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Deep learning techniques have made great progress in the field of target

detection in recent years, making it possible to accurately identify plants in

complex environments in agricultural fields. This project combines deep

learning algorithms with spraying technology to design a machine vision

precision real-time targeting spraying system for field scenarios. Firstly, the

overall structure scheme of the system consisting of image acquisition and

recognition module, electronically controlled spray module and pressure-

stabilized pesticide supply module was proposed. After that, based on the

target detection model YOLOv5s, the model is lightened and improved by

replacing the backbone network and adding an attentionmechanism. Based on

this, a grille decision control algorithm for solenoid valve group on-off was

designed, while common malignant weeds were selected as objects to

produce data sets and complete model training. Finally, the deployment of

the hardware system and detection model on the electric spray bar sprayer was

completed, and field trials were conducted at different speeds. The

experimental results show that the improved algorithm reduces the model

size to 53.57% of the original model with less impact on mAP accuracy,

improves FPS by 18.16%. The accuracy of on-target spraying at 2km/h, 3km/

h and 4km/h speeds were 90.80%, 86.20% and 79.61%, respectively, and the

spraying hit rate decreased as the operating speed increased. Among the hit

rate components, the effective recognition rate was significantly affected by

speed, while the relative recognition hit rate was less affected.

KEYWORDS

target spraying, precision weeding, machine vision, YOLOv5, lightweight model
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1072631/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1072631/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1072631/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1072631&domain=pdf&date_stamp=2022-12-19
mailto:zsyang@henau.edu.cn
https://doi.org/10.3389/fpls.2022.1072631
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1072631
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2022.1072631
1 Introduction

Spraying chemical pesticides is the main method of crop pest

and weed control at present (Song et al., 2015; Zhang et al.,

2015). Pesticides have contributed greatly to increasing

agricultural production and are an essential material basis for

ensuring food security (Cooper and Dobson, 2007; Popp et al.,

2013; Verger and Boobis, 2013). At the same time, the excessive

use of pesticides has also brought many problems, such as

pesticide waste, chemical residues, environmental pollution,

etc. The efficient and scientific use of pesticides is an inevitable

requirement to achieve high-quality agricultural development

(Gil and Sinfort, 2005; Pan et al., 2019). The current main

method of pesticide application is continuous and continuous

spraying of pesticides with full coverage of the field. Most

pesticides enter the natural environment through evaporation,

surface runoff, infiltration into the soil, etc., and only a small

portion falls on the spraying target to be used effectively

(Zabkiewicz, 2007; Zheng et al., 2018). Especially when

weeding in the seedling stage of crops, the weed canopy is

small, the bare land occupies the main area, and most of the

pesticides fall into the soil. In China, for example, according to

relevant data, The effective utilization rate of pesticides for major

food crops in China is only 40.6% in 2020 (Lan et al., 2021).

Target spraying is an effective technique to improve the

utilization rate of pesticides. Sensors sense the position and

size of the target in the field and control the opening and closing

of the nozzle to accurately spray the target, which can

significantly improve the effective utilization rate of pesticides

and reduce the use of pesticides (Yu et al., 2019).

Detection of targets in the field is the key to target spraying

technology (Song et al., 2015). There are machine vision

solutions and non-machine vision solutions for target

detection of target application systems based on real-time

sensor technology. (Meshram et al., 2022). Ultrasonic and

laser sensors can be used to detect the position of plants, using

the time it takes for the ultrasound or laser to reach the target

and reflect back, and then calculating the distance to the target.

Over the years, related researchers have carried out a series of

explorations in this field, Chueca et al. (2008); Palleja and

Landers (2015) and Zhou et al. (2021) used ultrasonic sensors

to measure the size and density of trees and control orchard

spray system. Deng et al. (2008) applied infrared photoelectric

detection technology to agriculture to achieve crop detection and

target spraying with an adjustable detection range of 0.1 to 0.5m.

Geng et al. (2012) designed a tobacco-targeted application

system, which uses the detection results of the photoelectric

switch to control the opening and closing of the spray solenoid

valve. Non-visual sensors are difficult to pinpoint the location of

the target, and detection targets are dominated by tall plants

such as fruit trees, rather than smaller-scale crop seedlings and

weeds in fields.
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In machine vision-based on-target spraying solutions,

traditional image algorithms analyze by plant morphology,

texture and spectral features. Dammer (2016) used the

different wavelengths reflected by the plants and the land in

the field, distinguishes the vegetation and the land through

cameras and filter lenses, and realizes the real-time variable

spraying of herbicides in the carrot field. Esau et al. (2018)

designed a machine vision pesticide variable spraying system

that distinguishes weeds by the difference in color between green

weeds and reddish-brown wild blueberries when herbicides are

applied in spring and fall. Özlüoymak et al. (2019) discriminated

green objects in images according to their greenness and

controlled the opening and closing of sprinklers according to

the coordinates of artificial weeds. Zhao et al. (2022) used the

improved support vector machine classification algorithm to

detect cabbage and weeds, and designed a target spray system to

achieve an average effective spray rate of 92.9%. Although the

traditional image processing method has been verified in the

target spray system, it is primarily aimed at scenarios with

relatively ideal operating environments and large target

volumes, such as greenhouses and vegetable with large plant

distances. For outdoor field production scenarios with complex

working conditions, the targets are relatively dense and small,

making it difficult to be applied in practice. At the same time,

occlusion and changing lighting conditions in natural

environments remain significant challenges for spray target

identification and localization (Wang et al., 2019).

In recent years, deep learning-based target detection

techniques have led to substantial improvements in the

accuracy of target recognition. Classic target detection

algorithms include R-CNN, Faster-RCNN, SSD, Mask RCNN,

YOLO series algorithms, etc. (Girshick et al., 2014; Liu et al.,

2016; Redmon et al., 2016; He et al., 2017; Ren et al., 2017). In

particular, the YOLO series of target detection algorithms

proposed by transforming the target detection problem into a

regression problem, can directly output the category and

coordinate information of the predicted frame end-to-end

(Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon

and Farhadi, 2018). Related researchers applied different object

detection algorithms to weed identification in the agricultural

field (Xu et al., 2021). Potena et al. (2016) used two different

CNNs to process RGB and NIR images to quickly and accurately

identify crops and weeds. A lightweight CNN is used for fast and

robust vegetation segmentation, and then a deeper CNN is used

to classify the extracted pixels between crops and weeds. Patidar

et al. (2020) proposed an improved Mask RCNN model to

extract early cranesbill seedlings. You et al. (2020) proposed a

semantic segmentation method for weed crop detection based

on deep neural networks (DNNs). Hailong et al. (2022) used the

YOLOv5 algorithm to process aerial images of drones, generate

prescription maps, and transmit them to sprayers to achieve

fixed-point weeding. Although the YOLO algorithm has shown
frontiersin.org

https://doi.org/10.3389/fpls.2022.1072631
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.1072631
excellent performance in object detection, its requirements for

high-performance GPUs and other devices constrain its

deployment in the field (Qin et al., 2021), so it remains

important to investigate further lightweight improvements to

its model.

In this paper, deep learning based object detection

technology is applied in the field of precise spraying, and a

precise real-time target spraying system based on machine vision

is studied for the field scene. Firstly, the overall design scheme of

the system is proposed, including image acquisition and

detection module, an electronically controlled spray module,

and a pressure-stabilized pesticide supply module. Then,

lightweight improvements are made based on the YOLOv5s

model. On this basis, a grid decision-making algorithm is

designed to determine the solenoid valve group’s opening and

closing. At the same time, a common malignant weed is selected

as an object to produce data sets and complete model training.

Finally, the hardware system and identification model are

completed to be deployed on the electric boom sprayer, and

field experiments are conducted at different speeds. The

experimental results show the accuracy of the application of

the designed system, which can effectively improve the effective

utilization rate of pesticides, reduce the amount of pesticide

used, and mitigate the environmental pollution of farmland,

which has certain significance for agricultural production

intelligence and ecological protection.
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2 Materials and methods

2.1 Overall scheme design of real-time
target spraying system

The main work of this research is to develop a set of real-time

target spraying system based on deep learning, which can identify

crops or weeds in real time and spray chemical agents on the

spraying target, thereby greatly reducing the use of pesticides. The

real-time target spray system is mainly composed of an image

acquisition and detection module, an electronically controlled

spray module, and a pressure-stabilized pesticide supply module.

The system structure is shown in Figure 1.

The image acquisition and recognition module comprise an

industrial camera and an onboard computer. The industrial

camera is responsible for collecting image data. The onboard

computer, as the upper computer of the system, is responsible for

tasks such as processing image data and decision-making of

opening and closing of the solenoid valve group. Among them,

the industrial camera is a 2-megapixel camera with a 2.8-12mm

zoom lens, a 1920×1080 video image resolution, and a 30FPS

frame rate. The onboard computer CPU is Intel i7-1165G7, the

memory is 16GB, and the graphics card is NVIDIA RTX2060.

The industrial camera transmits image data to the computer via a

USB interface. The mounting height of the camera is determined

by the size of the field of view. The lower the mounting height, the
FIGURE 1

The components of the real-time target spaying system.
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smaller the camera field of view and the larger the scale of the

ground target in the image, but more camera combinations are

needed to cover the entire operating width of the sprayer.

Conversely, the higher the mounting height, the larger the

camera field of view, but the smaller the scale of the ground

target in the image. In this study, two cameras were mounted on

the spray bar, each governing half of the operational width. The

operating width of the experimental prototype was 3.3m, and the

installation height was determined by field adjustment to be 1m

above the ground, with each pixel corresponding to a size of

0.859mm on the ground.

The electronically controlled spray module consists of a

microcontroller, a solenoid valve group, a solenoid valve driver

board, and a nozzle set. The microcontroller belongs to the lower

computer, and is responsible for receiving signals from the upper

computer and controlling the action of the solenoid valve group.

The microcontroller model is Nucleo F411RE, 128kB RAM,

512kB Flash, maximum main frequency is 100MHz. The

solenoid valve group is composed of high-frequency solenoid

valves, the model is suodi2V025, the working voltage is DC 24 V,

the working pressure range is 0∼1.0MPa, and the maximum

operating frequency is 10Hz. In the non-energized state, the

solenoid valve is in a closed state under the action of the spring.

After the solenoid coil is energized, the valve core is pulled in

momentarily, and the solenoid valve is switched to the

conducting state. The output voltage of the microcontroller
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pins is 3.3V, which could not drive the solenoid valve directly,

so MOS tubes are used to build the solenoid valve driver module

to convert the 3.3V signal to 24V level. In order to prevent the

load from interfering with the microcontroller, a photoelectric

coupling element is designed and arranged at the front of the

MOS tube to convert the electric signal into an optical signal,

and then convert the optical signal into an electric signal, which

is used to isolate the direct connection between the

microcontroller and the solenoid valve group in the circuit.

The nozzles are fan-shaped nozzles with a fog surface angle of

25°, and the spacing between nozzles is 15cm.

The pressure-stabilized pesticide supply module includes a

pesticide tank, electric plunger pump, pressure gauge, flowmeter,

and pressure regulating relief valve. Since the spray on the target

is intermittent, it will cause strong pressure fluctuations and

water hammer effect in the pipeline, which will easily reduce the

life of the pipeline components or even damage them. Therefore,

the design of automatic pressure stabilization supply pump, as

shown in Figure 2, two pressure regulating elements, a surge

tank and a pressure switch, were added to the existing electric

piston pump.The internal surge tank is a rubber capsule, which

can maintain certain water pressure and absorb the pressure

fluctuations caused by the sudden start and stop of the nozzle.

The pressure switch is connected to the motor controller, which

automatically turns off the pump when the water pressure is

higher than the set shut-off pressure, and automatically absorbs
FIGURE 2

Electric pressure stabilizing pesticide pump. 1. Motor Controller 2. Drive motor 3. Surge tank 4. Pressure switch 5. Pressure gauge 6. Pesticide
inlet 7.Pesticide outlet 8.Pressure regulating valve 9. Pesticide return outlet 10.Pressure regulating handwheel 11. Pump body.
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when the pressure is lower than the set-on pressure and starts

the pump to work. The interplay between the pressure stabilizer

and the pressure switch enables the pump to supply on demand

according to the amount of pesticide sprayed, avoiding idling

and frequent starting and stopping of the pump.

The workflow of the real-time target spraying system is

divided into four parts: image acquisition, identification

decision-making, signal conversion, and spray execution, as

shown in Figure 3. When the system is working, the camera

collects field ground image information to the onboard

computer. The computer preprocesses the image, and uses the

trained deep learning model to detect the target, and then

decides the opening and closing of the solenoid valve group

according to the detection result. On this basis, the computer

sends the decision signal in the form of a data frame to the

electronically controlled spray module in real time through the

serial port, and the microcontroller of the electronically

controlled spray module parses the data frame and sets the

corresponding control pin to the level. Finally, the solenoid valve
Frontiers in Plant Science 05
drive board amplifies the signal and drives the solenoid valve

group to open and close to complete the target spraying task. In

the meantime, the surge tank and the pressure regulating relief

valve of the pressure stabilized pesticide supply module work

together to suppress the pressure of the pipeline caused by

intermittent spraying, so that the pesticide supply pipeline

always maintains a constant supply pressure, so as to ensure

the quality of spray nozzle atomization.
2.2 Image data collection and processing

The experimental data collection site is Suixian County

(34.136°N, 115.343°E), Henan Province, from July 16 to July

18, 2022. The collection was made from the common weed

Cirsium setosum (Cirsium arvense var. integrifolium), a

perennial malignant weed that is harmful to dry crops such as

wheat, cotton, and soybeans, and is difficult to control due to its

well-developed rhizomes and strong resistance to pesticides.
FIGURE 3

The system workflow block diagram.
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If the collected data differs significantly from the actual

application scenario, it will lead to the problem of reduced

recognition accuracy of the trained model in the actual

application scenario. In order to ensure the quality of the

collected model training data and at the same time to improve

the efficiency of data collection, a remote-controlled electric

image data collection vehicle was used in the design of this study,

as shown in Figure 4. The image collection vehicle is driven by a

12V motor, with image capture designs such as industrial

cameras and mobile phones fixed to the front of the vehicle,

shooting at a downward angle and at the height of 80 cm above

the ground to simulate the position and state of the camera

during actual operation.

A total of 3,200 pictures containing Cirsium setosum weeds

were collected. After manual inspection, it can meet the needs of

deep learning model training. The images were manually

annotated using the image annotation tool CVAT, and the

annotated data were exported in the PASCAL VOC data

format. After that, the entire dataset is randomly divided into

a training set, validation set, and test set according to the ratio of

8:1:1 for subsequent model training and testing.
2.3 Lightweight improved model based
on YOLOv5

Weeds are not uniform in spatial scale size and are randomly

distributed across the field, and small fluctuations up and down

in recognition accuracy do not have a significant impact on

pesticide spraying. Deep learning models, on the other hand,

require a large number of inference calculations and demand

high performance from the equipment. Therefore, the model

size can be reduced by lightening and improving the network

model to allow deployment on vehicle-mounted edge devices
Frontiers in Plant Science 06
with limited computational resources and to improve the

recognition frame rate to achieve local real-time target

recognition for the target spraying system, while essentially

not affecting the effect of on-target spraying.

2.3.1 YOLO v5s model
In the field of target detection, the single-stage detection

algorithm represented by the YOLO series offers a good balance

between accuracy and speed (Redmon et al., 2016). YOLOv5 is

one of the YOLO series networks, by transforming the target

detection problem into a regression problem, the whole image is

input, and the class and coordinate information of the prediction

box can be directly output. It is one of the current models with

the best target detection performance and has the speed of

inference fast, end-to-end, and so on (Chen et al., 2022).

YOLOv5 contains five scale models, N, S, M, L, and X. These

five models become progressively larger, slower, and more

accurate. This system selects the YOLOv5s model as the base

model and optimizes and improves on it to design a lightweight

field target detection model.

The YOLOv5s model consists of three parts: backbone

network, neck network, and detection head. The backbone

network is used to extract image features, the neck network is

used to integrate the features of the entire scale, the feature

pyramid is generated, and the detection head is used to regress

the position and category of the output prediction box. Among

them, the backbone mainly uses the CSPdarknet+SPPF

structure, and Neck uses the PANet structure.The backbone

network consists mainly of a CSPdarknet network of Conv

modules stacked with C3 modules and an SPPF structure.

Convolution, BN, and SiLU activation functions are included

in Conv. The Neck part of YOLOv5s uses the PANet structure,

which is a bottom-up feature extraction and fusion structure

added to the FPN. After FPN upsampling for feature fusion,
FIGURE 4

Remote-controlled field image collection vehicle.
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PANet is added, but the two feature maps are fused by splicing to

obtain three feature maps of different sizes. For the YOLOv5s

detection head, it performs target prediction and classification

on the output three feature maps. Positive and negative samples

are distinguished on the anchor box by matching across the grid

cell, mainly by adjusting the offset of the predicted target

centroid relative to the upper left corner of the grid, with the

aim of removing sensitivity from the grid cell.The YOLOv5s

model loss calculation includes classification loss, localization

loss, and target loss. The total loss is calculated as follows:

Loss = l1Lcls + l2Lloc + l3Lobj (1)

where l1, l2, l3 are balance coefficients.

2.3.2 MobileNetv3 and attention
mechanism module

The original CSPdarknet backbone network in YOLOv5 has

a large amount of convolutional processing, which occupies a

large amount of computing power and computation time, and is

not suitable for deployment on edge computing devices with

limited computing power (Wang et al., 2022). In this case, this

study replaces the backbone network of YOLOv5 with the more

lightweight deep learning model MobileNetv3 (Howard et al.,

2019) to reduce the computational and model size of the original

backbone network.

MobileNet v3 is the third version of the MobileNet family of

networks. The core idea of the MobileNet series of models is to

replace the standard convolution operation with a depthwise

separable convolution. As shown in Figure 5, the input

information is first subjected to depthwise convolution and then

pointwise convolution, which greatly reduces the amount of

computation and parameters and realizes recognition. The

processing speed is significantly improved with little loss of accuracy.

MobileNet v3 adds a number of tricks to the depth-separable

convolution to make the model more robust. First, the input

matrix is increased in dimension and activated using the

H-Swish activation function; The Swish activation function is

activated, and an attention mechanism is added; then, pointwise
Frontiers in Plant Science 07
convolution is used to reduce the dimension, and a shortcut

connection is used between the input information and the

output channel. The block structure is shown in Figure 6.

The attention mechanism is similar to the human visual

selective attention mechanism. It selects the information that is

more critical to the task goal from many pieces of information,

suppresses the useless information, and increases the weight of

the useful information. The core idea of the SE (Squeeze and

Excitation) module is to automatically learn the feature weights

according to the loss through the fully connected network so that

the effective feature channel weights are increased. The learning

process adaptively acquires the weights for each channel and

updates the original data according to the weights, devoting

computational resources to the different channels in a rational

way.The structure is shown in Figure 6. The SE attention module

first compresses the two-dimensional features (h*w) of each

channel into a real number by global averaging pooling,

changing the feature map from (h*w*c) to (1, 1, c). A weight

value is then generated for each feature channel, and the

correlation between channels is constructed through two fully

connected layers, outputting the same number of weights as the

number of channels in the input feature map. Finally, the

normalized weights obtained earlier are multiplied channel by

channel with the input feature map.
2.3.3 Improved model
In order to better balance the accuracy and speed of the

model, the model can be deployed on edge computing devices

with limited computing power. In this study, the backbone

network of YOLOv5s is first replaced with a more lightweight

MobileNet v3 network model to reduce the computation and

model size of the original backbone network. Afterward, the field

images are relatively complex, and some weeds have small

targets, which may easily cause false and missed detection

problems. In this study, SE attention modules are added

behind the three outputs of the backbone network respectively,

so that the network can improve the computational efficiency

through automatic learning and increase the effective feature
FIGURE 5

Depthwise separable convolutional structure.
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channel weights, so that the network can focus on important

feature channels, thereby improving the accuracy of the model

for small target weed recognition. The improved YOLOv5s

model is shown in Figure 7.
2.4 A grille decision algorithm for
solenoid valve group on-off

The weed location information identified in the image for

target spraying system needs to be converted into nozzle opening

and closing control information. Therefore, this study proposes a

grid decision-making algorithm. The specific method is: to draw a

single-layer grid on the screen, the number of grids corresponds

to the number of solenoid valves on the boom, and the length of

the line segment is the average spray width of each solenoid valve.

As shown in Figure 8. As the spray bar sprayer works forward, the

ground image moves down the screen, and the onboard computer

also performs target detection and draws a prediction box on the

target in real time. If a prediction box overlaps a grid, the target is

in the spray area of the corresponding nozzle. The system detects

the area of each grid intersecting the prediction box and if the

area is greater than a set threshold, a decision position of 1 is

made, indicating that the solenoid valve needs to be opened for

spraying; otherwise, 0 is set, indicating that the solenoid valve is

closed. Each grid in the grille is like a virtual touch switch that is

pressed when the prediction box passes by and automatically

pops up when it leaves.

Grid detection is performed on each frame of a video image

to generate a decision frame composed of 0 and 1, which is then

sent via the serial port to the microcontroller for parsing and

driving the solenoid valve set on and off. After receiving the data

frame, the microcontroller parses the data frame by bit and sets

the level state of the corresponding GPIO pins, the output

voltage of the controller is 3.3 V. After the signal amplification

module is boosted to 24V, the solenoid valve group is driven to

act, the nozzle and the pesticide supply line are conducted, and

the pesticide is atomized to achieve target application.
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For the delineated grid, which has a certain width, this allows

the prediction frame to be in contact with the grid for a little

longer than the solenoid valve passes through the ground target,

corresponding to a slightly larger spray coverage area in the

longitudinal direction. This redundancy is designed to

compensate for nozzle installation errors, speed fluctuations,

spray bar vibration and droplet drift in the forward direction of

the machine, thus ensuring complete coverage of the ground

target by the spot spray. In addition, for small weeds, the nozzle

has a very short time to pass over them, and the solenoid valve

can be switched off before the pesticide has had time to atomize.

Setting a certain grid width to ensure that the solenoid valve has

a base opening time, thus guaranteeing spraying effectiveness.

The width of the detection grille corresponding to the

distance on the ground needs to be greater than the distance

the vehicle advances in the time used to process one frame of the

image, otherwise it will likely cause a missed detection.

Therefore, the width of the grid should not be too small, and

the width set in this study was 60 pixels, which corresponds to a

detection width of 51.54 mm on the ground.
3 Experiments

3.1 Model training

For model training, the input image is first resized to 640 ×

640 pixels, while the image padding method is used to maintain

the aspect ratio of the original image. Then use the Pytorch

framework to build the improved YOLOv5s model. Anchor

boxes are generated using multiple iterations of the K-means

algorithm. Mosaic data augmentation is also used in the training

process, which further enriches the background of the detected

object, enhances the network model’s cognition of weed

characteristics, and enhances the robustness and generalization

performance of the model. Use cosine annealing learning rate

during training and optimize training with Adam optimizer. The

entire model was trained for a total of 300 epochs.
FIGURE 6

MobileNetV3 block structure.
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After passing the data set into the improved YOLOv5s

model, it is judged whether the model training has reached

convergence by observing the change of the Loss value of the

model during the training process and the change of the mAP

curve on the validation set. Figure 9 shows the training process

curve. It can be seen that after 170 epochs of training, the loss of

the network model gradually decreases and stabilizes, the mAP

on the validation set rises and stabilizes round by round, and the

training continues until the loss converges. After the model

converged, the weights with the lowest loss in the last few

training cycles were selected as the trained model. Finally, the

model performance is tested on the test set to verify its

performance respectively. To ensure the reliability and

accuracy of the experiments, the tests were all completed in

the onboard computer configuration environment in Table 1.
3.2 Model evaluation metrics

In order to accurately evaluate the identification effect of the

improved model for weeds, this study adopts the precision,
Frontiers in Plant Science 09
recall, F1 score, average precision, network parameters, model

size, and detection speed indicators for evaluation. Among them,

the data set of this study mainly detects typical weeds and only

contains one category of weeds, so there is no need to calculate

mAP results. In the evaluation experiments, the IoU threshold

was set to 0.5. The formulas for precision (P), recall (R), F1 score,

and average precision (AP) are as follows:

P =
TP

TP + FP
� 100% (2)

R =
TP

TP + FN
� 100% (3)

F1 =
2PR
P + R

(4)

AP ¼
Z 1

0
PRdR (5)

Where TP is true positive; FP is false positive; TN is true

negative; FN is false negative.
FIGURE 7

YOLOv5-MobileNetv3-SE model network structure.
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3.3 Field experiment design

In order to verify the accuracy of the target spraying system

in the field and its effectiveness in saving chemicals, trials were

conducted in Suixian County, Henan Province (34.136°N,

115.343°E), where the ground plants were growing naturally.

The target spraying system was mounted on an electric self-

propelled upland gap spray bar sprayer, shown in Figure 10, with

a speed meter on the sprayer to observe forward speed, and the

sprayer’s battery pack was depressurized to supply power to the

target spraying system. Three rectangular areas of 20×3m in size

were divided in the trial field as the test sampling area, and the

number of weeds and spurge in the sample area and the size of

the outer rectangle were counted. The speed of the sprayer was
Frontiers in Plant Science 10
controlled at 2km/h, 3km/h, and 4km/h for the target spraying

tests. A 1×1cm water-sensitive label, which turns red when

exposed to water, is attached to each weed leaf in the test area

to record whether the droplets hit the target.
4 Experimental results and analysis

4.1 Model recognition
performance experiment

For the trained improved model, this study uses model

evaluation metrics for computational evaluation on the test

set. The experimental results show that the improved
FIGURE 9

Model training convergence process.
FIGURE 8

Schematic diagram of grille decision algorithm.
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YOLOv5s model has an AP of 0.87 on the test set, an F1 score of

0.81, a model size of 7.5 MB, and an average detection time of

26.73 frames per second, which meets the requirements of real-

time detection. In summary, the YOLO improved detection

model proposed in this study has the advantages of high

accuracy, small model size, and fast inference speed.

In practical field application scenarios, image acquisition

involves many complex situations, such as overexposure, light

occlusion, target shadow interference, dense targets, etc. These

complex scenarios greatly affect the adaptability of the target

detection algorithm. To this end, this study conducts

experimental tests on image data of different scenes. Figure 11

shows the model’s predictions for a complex scene, whereas

figure a shows the weeds’ own shadow interference. Figure b
Frontiers in Plant Science 11
shows an image with a darker-colored wet land background

condition. And figure c shows an overexposed scene where the

target is too bright and somewhat distorted. Figure d shows an

image acquired with light obscured by a nearby tall object,

making the target too bright and significantly different from

the unobscured area. It can be seen from the detection results

that for these complex and special scenes, the YOLOv5-

MobileNet-SE target detection algorithm proposed in this

study has certain adaptability and good robustness to

complex scenes.

In order to better evaluate the performance of the algorithm,

this study chooses to compare it with other classic deep learning

object detection algorithms, YOLOv5x, YOLOv3, and Faster

RCNN. For several different models, training was performed
FIGURE 10

Experimental equipment.
TABLE 1 Parameters of the experimental equipment.

Configuration Category Model training computer parameters Onboard computer parameters

Software configuration

Operating systems Windows10 Windows10

Coding Language Python 3.7 Python 3.7

Code compiler Pytorch 1.7.1 Pytorch 1.7.1

Computing platform CUDA 11.5 CUDA 11.5

Hardware configuration

CPU i7-12900K i7-1165G7

GPU NVIDIA RTX 3090(24GB) NVIDIA RTX 2060(6GB)

Memory size 64GB 16GB

SSD 512GB 512GB
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using the same training environment, while test analysis was

performed on the same test platform with the same dataset. The

mAP values, model sizes and recognition frame rates of the five

models were obtained with a confidence level of 0.5 and an NMS

threshold of 0.5. A comparison of the detection results of the

different models is shown in Table 2.

By comparing the specific parameter indicators, it can be seen

that the mAP of YOLOv5-MobileNet-SE is 87.0%, the model size

is 7.5M, and the FPS is 26.73. Compared with YOLOv5s,

YOLOv5x, YOLOv3, Faster R-CNN, and other models, the AP

index is the same, which is 0.57% lower than YOLOv5s, and

1.02% lower than YOLOv5x. For the model size, the model in this

paper is the smallest among the five models, only 7.5M, which is

53.57% of the original YOYOv5s model. The FPS is the highest

among the five models, at 26.73, which is 18.16% higher than
Frontiers in Plant Science 12
YOLOv5s. It can be seen from the comparison results that the

YOLOv5-MobileNet-SE model proposed in this paper has greatly

optimized the size of the model and the recognition frame rate at

the expense of weak accuracy, and has the best comprehensive

performance, which can meet the real-time demand for

lightweight models of target spray.
4.2 Results of field-to-target
spraying experiments

In order to evaluate the comprehensive performance of the

real-time target spraying system designed in this study, a field trial

of target spraying was conducted. Bymanually observing the color

change of the water-sensing label, as shown in Figure 12,
TABLE 2 Comparison of detection results of different models.

Model mAP0.5/% Model size/MB FPS

YOLOv5-MobileNet-SE 87.0 7.5 26.73

YOLOv5s 87.5 14.0 22.62

YOLOv5x 87.9 169.0 20.44

YOLOv3 87.7 120.6 23.80

Faster R-CNN 80.89 110.7 2.73
frontiersi
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FIGURE 11

Prediction results for complex scenarios: The scenes from A to D are weed shadow disturbance, wet land background, overexposure, and
light occlusion.
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the actual effective recognition rate, relative recognition hit rate,

absolute hit rate, and other indicators of the target spray were

calculated. The effective recognition rate represents the ratio of the

number of weeds identified by the model to the total number of

weeds in the experimental area, and the relative hit rate represents

the ratio of the number of labels turning red to the number of

weeds identified. The relationship between the absolute hit rate is

shown in the following formula, the absolute hit rate is

determined by the product of the effective recognition rate and

the relative hit rate.

w = u� w0 (6)

Where w is the absolute hit rate, w’ is the relative hit rate and

u is the effective recognition rate.

The statistical results of the target spray test at three speeds

of 2km/h, 3km/h, and 4km/h are shown in Table 3. At a speed of

2km/h, the absolute hit rate is the highest at 90.80%. As the

speed of the sprayer increased, the absolute hit rate decreased to

85.51% and 79.61% at 3km/h and 4km/h, respectively.

It can be seen from the test results that the effective recognition

rate and relative recognition rate of the target spray system both

decrease with the increase of speed. When the forward speed

increases from 2km/h to 4km/h, the effective recognition rate

decreases greatly, with a decrease of 95.40%. In contrast, the

relative hit rate dropped less significantly, from 95.18% to

92.13%, a decrease of 3.05 percentage points. The main reason is
Frontiers in Plant Science 13
the uneven land in the field, the increase of speed causes the

vibration of the sprayer to intensify, the quality of image acquisition

reduces the effective recognition rate and also causes the nozzle

mounted on the spray bar to vibrate more, resulting in a lower

relative hit rate due to themisalignment of the nozzle and the target.
5 Conclusion

In this paper, a real-time target spraying system based on the

improved YOLOv5s model is designed to achieve real-time

accurate pesticide spraying in the field. Firstly, the overall design

scheme of the system is proposed, including the image acquisition

and recognition module, the electronically controlled spray

module, and the voltage-stabilized pesticide supply module.

Aiming at the problem of pressure fluctuation caused by the

intermittent opening and closing of spraying nozzles on the

target, a pressure-stabilizing pesticide-supplying pump with a

combination of a surge tank and a pressure switch was designed.

In order to realize the real-time identification of weeds in the field,

the YOLOv5s model was lightweight and improved, the feature

extraction backbone network was replaced with the MobileNet v3

lightweight network, and the SE attention mechanism is added to

improve the accuracy of the model for small target weed

identification. Then, a grille decision-making algorithm was

proposed to convert the recognition results into solenoid valve
TABLE 3 Statistical results of the spray-on-target test.

Forward
speed/km·h-1

Number of
Cirsium setosum

Number of effective iden-
tification strains

Effective recogni-
tion rate/%

Number
of hits

Relative recogni-
tion hit rate %

Absolute hit
rate/%

2 87 83 95.40 79 95.18 90.80

3 145 134 92.41 125 93.28 86.20

4 103 89 86.40 82 92.13 79.61
FIGURE 12

Comparison of water-sensitive label changes for target spraying experiments:the left side shows the state of the label before spraying, the right
side shows the state after spraying.
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opening and closing information, and at the same time to avoid the

problems of short atomization time and difficult hits caused by too

small identification targets. The improved YOLOv5s model is

tested, and the experimental results show the accuracy and

robustness of the model in complex environments. Compared

with other models, the model size is only 53.57% of the YOYOv5s

model, and the FPS is increased by 18.16%, realizing lightweight

real-time detection. Finally, the field spray test on the target shows

that the system has a high hit rate, and the spray accuracy rate is

90.80% at a speed of 2km/h, which can effectively reduce the use of

pesticides and improve the effective utilization of pesticides.
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