis (Chen X et al., 2022). The

relative MW and pI values of MePAL family genes were similar,

indicating that the evolutionary conservation of MePAL family

genes in cassava. Phylogenetic analysis showed that theMePAL6

gene was clustered with all the 4 AtPALs, as different AtPAL

genes were validated to cope with abiotic or biotic stress such as

pathogen infection, trauma, nutrient depletion, ultraviolet

radiation, and extreme temperatures (Huang et al., 2010; Joshi

et al., 2022), we assumed that MePAL6 may also possessed

similar function in dealing with environmental stress.

Cis-acting elements analysis of the critical genes will help

in the elucidating the molecular mechanisms that associated

with plant stress responses (Moghadam et al., 2012;

Moghadam et al . , 2013). This study indicated that

considerable hormone response elements (i.e., MeJA-,

s a l i c y l i c a c i d - , g i b b e r e l l i n - a n d a b s c i s i c a c i d

responsivenesses) as well as numerous stress response

elements (i.e., anaerobic induction, MYB binding site

involved drought-inducibility, wound-responsive element

and low-temperature responsiveness) probably accounted

for the induction of MePALs when cassava plant suffered

TSSM infestation. Valifard et al. (2014) conducted promoter

analysis of PAL genes from three plants (Mimulus guttatus,

Zea mays and A. thaliana), and several common elements

were predicted to be responsible for abscisic acid, alicylic acid,

anaerobic induction, heat stress responses, light responses,

MeJA-responses and wound responses. In agreement with

these findings, studies have also shown the existence of TC-

rich repeats (Zhao et al., 2012);, CAAT box, G box, CGTCA

motif, TCA-element (Jiang et al., 2013) in PAL promoter in

accordance with stress hormones may dealing with

environmental stress. From present and previous studies, we

presumably speculated that the cis-acting elements in different

plant species shared similar biological function, and the

induction of PAL gene could be considered as a universal

stress response while plant was under abiotic or biotic stress.
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4.3 Silencing of MePAL6 reduces lignin
content and attenuates cassava
resistance to TSSM

Manipulation the gene expression involved in lignin

biosynthesis will significantly alter the lignin accumulation. To

date, most genes that participate in lignin biosynthesis had been

subjected to establish genetic modified plants, of which the lignin

content and disposition were further analyzed. For examples,

overexpression of CCR, F5H, CSE, CCoAOMT will increase the

lignin content in Paspalum dilatatum (Giordano et al., 2014), O.

sativa (Takeda et al., 2017), while silenced the 4CL, CAD and HCT

will decreased the lignin content in O. sativa (Liu, H. et al., 2017),

Populus trichocarpa (Van Acker et al., 2017), Populus nigra

(Vanholme et al., 2013). In addition, modification the expression

of CCR, HCT and CAD can result in reconfiguration of different

lignin units, i.e., S-unit, G-units and H-unit. Besides, some

antioxidant enzymes, like POD (Herrero et al., 2013) SOD and

APX (Shafi et al., 2015), and certain transcription factors such as

MYB (Guo et al., 2017), bHLH (Gao et al., 2019) and WRKY

(Guillaumie et al., 2009) also can regulate the lignin biosynthesis.

Among those genes, PAL attracts great concern. In one hand,

molecular genetics methods have been used to silence or disrupt

PAL genes in numerous plants, likeA. thaliana (Huang et al., 2010),

tobacco (Korth et al., 2001), Scutellaria baicalensis (Park et al., 2012)

and rice (Fang et al., 2013), not surprisingly, lignin modified plants

were successfully constructed. In the other hand, delicate

investigations were also performed to make out the specific

biological function of certain PAL gene member (Kim and

Hwang, 2014; Van Acker et al., 2017; Mo et al., 2022)

By silencing one of the PAL gene members, the MePAL6, we

got a cassava line with 48% reduction of lignin content.

Interestingly, the expressions of other PAL gene members

(MePAL2 and MePAL5) were also suppressed to some extent.

Similarily, some studies also speculated that manipulation the

expression of single gene member would also affect the rest of
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family gene members. There are seven Rac genes in rice (O.

sativa), by using highly conserved regions of the two members

(OsRac1 and OsRac5) of the whole OsRac gene family, Miki et al.

(2005) established transgenic lines by specifically RNA silencing of

these two genes, meanwhile, suppression of all members of the

gene family with variable efficiencies were also observed.

Similarily, silencing GhOPR9(12-oxo-phytodienoic acid

reductases) gene in cotton (Gossypium hirsutum) also cause the

suppression of GhOPR3 expression (Liu et al., 2020). In plants,

RNAi- and VIGS-based technologies successfully silenced the

specific gene members without influencing the transcriptions of

the rest of closely related family members or simultaneously

silenced a few family members to overcome functional

redundancy (Burch-Smith et al., 2004; Hwang and Gelvin,

2004). However, in certain rigid situation, 100 percent of none

off-target was inevitable. In present study, the VIGS primers were

specifically designed that only target MePAL6 (Supplementary

Figure S4), we assumed that off-target effect can be minimize, in

fact, the target gene MePAL6 showed sufficient suppression here.

In the other hand, silencing MePAL6 may also change the

expression of some downstream synthesis genes, i.e, CCR and

4CL. This cascade effect of gene expression in specific metabolites

biosynthesis pathway is common in several studies. In the

GhENODL6 (Early nodulin-like protein 6) silenced cotton, the

transcriptions of both PAL and 4CL genes significantly decreased,

resulting in the reduction of SA content (Zhang et al., 2022). In

addition, in the GhOPR9 silenced cotton, expression alterations of

other jasmonic acid pathway related genes, like lipoxygenase

(LOX), allene oxide cyclase (AOC) and allene oxide synthase

(AOS), were also measured. In present study, silencing of

MePAL6 cause systematic impact on the gene expression of

lignin biosynthesis pathway, which resulted in decrease of lignin

content. The gene expression and metabolite changes lead to the

deterioration of TSSM-resistance, as the cassava cultivar SC9

would shift from TSSM-resistant plant into a TSSM-susceptible

one. In addition, PAL genes not only participate in lignin
FIGURE 7

Potential mechanism of MePAL6 regulates lignin accumulation and shapes cassava resistance to two-spotted spider mite.
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biosynthesis, but also involved in biosynthesis of several important

plant defense activators, i.e., salicylic acid, jasmonic acid and

ethylene in several plant species (Kim and Hwang, 2014; Jiang

and Yan, 2018; Fujimoto et al., 2015). Manipulating the expression

of PAL gene might simultaneously affect other defensive

responses. Thus, we assumed that apart from regulating lignin

accumulation, MePAL6 would probably attribute to several other

secondary metabolite-related defensive pathways, which

collectively shaped cassava resistance to TSSM.

However, more delicate efforts are still needed to fill the

knowledge gap of MePAL function in cassava. The PAL gene is

associates with abiotic and biotic stress such as pathogen

infection, mechanical damage, ultraviolet radiation, chemical

treatment and extreme temperatures. This study is the first

attempt to know about MePAL6 involved in insect pest

resistance. However, gene functions of other MePALs have not

been sufficiently illustrated. To fully demonstrated how every

single MePAL gene work independently or collaboratively in

specific biological process, will largely benefit the molecular

design breeding of novel cassava varieties that are adaptive to

abiotic and biotic stress, which can effectively reduce the adverse

environmental impacts and resulting cost, ultimately, promoting

the cassava production.
5 Conclusion

A genome-wide analysis of MePAL gene family in cassava

had identified a total of 6 MePAL gene members. Phylogeny,

gene duplication and cis-elements analysis implied the potential

function ofMePALs in lignin accumulation as well as insect-pest

defense. Silencing of the most strongly induced gene MePAL6

resulted in suppression of lignin biosynthesis and deterioration

of cassava resistance to TSSM, the possible mechanism

mentioned above was depicted in Figure 7. This study

demonstrates the importance role of PAL gene and lignin in

plants for defending piercing sucking herbivores, and provides

insights into potential genes for the molecular breeding of pest-

resistant cassava plants.
Footnotes

1. https://phytozome.jgi.doe.gov/

2. http://pfam.sanger.ac.uk/

3. https://www.ncbi.nlm.nih.gov/

4. https://www.expasy.org/

5. http://meme-suite.org/tools/meme

6 . ht tp : / /b io in format ic s .psb .ugent .be /webtool s /

plantcare/html/

7. https://vigs.solgenomics.net/

8. https://wolfpsort.hgc.jp/
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Herrero, J., Fernández-Pérez, F., Yebra, T., Novo-Uzal, E., Pomar, F., Pedreño,
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