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Leaf rust caused by Puccinia hordei is one of the major diseases of barley

(Hordeum vulgare L.) leading to yield losses up to 60%. Even though, resistance

genes Rph1 to Rph28 are known, most of these are already overcome. In this

context, priming may promote enhanced resistance to P. hordei. Several

bacterial communities such as the soil bacterium Ensifer (syn. Sinorhizobium)

meliloti are reported to induce resistance by priming. During quorum sensing in

populations of gram negative bacteria, they produce N-acyl homoserine-

lactones (AHL), which induce resistance in plants in a species- and genotype-

specific manner. Therefore, the present study aims to detect genotypic

differences in the response of barley to AHL, followed by the identification of

genomic regions involved in priming efficiency of barley. A diverse set of 198

spring barley accessions was treated with a repaired E. meliloti natural mutant

strain expR+ch producing a substantial amount of AHL and a transformed E.

meliloti strain carrying the lactonase gene attM from Agrobacterium

tumefaciens. For P. hordei resistance the diseased leaf area and the infection

type were scored 12 dpi (days post-inoculation), and the corresponding relative

infection and priming efficiency were calculated. Results revealed significant

effects (p<0.001) of the bacterial treatment indicating a positive effect of priming

on resistance to P. hordei. In a genome‐wide association study (GWAS), based on

the observed phenotypic differences and 493,846 filtered SNPs derived from the

Illumina 9k iSelect chip, genotyping by sequencing (GBS), and exome capture

data, 11 quantitative trait loci (QTL) were identified with a hot spot on the short

arm of the barley chromosome 6H, associated to improved resistance to P.

hordei after priming with E. meliloti expR+ch. Genes in these QTL regions

represent promising candidates for future research on the mechanisms of

plant-microbe interactions.
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1 Introduction

Leaf rust caused by the biotrophic fungus Puccinia hordei is a

serious disease of barley, leading to yield losses from 15–25%

(Whelan et al., 1997) up to 62% (Park et al., 2015). Visual

symptoms vary from small chlorotic lesions to large orange-

brown pustules of about 0.5 mm in size, often surrounded by

green leaf areas (Clifford, 1985). A major strategy in controlling

leaf rust epidemics is breeding of resistant barley cultivars. While

several resistance genes (Rph1 to Rph28, and RphMBR1012) have

been identified in recent years (Singh et al., 2015; Fazlikhani et al.,

2019; Chen et al., 2021), most of these are already overcome.

Breakdown of resistance by mutations in effector genes of the

pathogen frequently lead to the occurrence of new virulent races

(Park, 2003), and thus a rapid decrease of the number of effective

Rph genes (Kavanagh et al., 2017). Other effective management

practices include the application of chemical fungicides, which can

cause negative environmental (Ballabio et al., 2018) and public

health effects (Perlin et al., 2017) if applied incorrectly. In this

regard, decision-based management strategies may help to reduce

their environmental impact considerably in the coming years

(Lázaro et al., 2021). However, to promote more sustainable

agricultural systems establishing alternative strategies to manage

leaf rust epidemics is of prime importance, besides the ongoing

genetic mapping of resistance genes.

Novel approaches for sustainable and economical crop

production under ever-changing climate conditions include

microbiome-facilitated crop management strategies (Liu et al.,

2020; Trivedi et al., 2021). Beneficial plant-associated microbes

include predominantly rhizobacteria and fungi as well as viruses,

actinomycetes, cyanobacteria, archaea (Mauch-Mani et al., 2017;

Mahapatra et al., 2020). The barley-microbiome was reported to

largely vary between the different plant organs, developmental

stages, origin, as well as between genotypes (Yang et al., 2017;

Alegria Terrazas et al., 2020; Bziuk et al., 2021). Reported

positive effects of such interactions in barley include reduced

virulence of plant pathogenic fungi (Wehner et al., 2019;

Karlsson et al., 2021), higher tolerance to abiotic stress

(Caddell et al., 2019; Yang et al., 2020), as well as plant growth

promotion and nutrient uptake under adverse conditions

(Trivedi et al., 2020; Ribaudo et al., 2020).

The activation of induced defense mechanisms by various

stimuli, such as from pathogens, beneficial microbes, arthropods,

aswell as chemicals andabiotic cues, is generally regardedas priming

(Mauch-Mani et al., 2017; Desmedt et al., 2021). Upon priming,

plants respond stronger and faster to a biotic or abiotic stress factor,

resulting in resistance and securing yield. The use of priming for

enhancing resistance has a long tradition, and the phenomenon

called “sensitization” or “preformed defense” was investigated and

used since the 1930s (Chester, 1933; Starkey, 1958). In this respect, it

has tobenoted, thatmicrobial priming-inducedplant responses vary

between species and depend on the composition of the soil-
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microbiome as well as on the genotype and vice versa (Jack et al.,

2019;Morella et al., 2020;Alegria Terrazas et al., 2020; Si et al., 2021).

Various organic compounds, for instance salicylic acid (SA),

benzothiadiazole, b-aminobutyric acid, and azelaic acid are known

to induce priming (Conrath et al., 2002; Jung et al., 2009; Mauch-

Mani et al., 2017). In addition, many recent reports are highlighting

bacterial quorum sensing (QS) molecules as priming-inducers in

plants. Related to plant-pathogen interactions, the best-studied QS

molecules are N-acyl homoserine lactones (AHL), which are

produced by numerous gram negative bacteria to communicate

and to monitor the density of populations (Kaplan and Greenberg,

1985; Fuqua et al., 1994). Plants generally respond to short-chained

AHL with modifications in growth, while long-chained AHL

induce AHL-priming for enhanced resistance against pathogen

infection (Shrestha et al., 2020).

In tomato plants, root colonization with AHL-producing

Serratia liquefaciens MG1 and Pseudomonas putida IsoF lead to

increased systemic resistance against the fungal leaf pathogen

Alternaria alternate, likely in an SA- and ethylene-dependent

manner (Schuhegger et al., 2006). The effect has been related to

the four AHLs N-(3-oxo-hexanoyl)-L-homoserine lactone (3-

oxo-C6-HSL), 3-oxo-C8-HSL, 3-oxo-C10-HSL, and 3-oxo-C12-

HSL produced by P. putida IsoF (Gantner et al., 2006), and to the

two AHLs butanoyl-homoserine lactone (C4-HSL) and 3-oxo-

C6-HSL produced by S. liquefaciens MG1. Plants inoculated

with the AHL-negative mutant strain S. liquefaciens MG44

exhibited a susceptible phenotype (Schuhegger et al., 2006).

Another rhizobacterium with known AHL-priming capacity is

Ensifer meliloti, a naturally occurring gram negative soil bacterium

(Teplitski et al., 2003; Fagorzi et al., 2020). By studyingAHL-priming

with E. meliloti as a model in the laboratory, different authors tested

resistance against various pathogens, for instance Pseudomonas

syringae in Arabidopsis thaliana (Zarkani et al., 2013; Shrestha

et al., 2020), Blumeria graminis (Shrestha et al., 2019), Puccinia

hordei in barley (Hernández-Reyes et al., 2014; Wehner et al., 2019;

Shrestha and Schikora, 2020) and the pest Pratylenchus penetrans in

soybean (Adss et al., 2021). Notably, barley genotypes showed

different sensitivity to AHL-priming when treated with E. meliloti,

indicatedbydiverse resistance responsesof sevenbarleyaccessions to

P.hordei infection(Wehneretal., 2019)andofeightbarleyaccessions

to B. graminis infection (Shrestha et al., 2019). These results suggest

that AHL-priming is highly influenced by the genetic background of

the respective accession, and strongly propose the utilization of

priming-efficiency as a future breeding goal. However, the genetic

background underlying the variability of AHL-priming-induced

resistance in plants has not yet been investigated.

Inorder tomapgenetic loci underlyingdifferences in response to

AHL-priming, genome wide association studies (GWAS) are a

powerful tool since high throughput marker technologies like the

9k iSelect chip (Comadran et al., 2012), genotyping by sequencing

(PolandandRife, 2012)or exomecapture (EC) sequencing (Mascher

et al., 2013) are available in barley. While family-based linkage
frontiersin.org
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analysis searches for associationswithinpopulationsdeveloped from

bi-parental crosses, association mapping utilizes historic patterns of

recombination that have occurred within a sample of individuals.

Association mapping is based on the principle that over multiple

generations of recombination, correlations onlywithmarkers tightly

linked to the trait of interest will be present. As a predominantly

inbreeding species, cultivated barley is an attractive target for

association mapping as its genome contains extensive blocks of

chromatin in linkage disequilibrium (Rostoks et al., 2006),

providing a well-defined haplotype structure from which marker-

trait associations can be identified (Cockram et al., 2008).

In this study, we aim to investigate the genetic background of

resistance priming in barley. Thus, the objective is identifying barley

varietieswithanenhancedpotential torespondtoE.meliloti treatment

withanincreasedresistancetoaP.hordei infectionbyscreeningasetof

barleygenotypeswithadiversegeneticbackground.Asetof198spring

barley accessions was challenged with either the 3-oxo-C14-HSL

accumulating E. meliloti strain expR+ch or with the control E.

meliloti strain attM, not being able to accumulate AHL (Zarkani

et al., 2013). Responses after P. hordei infection were monitored and

relative infection values were used as a target for GWAS. Identified

primable accessions and QTL are discussed regarding the molecular

mechanisms of AHL-priming and breeding applications.
2 Material and methods

2.1 Plant material, experimental design,
and treatment

In order to determine the effects of priming in relation to an

infection with P. hordei causing leaf rust, we made use of the
Frontiers in Plant Science 03
potentially most diverse GWAS panel for barley comprising 200

spring barley accessions and landraces of worldwide origin from

the spring barley IPK-SB224 panel, including the “Genobar”

panel, (Haseneyer et al., 2010; Pasam et al., 2012). Our study

panel consisted of 111 two-rowed and 83 six-rowed accessions

from the Genobar panel and additional six barley lines, namely

Barke, Morex, Steptoe, Golden Promise, Großklappige, and

Roland, making it a total of 200 spring barley accessions of

which 198 were genotyped (Table S1 and Table S2, Figure S1).

This panel was investigated in greenhouse pot experiments

for three growing seasons (2017, 2018 and 2019) in a split plot

design with three pots per accession. The experimental workflow

is illustrated in Figure 1. After two days of germination on wet

filter paper, seedlings were transferred to potting mix

(Fruhstorfer Typ T) with three plants per pot (7x7x6 cm filled

with 0.2 L of substrate) and cultivated in the greenhouse at night/

day temperatures of 18°C/22°C with additional lighting for 10 h.

For watering of pots to full water holding capacity, tap water was

used, and the substrate was kept at similar moisture for all

accessions and treatments during the course of the experiment.

Two days after planting (dap) all accessions were treated either

with the repaired E. meliloti natural mutant strain expR+ch

(Rm2011 expR+ch) or with the transformed E. meliloti strain

attM (pBBR2-attM). ExpR+ch is able to accumulate a large

amount of the AHL 3-oxo-C14-HSL whereas attM was used as

a control, carrying a lactonase gene from Agrobacterium

tumefaciens and is therefore not able to accumulate AHL. Both

bacteria strains were grown in tryptone yeast (TY) extract

medium until the OD600nm of 0.6 to 0.8. Bacterial cultures

were centrifuged at 2,500 × g for 10 min and suspended in 10

mM MgCl2 (Zarkani et al., 2013). The bacteria solutions were

applied three times in total. In fact, the substrate was treated with
FIGURE 1

Experimental workflow of the priming treatment with E. meliloti followed by P. hordei infection and symptoms scoring. Days after planting – dap.
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3.5 ml of bacteria solution (OD600nm of 0.1, corresponding to 108

CFU/ml) each, at two, eight and 14 dap (Wehner et al., 2019)

using a multi-dispenser pipette equipped with a 50 ml tip vessel.

Inoculation of plants with the P. hordei virulent strain I-80 was

performed at the three-leaf stage at 16 dap. Therefore, trays

containing 24 pots each were placed in sealable containers. The

leaf rust spores (25 mg) were mixed with white clay (1:3) and

applied equally to the plants in the containers, using a manual

powder spray bottle. Immediately after the inoculation, the

containers were covered with foil to keep a moist atmosphere

and the plants were stored for 24 hours without light. After

removing the trays from the containers, plants were further

cultivated in the greenhouse as stated above.
2.2 Phenotyping for relative infection
and priming efficiency

The scoring was carried out 12 dpi (Figure 1) by estimating

the diseased leaf area in percentage [%] (Moll et al., 2000) and

the infection type (Levine and Cherewick, 1952). Thereof, the

relative infection as well as priming efficiency were calculated

according to Wehner et al. (2019).

Relative infection 

=  0:2 �  ln  P :  hordei %ð Þ  +  ln  P :  hordei scoresð Þ

Priming  efficiency 

=  relative infection  attMð Þ  −  relative infection  expR + chð Þ

Figures showing relative infection results were generated

with the data analysis software JMP version 14 (https://www.

jmp.com/en_gb/software/data-analysis-software.html). The

barley accessions were clustered in primable and non-primable

genotypes, by the difference of the relative infection between the

priming treatments (= priming efficiency), applying a threshold

for priming efficiency of >0.2 for primable ones and a

significance level of p<0.05. Best linear unbiased estimates

(BLUEs) of relative infection and priming efficiency for the set

of accessions under investigation are provided in Table S2.

The descriptive statistics of the phenotypic data were carried out

in the software “RStudio” version 3.4.2 (https://www.rstudio.com/

products/rstudio/) using the R-packages “pastecs” and “agricolae”.

The minimum (Min), the maximum (Max), mean, standard

deviation (SD), coefficient of variation (CV, standard deviation

divided by mean), least significant difference (LSD), and

repeatability for relative infection with P. hordei for the 198

accessions and for three years experiments were calculated for

attM as well as for expR+ch (Table 1). Repeatability of the

experiments in the greenhouse was calculated based on the

variance components of the accessions and the variance associated

with the accessionby year interaction implemented in theR-package

“lme4”. Based on these data, an analysis of variances (ANOVA) was
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carried out over the total number of accessions in order to check for

any significant effects for the accessions, the priming treatment and

their interaction (Table 2). Thus, a linear mixed effects (lme) model

by means of the R-package “nlme” was applied, using priming,

accessions, and the interaction of both as fixed effects and the plant

per pot, replication, and year as random effects.
2.3 Genotyping and GWAS

For 198 accessions single nucleotide polymorphism marker

data was gained (Table S1) derived from the Illumina 9k iSelect

chip (SGS Trait genetics) following Comadran et al. (2012). In

addition, for 175 accessions genotyping by sequencing (GBS)

and for 155 accessions Exome Capture analyses (Mascher et al.,

2013) were created. Thus, 5,764 iSelect markers, 17,653 GBS

markers and 470,429 exome capture (EC) markers were used

after filtering for<12.5% heterozygous SNPs, >5% minor allele

frequency and<10% missing values. Genetic positions for all

markers were extracted from the barley reference genome based

on MorexV3 (Mascher et al., 2021) by means of the Barleymap

software module “Locate by position” (https://floresta.eead.csic.

es/barleymap/locate/), which was published by the international

barley sequencing consortium (Cantalapiedra et al., 2015).

SNPmarkers from the iSelect Chip were used for calculation of

the population structure in STRUCTURE (Pritchard et al., 2000).

In this program, ten independent runs of Monte Carlo Markov

chain with burn-in period of 500,000 were calculated to obtain the

optimum k-value and the corresponding q-matrix. Two

subpopulations clustered by row-type (Figure S1) were identified

according to the method of Evanno et al. (2005). Furthermore,

linkage disequilibrium (LD) was calculated according to Hill and

Weir (1988) using the GenABEL package in R.

A genome-wide association study (GWAS) was carried out in

order todetect genetic loci thatunderlie thedifference in the response
TABLE 1 Descriptive statistics of relative infection with P. hordei for
the 198 accessions treated with either the attM or expR+ch bacterial
strain.

Priming attM expR+ch

Min 1.110 1.060

Max 1.690 1.440

Mean 1.490 1.310

SD 0.081 0.099

CV 0.054 0.075

LSD 0.004 0.010

r² 0.636 0.314

Minimum (Min), maximum (Max), mean, standard deviation (SD), coefficient of
variation (CV, standard deviation divided by mean), least significant difference (LSD),
and repeatability (r2) are listed.
fro
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to the bacterial priming. The total data set of 493,846 SNPmarkers,

phenotypicdatabyBLUEs,andtheq-matrixwasusedfor theGWAS.

The GAPIT tool in R was used in which a compressed mixed linear

model (cMLM) was applied using q-matrix and kinship (calculated

by Van Raden within the package) as random factors (Lipka et al.,

2012) after a model selection step including cMLM with kinship as

cofactor, a generalized linear model (GLM) and cMLM with q-

matrix and kinship as cofactors (Figure S2). In this comparison,

closest alignment to the line of expected probabilities (black) was

shown for cMLM with q-matrix and kinship as cofactors (green,

subjacent theblack line in thegraph),whichwas therefore selectedfor

GWAS. Furthermore, SNP permutation (1,000 permutations) was

applied to assess the empirical significance of SNPs and compression

level of 1.9 was used as suggested in the GAPIT package. Significant

marker trait associations (MTA)were identified using a threshold of

the falsediscoveryrate (FDR)atp<0.05which in thiscaserepresentsa

likelihood of odds (LOD) score of 4. Significant MTAs were further

clustered in corresponding putativeQTLby the LDof 21,000 bp. LD

was calculated using the R package “GenABEL”. Physical positions

together with marker types and the phenotypic variances explained

(PVE) are visualized using MapChart program (Voorrips, 2002).
2.4 Annotations regarding the Morex
reference genome

Annotation of genes at the identified marker positions was

obtained from information provided in the Barleymap software

module “Locate by position” containing annotations from the

Morex genome (Mascher et al., 2017) and updated to the

MorexV3 genome released in 2021 (Mascher et al., 2021).

Annotation of several iSelect markers was obtained from

sequence alignments using the BLAST tool of the UniProt

reference database (https://www.uniprot.org/blast/). Gene

transcript expression data were obtained from the Expression

Atlas database for barley (https://www.ebi.ac.uk/gxa/home#).
3 Results

3.1 The priming effect varies between the
various accessions

An established priming system using E. meliloti expR+ch as

primary trigger was applied (Wehner et al., 2019). The low
Frontiers in Plant Science 05
standard deviation and the associated high repeatability shows

that the priming method used, was reproducible.

The priming effect of the 198 accessions analyzed is

represented in the average relative infection with P. hordei

(Figure 2). Results clearly show that the expR+ch bacterial

strain treated group of plants was less infected in comparison

to the control group treated with the attM bacterial strain

(Figure 2 and Table 1). However, a large variation of the

accessions regarding the relative infection was observed and

allowed for the differentiation in primable and non-primable

accessions based on priming efficiency. Significant treatment

effects with p<0.05 were detected for 87 accessions meaning that

43.5% of the accessions in our study can be defined as primable

with AHL (Figure 2, Table S2). Concordantly, the large diversity

for priming efficiency in the panel is also shown by the high

coefficients of variation (CV) for both treatments (Table 1).

Furthermore, the effects can be assumed stable over the three

year’s experiments, with a calculated repeatability of 63.6% for

attm control treatments, while repeatability was low with 31.4%

for the expR+ch primed plants. In addition, ANOVA results

revealed significant effects (p<0.001) of the priming treatment

indicating a positive effect of priming on resistance to P. hordei

infection (Table 2). Also, significant (p<0.001) effects between

the accessions and for accessions times priming interactions

were observed. Thus, from the results a significant priming effect

can be concluded for AHL-induced P. hordei resistance, which is

accession-specific.

The ten accessions with the highest priming efficiency are all

of non-European origin, and comprise eight six-rowed and two

two-rowed accessions (Table S2): BCC129 (MAR, 6-row),

HOR11403 (IND, 6-row), BCC421 (CHN. 6-row), BCC551

(IND, 6-row), BCC538 (IND, 6-row), BCC93 (IRQ, 2-row),

Morex (USA, 6-row), BCC868 (MEX, 6-row), BCC903 (CAN,

2-row), and BCC881 (CAN, 6-row). Among the ten accessions

with the lowest priming efficiency are two of European origin,

and four accessions are of six-rowed and six of two-rowed ear
FIGURE 2

Relative infection with P. hordei (BLUES) in the 198 accessions
treated with either the attM (red) or expR+ch (blue) bacterial
strain and ordered by priming efficiency. Significant treatment
effects with p<0.05 were detected for 87 accessions.
TABLE 2 Analysis of variances (ANOVA) of relative infection with P.
hordei for the 198 accessions.

Effect F-value P-value

Priming (ai) 306.06 <0.001

Accession (bj) 8.89 <0.001

(ab)ij 3.33 <0.001
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type: HOR8160 (TUR, 2-row), BCC192 (SYR, 2-row), BCC899

(CHL, 2-row), HOR11373 (ISR, 2-row), BCC1385 (POL, 2-row),

BCC927 (PER, 6-row), BCC445 (CHN, 6-row), BCC844 (COL,

6-row), BCC1433 (DEU, 2-row), and BCC807 (URY, 6-row).

However, apart from a trend to non-European origin and six-

rowed ear type being correlated with higher priming efficiency

no clear relation to genetically determined phenotypic traits

could be made.
3.2 GWAS identified markers for
relative infection

For the three-year data on relative infection of primed (expR

+ch) and control plants (attM), 129 significant marker-trait

associations (MTAs) were identified by GWAS (Table S3,

Figure S3). Notably, primarily exome capture (EC) markers

were associated, highlighting the predominance of this marker

type in our dataset. Identified MTAs were clustered into QTL

using the critical LD decay value of 21,000 bp and MTA not in

LD were considered as an independent QTL. Overall, 70 QTL

were identified (Table S3). The identified QTL were unevenly

distributed across the barley chromosomes with one QTL

detected on chromosome 1H, five on chromosome 2H, three

on chromosome 3H, one on chromosome 4H, seven on

chromosome 5H. A hot spot of 42 QTL was detected on

chromosome 6H, and 11 QTL were detected on chromosome

7H (Figure 3). Detected QTL showed a positive effect on relative

infection with significant LOD values ranging between 4.01 and

6.21 (Table S3). The lowest LOD value was found for MTA 33 in
Frontiers in Plant Science 06
QTL 21 on chromosome 6H and the highest LOD value was

found for MTA 102, 103 and 104 in QTL 65 on chromosome 7H.

The respective QTL explain up to 13.5% of the phenotypic

variance (PVE) as specified in Figure 3 and listed in Table S3,

indicating the potential to increase resistance to P. hordei in

spring barley.

We have not detected QTL overlapping for relative infection

of primed (expR+ch) and control plants (attM) in our study. Of

all identified significant MTA, 112 MTA clustered in 59 QTL,

which were associated with the relative infection under attm

treatment. Therein, the percentage of PVE by each MTA varied

from 9.0 to 13.5% (Figure 3). In addition, 17 MTA clustered in

11 QTL, which are associated with the relative infection under

expR+ch priming (Table 3). These 11 QTL were distributed over

the barley chromosomes 2H (one QTL), 3H (one QTL), 5H

(three QTL), 6H (four QTL), and 7H (two QTL). Variation of

PVE by each MTA varied between 8.3 to 10.1% (Figure 3).

Out of the 70 detected QTL, annotation of marker positions

within 23 QTL could not be obtained. This relates to 34 of the

129 identified MTA (Table S3). From the annotated genes, 13 are

related to proteins with unknown functions (unknown protein

or undescribed protein). Promising candidates associated with

increased resistance to P. hordei treated with the attm control

strain included i) several transporters: Magnesium transporter

NIPA2 (HORVU1Hr1G077020) in QTL one, Mechanosensitive

ion channel protein 2 (HORVU5Hr1G095750) in QTL 17,

LETM1 and EF-hand domain-containing protein 1

(HORVU6Hr1G055750) in QTL 28, ii) transcription factors:

WRKY DNA-binding protein 2 (HORVU5Hr1G072020) in

QTL 16, MYB-like 102 (HORVU6Hr1G058640) in QTL 58,
FIGURE 3

Physical map (positions in Mb) of the seven barley chromosomes and 70 identified quantitative trait loci (QTL) for relative infection with P.
hordei upon attM (red) or expR+ch (blue) priming, including information on marker type and explained phenotypic variance of each SNP.
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TABLE 3 In a genome‐wide association study (GWAS), based on the observed phenotypic differences and 493,846 filtered SNPs derived from the Illumina 9k iSelect (iSelect) chip, genotyping by
sequencing (GBS), and exome capture data (EC), 11 quantitative trait loci (QTL) associated to improved resistance to P. hordei after priming with E. meliloti expR+ch, were identified with a peak on the
short arm of the barley chromosome (Chr.) 6H.
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and iii) several proteins involved in nucleic acid and protein

processing (Table S3). Unfortunately, the three markers with the

highest LOD value of 6.21 (MTA 102, 103 and 104) in QTL 65

on chromosome 7H could not be annotated, yet.

The most interesting QTL associated with increased

resistance to P. hordei primed with E. meliloti expR+ch was

identified on the short arm of barley chromosome 6H (Figure 3,

Table 3). The five marker clustering into QTL 21 are located in

the gene HORVU6Hr1G018050 being annotated as esterase/

lipase/thioesterase family protein. In addition, the two markers

clustering into QTL 7 on chromosome 3H, are located in the

gene HORVU3Hr1G006440 which is a xylanase inhibitor. This

gene has been reported to show increased transcript

accumulation under infection and wounding (Table 3). The

former is also the QTL containing the markers with the

highest PVE among the QTL associated with increased

resistance to P. hordei after AHL-priming, with 10.1%

(Figure 3). Similarly, the two markers in QTL 5 and QTL 13

are located in genes, which show increased transcript expression

under infection and wounding: namely HORVU2Hr1G017720,

the WRKY transcription factor 4, and HORVU5Hr1G063340,

the ATP-dependent zinc metalloprotease FtsH 2, respectively.

Also, HORVU5Hr1G001990, a laccase involved in lignin

catabolism, may be involved in increased resistance to P.

hordei following AHL-priming. The two markers clustering

into QTL 11 on chromosome 5H were located in this

gene (Table 3).
4 Discussion

Within this three-year trial, a positive effect of priming with the

gram negative soil bacterium E. meliloti strain expR+ch in relation

to resistance to P. hordei was demonstrated for spring barley. The

effect on relative infection and thus priming efficiency varied among

the set of 198 accessions, of which 87 accessions showed significant

(p<0.05) treatment effects and therefore have been considered

highly primable (Figure 2). Nevertheless, in practical applications

the priming effect might be influenced by environmental

conditions, such as soil type and the presence of other

microorganisms. To our knowledge, the presented study is the

first investigation on the effects of the priming inducer E. meliloti

strain expR+ch on cereal resistance against fungal pathogens

including a larger set of genetically differentiating accessions.

While several recent reports are suggesting that the microbiome

varies between the different plant organs, developmental stages,

origin, as well as between genotypes in wheat (Gdanetz and Trail,

2017; Kuźniar et al., 2020; Žiarovská et al., 2020) and barley (Yang

et al., 2017; Alegria Terrazas et al., 2020; Bziuk et al., 2021), studies

on genetic variation of priming efficiency are rare. In a previous
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experiment, we observed significant differences between seven

spring barley accessions, indicating genotypic differences in the

response to priming by E. meliloti strain expR+ch towards P. hordei

resistance (Wehner et al., 2019). Similarly, using a set of eight

genetically diverse spring barley accessions, Shrestha et al. (2019)

have demonstrated differences in their ability to be primed by E.

meliloti strain expR+ch with respect to resistance against B.

graminis f. sp. hordei. Other root associated microorganisms, for

which genotype dependent responses have been shown, include

arbuscular mycorrhiza fungi (AMF), reviewed in Parke and

Kaeppler (2000) and Sawers et al. (2010). Varying abilities to

respond to AMF were reported for wheat (Hetrick et al., 1993),

maize (Kaeppler et al., 2000; An et al., 2010), and onion (Powell

et al., 1982; Tawaraya et al., 2001; Galván et al., 2011). Consistently,

investigation of a diverse set of 94 bread wheat genotypes (Triticum

aestivum) regarding root colonization by AMF identified

significant genotypic differences (p<0.001) for mycorrhizal

colonization and detected 30 significant genetic markers

associated with root colonization (Lehnert et al., 2017). Within

the same set of genotypes, drought stress tolerance was significantly

increased in the presence of AMF colonization compared to

drought stress tolerance in the absence of AMF colonization

(Lehnert et al., 2018).

In our results, we observed a trend to non-European origin and

six-rowed ear type being correlated with higher priming efficiency

(Table S2). However, no clear relation to genetically determined

phenotypic traits could be made. The model cultivar Morex was

among the ten accessions with highest priming efficiency. This is

concordant with our previous finding, where Morex was identified

as a well primable accession (Wehner et al., 2019). In this study, the

accessions BCC768 and HOR7985 were also assigned as well-

primable, a result which was confirmed in the recent study. While

the resistance gene Rph8 was mapped in the Morex reference

genome on chromosome 5H at 12.7 Mb (Mascher et al., 2017),

we observed high values for relative infection under attM control

treatment in this accession (Table S2). This can be explained by

breakdown of resistance gene Rph8 by the P. hordei I-80 isolate

(Niks et al., 2000), which was used in the present study. Notably,

some QTL identified during the control treatment were in the

genomic region of known resistance genes, for exampleRph19 (Park

andKarakousis, 2002) on the barley chromosome 7H (see Figure 3).

Together, results suggest a high genetic determination of priming

responses and thus highlight the importance of screening large

diversity sets for detecting quantitative trait loci or candidate genes

involved in priming.

In our study, of the 129 MTA identified, 17 MTA, which

cluster in 11 QTL, were associated to improved resistance to P.

hordei after priming with the oxo-C14-HSL-producing E. meliloti

expR+ch, with a hot spot on the short arm of barley chromosome

6H (Figure 3, Table 3, and Table S3). Except two markers, all
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markers were assigned to positions in the genome within

annotated barley coding genes. On chromosome 6H, the marker

chr6H_16152203EC (QTL 18, LOD 4.23) is localized in the gene

HORVU6Hr1G008870 encoding for a pentatricopeptide repeat-

containing protein. This gene product belongs to the class of zinc

finger proteins involved in DNA binding, which may have

regulatory function, and which was shown to be induced by

drought stress in barley in a previous study (Guo et al., 2009).

Ano the r s i gn ifican t marke r on chromosome 6H

(SCRI_RS_121633, QTL 22, LOD 4.33) is localized in the gene

HORVU6Hr1G018610 encoding for the protein FLUORESCENT

IN BLUE LIGHT. InA. thaliana, this gene product was reported as

a negative regulator of chlorophyll biosynthesis acting in a light

dependent manner (Hou et al., 2019). How both gene products

mentioned above are involved in the process of induced systemic

resistance by AHL priming remains speculation. However,

limitation of photosynthetic activity has been assumed one

possible strategy of plants to increase pathogen resistance. For

instance, the accumulation of oxylipin in distal tissues during

AHL-priming in Arabidopsis promoted stomatal closure. The

closed stomata enhanced plant resistance to bacterial pathogens

(Schenk and Schikora, 2015). In this line, a very promising QTL

(21) on chromosome 6H comprises five significant markers from

two different marker types (SCRI_RS_182367, chr6H_44247682,

chr6H_44247749, chr6H_44247752, chr6H_44247776), all

localized in the same gene HORVU6Hr1G018050, which

encodes for a esterase/lipase/thioesterase family protein. In

barley, this protein was not characterized functionally yet, but a

BLAST search with the protein sequence in the NCBI database

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) revealed highest similarity

to the chloroplastic phytyl ester synthase 1 (PES1) fromA. thaliana

(At1g54570). It exhibits phytyl ester synthesis and diacylglycerol

acyltransferase activities with broad substrate specificities, and can

employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl

donors. PES1 was shown to be involved in fatty acid phytyl ester

synthesis in chloroplasts, a process required for the maintenance of

the photosynthetic membrane integrity during abiotic stress and

senescence (Lippold et al., 2012). Accordingly, deposition of free

phytol and free fatty acids in the form of phytyl esters in

chloroplasts was reported for etiolated barley seedlings after 6 to

8 h irradiation (Liljenberg, 1977), and in primary leaves of barley

during methyl jasmonate induced leaf senescence (Springer et al.,

2015). Notably, HORVU6Hr1G018050 was also found in a QTL

region on chromosome 6H in the interval between 37-76 Mb

associated with resistance against net blotch causing Pyrenophora

teres f. teres in a barley diversity set (Novakazi et al., 2019). On

chromosome 5H, the marker BOPA1_8215-496 (QTL 14, LOD

4,73) is localized in the gene HORVU5Hr1G065220 encoding for a

PDZ domain-containing protein, which is likely involved in the

regulation of protein translation via the proteasome with unknown
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contribution to pathogen resistance. Interestingly, the marker

SCRI_RS_205235 (QTL 13, LOD 4,25) is localized in the ATP-

dependent z inc metal loprotease FtsH coding gene

2HORVU5Hr1G063340. FtsH is the major thylakoid membrane

protease required for photosynthetic pathways in plants (Kato and

Sakamoto, 2018). This gene was recently shown to be relatively

highly expressed in all grain organs suggesting its crucial role in the

accumulation of the micronutrient metals (i.e., Cu, Fe, Mn, and

Zn) in barley grains (Thabet et al., 2022). It may be speculated, that

FtsH represents another component of the mechanisms activated

to limit photosynthetic activity to increase pathogen resistance.

However, despite the upregulation observed during infection and

wounding (Table 3), the involvement of FtsH in improved

resistance against P. hordei after AHL-priming needs further

molecular validation. Two other markers on chromosome 5H

(chr5H_5584131EC, chr5H_5584216EC) cluster in QTL 11 with

LOD 4.3 and 4.35, respectively. Both are located in the same gene

HORVU5Hr1G001990, which encodes for a laccase. Laccases

constitute a multi-gene family of multi-copper glycoproteins and

have diverse and overlapping physiological functions in plants,

including involvement in redox metabolism, responses to wound

healing, defense against pathogens or insects, synthesis of lignin

and suberin, and cross-linking of cell wall components; cf. Janusz

et al. (2020) and Tomková et al. (2012). While several laccases have

been annotated in the barley genome on all chromosomes recently

(https://plants.ensembl.org/Hordeum_vulgare/Search/Results?

page=3;q=laccase;species=Hordeum_vulgare;collection=all;site=

ensembl), onlyHvLac1 on chromosome 4H has been characterized

in detail so far with unclear molecular function (Tomková et al.,

2012). However, we suggest that the laccase, identified in our study

is likely involved in cell wall fortification representing one of the

processes leading to increased resistance to P. hordei by AHL

priming. Consistently (Shrestha et al., 2019) showed that the

principal mechanism of AHL-induced priming in barley seems

similar to the mechanism in Arabidopsis, i.e., it is associated with

the activation of MAPKs, enhanced expression of various defense-

related genes and of genes involved in the remodeling of cell wall

structure. Additionally, laccases were also identified among a group

of genes that were associated with Fusarium graminearum

resistance in barley (Huang et al., 2016). In the same line, the

two markers identified on chromosome 3H (chr3H_15470342EC,

chr3H_15470343EC, QTL7, LOD 4.84), which are both localized

in the gene (HORVU3Hr1G006440) annotated as a xylanase

inhibitor, represent interesting candidates with potential function

in the fortification and remodeling of cell wall structure. This gene

was also found to be upregulated after infection and wounding in

barley (Table 3). Most cereals contain arabinoxylan as a structural

component in their cell walls (Henry, 1985). As xylanases have a

general role in the depolymerization of plant and fungal cell walls

(Hrmova et al., 1997), the xylanase inhibitor identified in our study
frontiersin.org

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://plants.ensembl.org/Hordeum_vulgare/Search/Results?page=3;q=laccase;species=Hordeum_vulgare;collection=all;site=ensembl
https://plants.ensembl.org/Hordeum_vulgare/Search/Results?page=3;q=laccase;species=Hordeum_vulgare;collection=all;site=ensembl
https://plants.ensembl.org/Hordeum_vulgare/Search/Results?page=3;q=laccase;species=Hordeum_vulgare;collection=all;site=ensembl
https://doi.org/10.3389/fpls.2022.1069087
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Matros et al. 10.3389/fpls.2022.1069087
could help to reduce or overcome the effect of plant and fungal

related xylanases during infection with P. hordei and thus promote

resistance. A marker with high potential in translation regulatory

processes was identified on chromosome H2 (chr2H_44543906,

LOD 4.13) localized in the gene HORVU2Hr1G017720, which is

annotated as WRKY transcription factor 4. The WRKY

transcription factor gene family is one of the largest, and it is

known to be involved in a wide range of plant developmental and

physiological processes. Although, more than 60 unique barley

genes have been annotated containing the WRKY domain, WRKY

proteins of barley are not yet fully annotated and most of them are

not functionally characterized (Liu et al. (2014), http://www.

barleygfdb.com/second/family.php?xu=77). The data of Dey et al.

(2014) suggest that bacteria-induced systemic immunity in barley

is associated with the local and/or systemic induction of transcript

accumulation of Ethylene Responsive Factor (ERF)-like

transcription factors (HvERF-like, HvERF44411) as well as

HvWRKY22 and HvWRKY38/1. Similarly, Gao et al. (2018)

proposed Nonexpressor of Pathogenesis-Related Genes1 (NPR1)

homologs and WRKY transcription factors as the master

regulators of systemic acquired resistance in wheat and barley.

Furthermore, they showed that transient expression of HvWRKY6,

HvWRKY40, and HvWRKY70, in wheat leaves by Agrobacterium-

mediated infiltration enhanced the resistance to Puccinia triticina.

In another study, HvWRKY10, HvWRKY19, and HvWRKY28

were shown to positively regulate the response of barley to B.

graminis infection (Meng andWise, 2012). On the other hand, the

wound and pathogen-inducible HvWRKY1 and HvWRKY2 are

known as negative defense regulators repressing the activity of the

powdery mildew-induced promoter of HvGER4c, a germin-like

defense-related protein (Liu et al., 2014). However, WRKY

transcription factor 4 (HORVU2Hr1G017720) was not

functionally characterized yet, despite the induced expression of

HORVU2Hr1G017720 after fungal infection and wounding

(Table 3, http://www.barleygfdb.com/second/PRJNA728113.php?

xu=77). It also needs to be considered that WRKY functions may

be genotype specific, such as shown for WRKY transcription

factors in barley cultivars infected with Fusarium culmorum

(Uluhan et al., 2019).

In conclusion, our results provided clear evidence for the

improved resistance of barley against P. hordei infection by AHL-

mediated priming. Priming responses were genotype specific and

most significant genetic markers for improved resistance to P.

hordei after priming identified in our study were related to limiting

photosynthetic activity, cell wall fortification, and regulation of

transcription and translation. Our findings are important, as they

open doors to study the mechanisms and the interactions between

the plant genetic background and AHL-priming as well as

supporting novel breeding approaches for priming efficient

accessions and thus sustainable crop protection after validation.
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SUPPLEMENTARY FIGURE 1

Composition of the test panel of 200 spring barley accessions. Our study

panel consisted of 111 two-rowed and 83 six-rowed accessions from the
Genobar panel (Haseneyer et al., 2010; Pasam et al., 2012) comprising
Frontiers in Plant Science 12
barley accessions and landraces of worldwide origin and including a test
set of six common barley lines. * The UN 3-letter country code was used.

SUPPLEMENTARY FIGURE 2

QQ-Plot for model selection of a compressed mixed linear model (cMLM,
A) with kinship as cofactor, cMLM with q-matrix and kinship as cofactors

(B) and a generalized linear model (GLM, C).

SUPPLEMENTARY FIGURE 3

Manhattan plots for relative infection of P. hordei for 200 accessions primed
with E. meliloti strain attM (red) or expR+ch (blue) against physical positions

(Mb) of the marker trait associations on the seven barley chromosomes.
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