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Introduction: Soil polluted with Nickel (Ni) adversely affects sunflower growth

resulting in reduced yield. Counterbalancing Ni toxicity requires complex

molecular, biochemical, and physiological mechanisms at the cellular, tissue,

and whole plant levels, which might improve crop productivity. One of the

primary adaptations to tolerate Ni toxicity is the enhanced production of

antioxidant enzymes and the elevated expression of Ni responsive genes.

Methods: In this study, biochemical parameters, production of ROS,

antioxidants regulation, and expression of NRAMP metal transporter genes

were studied under Ni stress in sunflower. There were four soil Ni treatments (0,

50, 100, and 200 mg kg-1 soil), while citric acid (CA, 5 mM kg-1 soil) was applied

on the 28th and 58th days of plant growth. The samples for all analyses were

obtained on the 30th and 60th day of plant growth, respectively.

Results and discussion: The results indicated that the concentrations of Ni in

roots and shoots were increased with increasing concentrations of Ni at both

time intervals. Proline contents, ascorbic acid, protein, and total phenolics were

reduced under Ni-stress, but with the application of CA, improvement was

witnessed in their contents. The levels of malondialdehyde and hydrogen
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peroxide were enhanced with the increasing concentration of Ni, and after

applying CA, they were reduced. The contents of antioxidants, i.e., catalase,

peroxidase, superoxide dismutase, ascorbate peroxidase, dehydroascorbate

reductase, and glutathione reductase, were increased at 50 ppm Ni

concentration and decreased at higher concentrations of Ni. The application

of CA significantly improved antioxidants at all concentrations of Ni. The

enhanced expression of NRAMP1 (4, 51 and 81 folds) and NRAMP3 (1.05, 4

and 6 folds) was found at 50, 100 and 200ppmNi-stress, respectively in 30 days

old plants and the same pattern of expression was recorded in 60 days old

plants. CA further enhanced the expression at both developmental stages.

Conclusion: In conclusion, CA enhances Ni phytoextraction efficiency as well

as protect plant against oxidative stress caused by Ni in sunflower.
KEYWORDS
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1 Introduction

Rapid urbanization has caused severe environmental issues like

a high accumulation of heavy metals (HMs) in soil, which is the

main reason for soil pollution (Shahbaz et al., 2018; Turan et al.,

2018). The HMs pollution results in halted growth, decreased yield,

and negatively affects plant development (Sevik et al., 2018; Rai

et al., 2019; Yakamercan et al., 2021). Soil pollution with Nickel (Ni)

is a worldwide concern (Biswas et al., 2017). It is released into the

soil by both anthropogenic and natural sources (Pujari and Kapoor,

2021). The anthropogenic sources of its contamination are waste

originating from electroplating industries (Lee et al., 2017), Ni and

steel amalgams, Ni and iron amalgams (Harasim and Filipek, 2015),

mining and smelting of Ni ores, wastewater, pesticides, fertilizers,

sewage sludge and Ni-Cd batteries (Chakankar et al., 2017). The

natural sources of Ni contamination are volcanic eruptions and

weathering of igneous rocks (Shahbaz et al., 2018). The main

symptoms of plants under Ni stress are necrosis, chlorosis,

inhibition of enzymatic activities, and stunted growth of roots.

Nickel toxicity also disturbs several physiological responses,

including respiration, water-plant relation, transport of

assimilates, mineral nutrition, and photosynthesis (Gajewska

et al., 2009; Maharajan et al., 2022). When polluted with Ni, soil

fertility and health (Ngole-jeme and Fantke, 2017) are adversely

affected which may affect plants growth and development (Soares

et al., 2016). Thus, eco-friendly remedial actions are needed to

decontaminate the soil from Ni. Phytoextraction is an eco-friendly

technique involving hyperaccumulator plants that can remove Ni

from Ni-contaminated soils without harming the environment.

High biomass production, fast growth rate, long roots, high

translocation factor, and good accumulation efficiency are the

desired characteristics of hyperaccumulator plants (Song et al.,
02
2015; Awa and Hadibarata, 2020; Antonkiewicz et al., 2022). As a

result, these plants can accumulate high concentrations of HMs in

their parts without showing any toxic effects (Rascio and Navari-

Izzo, 2011; Nedjimi, 2021).

Helianthus species have been reported to show tolerance

against various HMs, hydrocarbons, and other contaminants.

Helianthus is a hyper-accumulator plant due to its fast growth

rate, accumulates HMs, and high biomass production (Chauhan

and Mathur, 2018). A plant’s hyperaccumulation potential is

increased by enhancing the bioavailability of HMs in soil and

could be improved by applying chelating agents. These chelating

agents are synthetic like EDTA as well as organic like citric acid

(CA), maleic acid (MA), etc. (Chigbo and Batty, 2013). Synthetic

chelators are useful for phytoextraction, but they are non-

biodegradable and contaminate groundwater (Anwer et al.,

2012). Different organic acids, including CA, have fewer

leaching hazards, and they are biodegradable, so they are

preferred to be used (Farid et al., 2017). CA is quite beneficial

for the uptake of nutrients and HMs from the soil via plants

(Vagner et al., 2013). The smaller amount of CA can increase the

uptake of HMs by plants, while a higher concentration may

cause strong phytotoxic reactions in some plant species (Turgut

et al., 2004). The CA is proven beneficial for mobilizing Ni in the

soil and reduces the effects of heavy metal stress by initiating the

production of antioxidants. When plants suffer from Ni stress, a

large number of reactive oxygen species (ROS) like

malonaldehyde (MDA) and hydrogen peroxide (H2O2) are

produced in the plants that can cause cellular damage and

eventually result in oxidative stress (Sharma et al., 2012). The

plants have an antioxidative defense mechanism that helps

plants fight against ROS. Various antioxidants like superoxide

dismutase (SOD), peroxidase (POD), ascorbate peroxidase
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(APX), dehydroascorbate reductase (DHAR), glutathione

reductase (GR), and catalase (CAT) have been identified to

participate in the HMs tolerance mechanism in hyper-

accumulators plants (Zhao et al., 2012).

The expression of HMs tolerant genes in hyper-accumulator

plants is also the main factor responsible for stress tolerance

(Mishra et al., 2017). The molecular studies have identified genes

accountable for chelation, cell wall modification, root to shoot

translocation and the production of antioxidants (Hanikenne

et al., 2008; Zhang and Evans, 2013; Peng et al., 2017). Numerous

transmembrane transporters like NRAMPs (natural resistance-

associated macrophage proteins), HMA (heavy metal ATPase),

YSL (yellow strip-like), CDF (cation diffusion facilitators), MTP

(metal tolerance protein), and ZIP (ZRT, IRT-like proteins) are

responsible for uptake of HMs in plants (Singh et al., 2019a;

Maharajan et al., 2022). In all eukaryotes, membrane intrinsic

metal transporters with substrate preferences for many metals,

including Ni and Fe, are NRAMP transporters (Nakanishi-

Masuno et al., 2018). Various analyses of higher plants showed

that the rice and Arabidopsis genomes have seven and six genes that

encode NRAMP transporter proteins (Singh et al., 2019a). They are

responsible for transporting different metal cations, such as Ni+2,

Mn+2, Al+3, Cd+2, and Zn+2. For example, uptake of Mn or Fe is

regulated by NRAMP1 in Arabidopsis that is localized in the plasma

membrane (Cailliatte et al., 2010; Lanquar et al., 2010). The Al+3

tolerance is achieved by the expression ofNRAMP4 in rice (Li et al.,

2014). The Fe, Mn, and Cd uptake is regulated by the expression of

OsNRAMP5 in roots (Ishimaru et al., 2012; Sasaki et al., 2012). Ni

stress is one of the significant threats to animal and plant health.

Higher Ni concentrations results in significant yield losses, however

adaptive mechanisms for Ni tolerance are not yet well illustrated.

Therefore, present research was designed to understand the

mechanism of oxidative stress caused by Ni. The CA treatments

were applied to enhance Ni uptake in plants.
2 Materials and methods

2.1 Plant experiment

The seeds of Pioneer Hybrid 6946 sunflower (Helianthus

annus) were purchased from Ayub Agricultural Research

Institute, Faisalabad, Pakistan. After surface sterilization with

70% ethanol, the seeds were soaked in distilled water and kept in

the dark for 48 hours to initiate germination. The six seeds were

sown in pots having 10 kg of soil and placed in the botanical

garden of Government College University, Faisalabad. Before

sowing seeds in the pots, the soil was spiked with Ni in four

variable concentrations (0, 50, 100, and 200 mg kg-1 soil)

(Table 1). All treatments were performed in three replicates.

After the seeds were germinated, one healthy plant per pot was

maintained. After 28 and 58 days of growth, the plants were
Frontiers in Plant Science 03
treated with CA (5 mM kg-1 soil) separately and in combinations

with all concentrations of Ni. After two days of each CA

treatment, the samples from roots and shoots were taken and

transported to the laboratory for biochemical and molecular

analyses. The plants grown in 0 ppm concentration of Ni were

used as control. The experiment was conducted in triplicate

using a completely randomized design (CRD).
2.2 Ni distribution in plant parts and
bioavailable Ni fraction in soil

The 0.1 g of dried samples (composite sample from three plants

from each replicate) of roots and shoots were ground and digested

with a mixture of acids (5: 1, v/v, HNO3: HClO4) (Jones and Case,

1990). Likewise, DTPA extractable Ni was determined by following

the method developed by Lindsay and Norvell (1978). The

concentrations of Ni in plant digest and DTPA extract were

measured on ICP-MS (PerkinElmer’s NexION® 2000).
2.3 Biochemical compounds in leaves

2.3.1 Proline
The Proline content was determined spectrophotometrically

according to the procedure developed by Bates et al. (1973). The

sulfosalicylic acid (3%) was applied to homogenize leaves, and

then samples were centrifuged at 11,500×g. Next, glacial acetic

acid and acid ninhydrin were mixed with the supernatant,

followed by 1 h incubation at 100°C. The toluene was added

after cooling the mixture, and the chromophore containing

toluene was analyzed spectrophotometrically at 520 nm. The

proline content in the sample was measured by making a

comparison with the standard curve of known concentrations.

2.3.2 Ascorbic acid
Ascorbic acid (AsA) contents were measured using

approximately 0.5g of fresh leaves properly mixed in 5% meta-

phosphoric acid with 1mM EDTA and centrifuged for 12
TABLE 1 Treatments performed in this pot experiment.

Treatments Ni (mg kg-1 soil) Citric acid (mM kg-1 soil)

Control − −

Ni 50 50 −

Ni 100 100 −

Ni 200 200 −

CA − 5

Ni 50 + CA 50 5

Ni 100 + CA 100 5

Ni 200 + CA 200 5
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minutes at 4°C on 11,500×g. Further, the supernatant was

separated for analysis of AsA. Then, incubation was given with

0.1M dithiothreitol at room temperature for 1 h to reduce the

oxidized fraction. The absorbance was measured at 265nm, and

1 unit of ascorbate oxidase (AO) was used. Finally, the

calculation of oxidized ascorbate ((DHA) (DHA= reduced

AsA – total AsA) was done (Hasanuzzaman et al., 2011;

Nahar et al., 2016a).
2.3.3 Total protein contents
Total protein contents were measured by Bradford protein

assay, and bovine serum albumin (BSA) was used as a standard

(Bradford, 1976).
2.3.4 Total phenolic contents
The total phenolic content in leaf extracts was determined

colorimetrically (Singleton et al., 1999). The absorbance of

samples with gallic acid standards was taken at 760nm.
2.3.5 Chlorophyll contents
The chlorophyll contents (both a and b) were determined

according to the standard procedure (Arnon, 1949). Ten (10) mL

of 80% v/v acetone was applied to leaves (0.5 g approximately),

and obtained supernatant was centrifuged (10 min at 2000×g)

fol lowed by dilution of supernatant. A UV-visible

spectrophotometer was used to measure the absorbance at 663

nm and 645 nm to measure the content of chlorophyll a (Chl a)

and chlorophyll b (Chl b), respectively.
2.4 Plant stress and antioxidant enzymes

2.4.1 Contents of MDA and H2O2

The thiobarbituric acid (TBA) assay was used to determine

leaf MDA content (Cakmak and Marschner, 1992). The fresh

plant leaves (0.2g) were homogenized in a solution of TBA

(0.5%) in 20% of trichloroacetic acid (TCA). Then, the mixture

was heated at 95°C for 30 min. Additionally, samples were

cooled and centrifuged for 5 min at 3000×g. The absorbance

was determined from supernatant at 532 nm and 600 nm. The

formula for calculating specific absorbance of MDA is: specific

absorbance of MDA = absorbance at 600 nm - absorbance at 532

nm. The H2O2 content in sunflower leaves was measured by the

method defined by Veljovic-jovanovic et al. (2002). The 0.1g of

fresh leaves were collected, immediately stored in liquid

nitrogen, and analyzed. To remove phenolic compounds,

samples were mixed with 1M HCLO4 (1.5 mL) and insoluble

polyvinylpyrrolidone (0.1 g). The mixtures were centrifuged in a

temperature control centrifuge for 10 mins at 4°C. The H2O2

content from the supernatant was calculated by Cheeseman

(2006) method.
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2.4.2 Activities of antioxidant enzymes
The 500 mg leaf tissues were mixed in ice-cold 50 mM K-P

buffer (1mL; pH = 7.0) having 100 mM potassium chloride, b-
mercaptoethanol (5mM), glycerol (10% w/v), and ascorbate (1

mM) by a pre-cooled pestle and mortar. The mixtures were

centrifuged for 10 mins at 11,500×g in a refrigerated centrifuge

machine, and enzyme activities were measured by supernatant.

The activity of CAT was measured by the method of

Hasanuzzaman et al. (2011) by determining the decline in

absorbance at 240nm. The enzyme extract was added with the

homogenate having a K-P buffer of neutral pH and H2O2. The

enzyme activity was measured through extinction coefficient

39.4 M-1 cm-1. SOD and POD activities were estimated through

the xanthine oxidase method by El-shabrawi and Kumar (2010).

The homogenate has enzyme extract, K-P buffer, xanthine,

xanthine oxidase, catalase, and nitroblue tetrazolium chloride

(NBT). The change in absorbance was measured at 560 nm, and

enzyme activities were expressed by units (quantity of enzyme

needed to restrict 50% NBT reduction) mg-1 protein. Similarly,

the APX activity was calculated by the procedure of Nakano and

Asada (1981) with a mixture of enzyme extract, EDTA, H2O2,

AsA, and K-P buffer. The APX activity was determined by

estimating the decrease in absorbance at 290 nm, and the

extinction coefficient of 2.8 mM-1 cm-1 was used to calculate

the enzyme activity. Likewise, DHAR activity was measured by

the method of Nakano and Asada (1981) with the reaction

mixture containing dehydroascorbate (DHA), EDTA, K-P

buffer, glutathione (GSH), and enzyme extract. The activity

was calculated after monitoring the variations in absorbance at

265 nm via 14mM-1cm-1 as extinction coefficient. The method of

Hasanuzzaman et al. (2011) was opted to measure the GR

activity via observing the change in the absorbance at 340 nm.

The reaction mixture was composed of EDTA, NADPH,

glutathione disulfide (GSSG), enzyme extract, and K-P buffer,

and extinction coefficient of 6.2 mM−1 cm−1 was applied.
2.5 Isolation of RNA and analysis of
gene expression

RNA was isolated from leaves obtained from the plant on 30

and 60 days of growth using the Trizol method (Thermo

Scientific, USA). The RNA was analyzed quantitatively and

qualitatively using the NanoDrop Spectrophotometer (Colibri

Microvolume Spectrometer, Titertek-Berthold, Germany) and

agarose gel electrophoresis (1%), respectively. The isolated RNA

was treated with DNase free from RNase (Thermo Scientific,

USA) to avoid contamination of DNA. The first-strand cDNA

was synthesized by Reverse Transcriptase Polymerase Chain

Reaction (RT-PCR) using 1 µg of purified RNA as a template.

Gene expression levels were studied by quantitative real-time

PCR using SYBER Green qPCR Master Mix (ThermoFisher

Scientific, USA) in CFX96 Real-Time PCR System (BIO-RAD,
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USA). The variations in gene expression were calculated using

the 2−DDCt analysis method. The quantification was carried out

by the Actin gene as the reference gene. The specific primers for

NRAMP genes used in qPCR can be seen in Table 2.
2.6 Quality assurance and quality control

Certified reference materials (CTA-OTL-1 for plant and DCI

7004 for soil analysis) and blank samples were used to ensure

quality control. Recoveries for Ni were in the ranges of 94−97%

(plant reference material) and 94−98% (soil reference material),

respectively. All glassware and consumable items used in the

digestion and extraction were initially soaked in diluted HNO3

(12 h) and later rinsed with deionized water several times.
2.7 Statistical analysis

The experiment was conducted in a completely randomized

design with three replication. The average value for each

parameter was calculated by Microsoft Excel 2013. A one-way

analysis of variance (ANOVA) in Statistix 8.1 (Analytical

Software, Tallahassee, USA) was used to interpret the results.

For the determination of significant variance amongst treatment

means (P < 0.05), the least significant difference (LSD) test was

performed (Steel et al., 1997).
3 Results

3.1 Ni distribution in plant parts and
bioavailable Ni fraction in soil

The plants accumulated Ni dose-dependent in their roots

and shoots, while high Ni contents were observed in roots

compared to shoots (Figures 1A–D). The Ni uptake was

increased with the addition of CA in both roots and shoots

after 30 and 60 days. The Ni absorption by roots was enhanced
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by 17%, 8%, and 6%, as well as the level of Ni in shoots, was

boosted by 13%, 20%, and 8% in 50, 100, and 200 ppm Ni-

stressed plants supplemented with CA, respectively, in

comparison with only Ni-stressed plants at 30th day. The

percentage difference in Ni content, in both roots and shoots,

between plants bearing only stress and stress with CA was

increased on the 60th day. The DTPA extractable Ni content

was raised by 6%, 10%, and 7% on the 30th day, while 21%, 25%,

and 15% on the 60th day, in the plant having 50, 100, and 200

ppm Ni and augmented with CA, respectively, in contrast to

only Ni-stressed plants (Figures 1E, F). The contents of DTPA

extractable Ni were increased with CA supplementation on Ni

stressed plants.
3.2 Biochemical compounds

The proline content was elevated under 50ppm stress of Ni

by 6% and 11% on the 30th day, with and without CA

application, respectively, in contrast with control. However, it

was decreased by 15% and 26% under 100 and 200 ppm Ni-

stressed plants of 30 days, respectively, compared to control

(Figures 2G, H). The 100 and 200 ppm Ni-stressed plants

augmented with CA showed a lower decrease in protein

contents on the 30th day (Figure 2A). Effects of Ni-stress on

protein contents were minimized with the supplementation of

CA in 60 day old plants (Figure 2B). The content of AsA had

shown a declined behavior with the increasing concentration of

Ni at both time intervals (Figures 2C, D). A similar trend for

proline as well as total phenolics was observed (Figures 2I–L).

The Chl a concentration was reduced by 30% and 44% under

50ppm Ni-stress; declined by 56% and 65% during 100ppm Ni

stress and decreased by 72% and 79% in 200ppm Ni-stress,

while, Chl b content was reduced by 43% and 50% during 50

ppm Ni-stress; reduced by 62% and 64% in 100 ppm Ni-stress

and declined by 77% and 80% under 200 ppm Ni-stress, at 30th

and 60th day, respectively, as compared to control. The contents

of Chl (a, b) were decreased abruptly with increasing the stress

level on the 30th and 60th day, but their levels were observed

better after the application of CA (Figures 2C–F).
3.3 Oxidative stress indicators

The MDA concentration on the 30th day was enhanced by

179%, 332%, and 445%, and on the 60th day was elevated by

197%, 393%, and 497% under Ni-stress of 50, 100, and 200ppm,

respectively, as compared to control. The MDA content declined

with the application of CA at both time intervals (Figures 3A, B).

A similar trend had been observed in the variation of H2O2

content (Figures 3C, D).
TABLE 2 List of primers used to study the expression of NRAMP
genes through real-time PCR.

S. No. Primer type and name Sequence (5′-3′)

1 NRAMP1-Forward CGGTGTTCTTCTGACAGG

NRAMP1-Reverse TCCGAGCAAAGAGATTGC

2 NRAMP3- Forward ACAGTTCATAATGGGCGG

NRAMP3- Reverse AAGCACGTTAAGCCACTC

3 Actin- Forward TCATGAAGATCCTGACGGAG

Actin- Reverse AACAGCTCCTCTTGGCTTAG
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3.4 Antioxidant enzymes

Compared to control, 50 and 100 ppm Ni stress had a positive

effect on the production of CAT, and it was increased by 63% and

16% on the 30th day, while elevated by 61% and 25% after 60 days,

respectively. However, 200 ppm Ni-stress decreased the production

of CAT by 11% on the 30th day and 23% on the 60th day, in contrast

to control. The addition of CA to Ni-affected plants had increased

the content of CAT in comparison to control by 85%, 33%, and 1%

at 30-days old plants, whereas it elevated by 107%, 48%, and 6% in

60-days old plants, under 50, 100 and 200ppm Ni-stress,

respectively (Figures 4A, B). The content of POD had behaved

the same as CAT production except under 200 ppm Ni-stress,

where even after the application of CA could not restore the

production of POD (Figures 4C, D). The SOD and APX

production had shown a similar trend. The SOD and APX levels

were increased by 24% and 37%, and the application of CA
Frontiers in Plant Science 06
enhanced their production 48% and 78% under 50ppm Ni-stress,

while their concentration was decreased by 14% and 5% under

100ppm Ni-stress and elevated by 3% and 26% in 100ppm Ni-

stressed plants supplemented with CA at the 30th day, respectively,

in comparison to control. Under 200ppm Ni-stress, both SOD and

APX concentrations were reduced by 43%, compared to control, in

30 days old sunflower plants. In 60-days old plants, similar behavior

of SOD and APX was observed. The application of CA in Ni-

stressed plants improved the production of SOD and APX on the

30th day and the 60th day (Figures 4E–H). The DHAR and GR

followed the same trend as SOD and APX (Figures 4I–L).
3.5 Gene expression profiling

The increase in the expression of two metal transporters genes

(NRAMP1 and NRAMP3) was observed at both developmental
A B

D

E F

C

FIGURE 1

Root Ni content at 30th day (A), and at 60th day (B), shoot Ni content at 30th day (C), and at 60th day (D), DTPA extractable Ni at 30th day (E),
and at 60th day (F). The bars designated with Ni 50, Ni 100, and Ni 200 represent Ni concentration at 50, 100, and 200ppm, respectively. “With
CA” means these Ni-stressed plants are supplemented with 5 mM CA and vice versa for “Without CA”. The bars denoted by different letters are
significantly variable at P≤ 0.05 using the LSD test.
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FIGURE 2

Protein content at 30th day (A), Protein content at 60th day (B), Chl a content at 30th day (C), Chl a content at 60th day (D), Chl b content at 30th

day (E), Chl b content at 60th day (F), AsA content at 30th day (G), AsA content at 60th day (H), Proline content at 30th day (I), Proline content at 60th

day (J), Total phenolics content at 30th day (K) and Total phenolics content at 60th day (L), in sunflower plants. The bars designated with Ni 50, Ni
100, and Ni 200 represent Ni concentration at 50, 100, and 200ppm, respectively. “With CA” means these Ni-stressed plants are supplemented with
5 mM CA and vice versa for “Without CA”. The bars denoted by different letters are significantly variable at P≤ 0.05 using the LSD test.
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stages. The expression of the NRAMP1 gene was elevated up to 4,

51, and 81 folds under 50, 100, and 200ppm Ni-stress, respectively,

in contrast to control and application of CA significantly enhanced

the expression of NRAMP1 gene further (Figure 5A) in 30 days old

plants. After application of CA, the expression was elevated many

fold, i.e. 7, 241 and 481 in 50, 100, and 200ppm Ni-stress,

respectively. The same trend was observed for the expression of

theNRAMP1 gene in 60 day old sunflower plants (Figure 5B). Thus,

79, 141, 381% and 71, 136, 377% increase in NRAMP1 expression

was observed in 30 and 60 days old plants respectively treated with

CA. The expression of theNRAMP3 gene was elevated up to 1.05, 4,

and 6 folds under 50, 100, and 200 ppm Ni-stress, respectively, in

contrast to control and supplementation of CA had further elevated

the expression of the NRAMP3 gene upto 4.94, 14.65 and 19.02

folds respectively in 30 days old plants (Figure 5C). An exciting

change was observed in the expression of the NRAMP3 gene, as its

expression was increased up to 30, 77, and 235 folds under 50, 100,

and 200ppmNi-stress, respectively, at the 60th day in comparison to

control (Figure 5D) in CA treated plants. In this way, the

supplementation of Ni-stressed plants with CA increased the

expression of both genes at both time intervals and 370, 213,

192% and 112, 31, 102% increase in NRAMP3 expression was

observed in 30 and 60 days old plants respectively treated with CA.
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4 Discussion

A substantial quantity of Ni has been observed in both roots

and shoots of sunflower plant in a dose-dependent manner at

both development stages, while a greater tendency of retaining

Ni was recorded in roots. The same phenomena in different

plants were reported in Visioli et al. (2015) and Shahid et al.

(2019) and in various plant species (like, maize, mung bean, and

wheat), higher Ni content was found in roots than in shoots

(Meychik et al., 2019; Abdelgawad et al., 2020). Our results are

also in agreement with them and showed that the sunflower

accumulated higher concentrations of Ni in shoots than roots. In

the current study, the supplementation of CA on Ni-stressed

plants resulted in an increased phytoextraction of Ni because

organic acids increase the bioavailability of HMs (Mahmud et al.,

2017). In our experiment, the sunflower accumulated high

concentrations of Ni in shoots than in roots. Therefore,

sunflower is not a hyperaccumulator for Ni but accumulated

high concentrations of Ni in roots than shoots. In addition, the

DTPA extractable Ni was raised with the application of CA at

both time intervals (Aziz et al., 2007; Topcuoğlu, 2013).

Free proline, AsA, and protein act as antioxidants, metal

chelators, and osmoprotectants. As, they are involved in
A B
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FIGURE 3

MDA content at 30th day (A), MDA content at 60th day (B), H2O2 content at 30th day (C), and H2O2 content at 60th day (D) in sunflower plants.
The bars designated with Ni 50, Ni 100, and Ni 200 represent Ni concentration at 50, 100, and 200ppm, respectively. “With CA” means these
Ni-stressed plants are supplemented with 5 mM CA and vice versa for “Without CA”. The bars denoted by different letters are significantly
variable at P≤ 0.05 using the LSD test.
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FIGURE 4

CAT after 30 days (A), CAT after 60 days (B), POD after 30 days (C), POD after 60 days (D), SOD after 30 days (E), SOD after 60 days (F), APX
after 30 days (G), APX after 60 days (H), DHAR after 30 days (I), DHAR after 60 days (J), GR after 30 days (K) and GR after 60 days (L), in
sunflower plants. The bars designated with Ni 50, Ni 100, and Ni 200 represent Ni concentration at 50, 100, and 200ppm, respectively. “With
CA” means these Ni-stressed plants are supplemented with 5 mM CA and vice versa for “Without CA”. The bars denoted by different letters are
significantly variable at P≤ 0.05 using the LSD test.
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different metabolic activities, may increase tolerance against

HMs stress (Gill and Tuteja, 2010; Dawood, 2016; Nahar et al.,

2016a, Nahar et al., 2016b; Jan et al., 2019; Mahata et al., 2019).

In this study, the contents of proline, AsA, and protein were

decreased in a dose-dependent manner and increased after the

application of CA, indicating its role in combating Ni stress.

The Phenolic compounds like flavonoids, phenolic acids,

proanthocyanins, and tannins were reported to scavenge ROS

in different plants (Wa et al., 2013). This research found that

total phenolic contents were decreased under Ni-stress at both

time intervals representing plant health is damaged due to Ni

stress. Still, their levels were improved after applying CA,

showing the positive roles of CA on plant health. In plants,

the contents of photosynthetic pigments were decreased during

metal stress because of lessened activities of Chl biosynthesis

enzymes (Gill et al., 2015). Therefore, it could be stated that leaf

chlorosis is due to the negative impact of HMs stress in plants.

In our research, the concentrations were decreased in

sunflower under Ni-stress and were noticeably improved by

applying CA. Likewise, past research had reported that HMs

toxicity was responsible for reducing Chl contents in different

plants like barley, wheat, moss, and mustard plants

(Choudhury and Panda, 2005; Ali et al., 2011; Ali et al.,

2015; Gill et al., 2015). Furthermore, applications of various

organic acids to a diverse plant group during different HMs

stress restored the chlorophyll content (Ali et al., 2015; Zaheer

et al., 2015).
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ROS could act as secondary messengers by controlling the

expression of various genes and proteins, but their higher levels can

be toxic. The overproduction of H2O2 and MDA harms cell

components like DNA, protein, carbohydrates, and lipids that

eventually cause cell death in plants during stress (Nabi et al.,

2019; Mahmud et al., 2019; Ni et al., 2019). In this study, the

application of CA on Ni-stressed sunflower plants was found

responsible for the decrease in the level of ROS and augmented

the activities of antioxidants (SOD, POD, CAT, APX, DHAR, and

GR). The SOD acts as a first line of defense during oxidative damage

(Yadav et al., 2018; Mushke et al., 2019; Singh et al., 2019b) and

scavenges superoxide and converts them into H2O2 that reactions

carried out by POD could detoxify CAT and APX (Agar et al., 2019;

Hasanuzzaman and Fotopoulos, 2019; Kiran and Prasad, 2019;

Zhu et al., 2019; Akbari et al., 2020). Thus, upregulation of these

enzymes is essential in combating HMs stress, and they are highly

susceptible to the higher levels of Ni. In our study, the production of

these enzymes was increased in the sunflower plants exposed to 50

ppm Ni-stress and decreased in the plants suffering from 100 and

200 ppm Ni-stress at 30th and 60th day, but with the application of

CA, their levels were improved and ROS production was reduced

which indicates their role in scavenging the ROS and protecting

plants from oxidative damage. The activities of DHAR usually

depends upon the production of ascorbic acid (Galli et al., 2019;

Xiang et al., 2019). In this trial, the production AsA was reduced

and concentration of DHARwas increased under 50ppm stress that

is responsible for the reduction of ASA: DHA. The production of
A B

DC

FIGURE 5

Gene expression profiling of NRAMP genes under Ni stress. NRAMP1 expression on 30th day (A), NRAMP1 expression on 60th day (B), NRAMP3
expression on 30th day (C), and NRAMP3 expression on 60th day (D), in sunflower plants. The bars designated with Ni 50, Ni 100, and Ni 200
represent Ni concentration at 50, 100, and 200ppm, respectively. “With CA” means these Ni-stressed plants are supplemented with 5 mM CA
and vice versa for “Without CA”.
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DHAR was also decreased under 100 and 200ppmNi stress at both

time intervals but it was improved by the supplementation of CA on

Ni-stressed sunflower plants. The ascorbic acid could be oxidized to

DHAR during abiotic stresses due to the scavenging activities of

ROS (Mahmud et al., 2017), but reproduction of AsA is slow.

Increased content of APX is also associated with the low production

ascorbic acid in sunflower plants (Shehzad et al., 2020). By applying

CA on Ni-stressed plants, increase in production of APX and

DHAR was observed which eventually leads towards scavenging

ROS and help plants to combat with oxidative damage in our study.

Protein oxidation can be regulated by the production of glutathione

reductase (Winterbourn, 2019). The GR content was increased in

our study during 50 ppm Ni-stress that is important for the

production of glutathione. The GR content was improved by

applying CA at both time intervals in the present study.

The expression of metal transporter genes was higher in

response to different HMs stress in hyperaccumulator plants

(Mishra et al., 2017). Molecular studies have played a significant

role in identifying the genes responsible for root to shoot

translocation and the production of antioxidants (Hanikenne

et al., 2008; Zhang and Evans, 2013; Peng et al., 2017; Maharajan

et al., 2022) under HMs stress. Different transmembrane

transporters like NRAMP are responsible for the uptake of HMs

(Singh et al., 2019a). In some plant species, NRAMP transporter

proteins have been reported in the transportation of HMs. For

example, TcNRAMP3/4 and NcNRAMP1 were reported in Cd

transportation in Thlaspi caerulescens and Noccaea caerulescens

(Oomen et al., 2009; Milner et al., 2014). In Thlaspi japonicum, Ni

and Cd are transported by TjNRAMP4 (Mizuno et al., 2005). In the

present study, the expression of NRAMP1 and NRAMP3 genes has

been identified in Ni-stressed sunflower plants. The expression of

these genes was increased at both time intervals with the application

of CA because CA increases the bioavailability of Ni, which

indicates their role in the transportation of Ni in the sunflower.

The high production of antioxidants also represents that Ni is

transported in high quantity from soil to the plants.
Conclusions

The Ni toxicity in the soil is increasing day by day due to rapid

urbanization and industrialization which results in stunted growth

and reduced yield of essential food crops. To cope with this

scenario, this study recommends growing plants like a sunflower

in the Ni-polluted areas to reduce soil pollution, and applying

organic acids, such as citric acid, to affected areas land would help

maintain the plant health and enhance the rate of Ni uptake. We

found that sunflower plant responded well regarding uptake of the

Ni from the soil. So, the plant could be used for Ni phytoextraction,

thus reducing soil toxicity. Furthermore, with the addition of CA,

the uptake of Ni was further enhanced. The expression of Ni-

responsive genes and variations in ROS production and

antioxidants have suggested the importance of organic acids in
Frontiers in Plant Science 11
reviving plant health under stress conditions. This study showed

significant results in improving plant health under Ni stress. Use of

sunflower may be effective to remove Ni from polluted soil,

especially in industrial areas where land is severly polluted

with metal.
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