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Salt stress is one of the major environmental stress factors that affect and limit

wheat production worldwide. Therefore, properly evaluating wheat genotypes

during the germination stage could be one of the effective ways to improve

yield. Currently, phenotypic identification platforms are widely used in the seed

breeding process, which can improve the speed of detection compared with

traditional methods. We developed the Wheat Seed Vigour Assessment System

(WSVAS), which enables rapid and accurate detection of wheat seed

germination using the lightweight convolutional neural network YOLOv4.

The WSVAS system can automatically acquire, process and analyse image

data of wheat varieties to evaluate the response of wheat seeds to salt stress

under controlled environments. The WSVAS image acquisition system was set

up to continuously acquire images of seeds of four wheat varieties under three

types of salt stress. In this paper, we verified the accuracy of WSVAS by

comparing manual scoring. The cumulative germination curves of wheat

seeds of four genotypes under three salt stresses were also investigated. In

this study, we compared three models, VGG16 + Faster R-CNN, ResNet50 +

Faster R-CNN and YOLOv4. We found that YOLOv4 was the best model for

wheat seed germination target detection, and the results showed that the

model achieved an average detection accuracy (mAP) of 97.59%, a recall rate

(Recall) of 97.35% and the detection speed was up to 6.82 FPS. This proved that

the model could effectively detect the number of germinating seeds in wheat.

In addition, the germination rate and germination index of the two indicators
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were highly correlated with germination vigour, indicating significant

differences in salt tolerance amongst wheat varieties. WSVAS can quantify

plant stress caused by salt stress and provides a powerful tool for salt-tolerant

wheat breeding.
KEYWORDS

wheat seeds, salt tolerance, phenotypic platform, convolutional neural network,
germination percentage
1 Introduction

Seeds are the beginning of the growth of each plant and the

quality of crop seeds directly affects the yield of agricultural

production. Wheat is one of the world’s major food crops and its

physiological research has been a hot topic in agricultural

research worldwide (Gao and Ayele, 2014; Das et al., 2017). In

recent years, soil salinity caused by the extensive use of chemical

fertilisers has become one of the main abiotic factors affecting

the yield and quality degradation of wheat (Kanzari et al., 2012;

Ranjbar and Jalali, 2016). Salt stress can cause excessive salt

accumulation in plants, leading to ion toxicity, oxidative damage

to the membrane system, osmoregulation imbalance and even

plant death, thus seriously hindering the formation of wheat

yield and quality (Zhou et al., 2021). Therefore, proper selection

of salt-tolerant wheat varieties is crucial to meet the demand for

wheat products globally.

Traditional seed germination tests usually employ methods

to destroy seed samples and rely on manual measurements,

which often limit the efficiency, scale and accuracy of the tests

(Jahnke et al., 2016; RR Mir et al., 2015). Image processing

techniques were first applied to seed vigour detection.

Dell’Aquila et al. (2000) used image analysis to describe the

water uptake characteristics of white kale seeds during

germination and showed a linear relationship between seed

area, perimeter and water content. Hoffmaster et al. (2003)

developed an automated soybean seed vigour evaluation

system using computer image processing techniques to

evaluate soybean seed vigour indicators. Sako et al. (2001)

successfully developed an automated seed viability imaging

system (SVI) to accurately quantify seed viability through

statistical data of morphological characteristics of lettuce

seedling imaging. However, in the aforementioned studies,

different light sources and acquisition environments greatly

affect image quality, which makes simple image processing

difficult (Anhua Ren et al., 2022; Xiuqing Fu et al., 2021).

In recent years, with the development of computer

technology, the use of machine learning to detect seed vigour

has become a hot topic in seed nondestructive testing (Zhe et al.,

2020; M, Mladenov et al., 2019). Classical machine learning
02
methods have various applications in seed vigour evaluation (Su

et al, 2020; Bai et al, 2021). de Medeiros et al. (2020) combined

image mapping and linear discriminant analysis models to

predict seed germination. Awty-Carroll et al. (2018) used a

KNN model to improve the scoring accuracy of mangosteen

seeds. Lurstwut and Pornpanomchai (2017) developed a rice

seed germination evaluation system (RSGES) based on an

artificial neural network classifier to evaluate the germination

status of Thai rice seeds. However, it proved that classical

machine learning classifiers are based on manual feature

extraction with slow training speed and low accuracy.

At present, convolutional neural networks (CNN) are

increasingly and widely used for plant and animal image

detection (Liu and Wang, 2020; Peng and Wang, 2022; Wang

et al, 2022). The secondary detector represented by R-CNN for

fast extraction and learning of image features was applied to the

automated detection of batch images. Genze et al. (2020) used

Faster R-CNN for seed germination detection and Yu et al.

(2019) used mask-RCNN for fruit detection on picking robots.

However, the disadvantage is that it is complex and requires high

power consumption hardware devices. However, the first-level

convolutional neural detectors represented by YOLO (you only

look once) are faster in detection and have more significant

lightweight features. The YOLO family of networks is constantly

updated and improved in detection performance compared to

other first-level object detectors such as SSD (Bochkovskiy

et al., 2020).

This paper presents WSVAS, an accurate evaluation

platform based on the CNN model YOLOv4 for automatic

imaging of wheat seeds and rapid detection of germination.

WSVAS integrates seed germination chamber hardware to

control the seed culture experimental environment (e.g.,

temperature and light) and continuous acquisition of seed

germination imaging, and a core algorithm based on the

YOLOv4 CNN for detecting germinating wheat seeds and

translating the image information into seed germination

vigour under salt stress. With this platform, we have incubated

and monitored four genotypes of seeds under three salt

solutions, collected a series of real-time images of seed

germination and analysed and quantified the germination
frontiersin.org
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profile plots of seeds under different salt stresses. WSVAS

provides a powerful method to automatically evaluate plant

salt tolerance by analysing the response of wheat seed

germination to salt stress.
2 Materials and methods

2.1 Experiment design hardware equipment

WSVAS was designed for continuous monitoring of seed

germination, as shown in Figure 1. The system consists of a

seed chamber, an image-based real-timemonitoringmodule and a

control module. The seed chamber is used to contain and cultivate

seeds in a controlled environment. Meanwhile, the seed

germination chamber (ld - 100 l, Linde Intelligent Technologies

Enterprise, Shandong, China), with a built-in PTC hot air

circulation system and LED lamps, has an adjustable

temperature range from 5°C to 50°C to germinate wide varieties

of seeds. TheWSVAS hardware platform is shown in Figure 1A: A

complete set of hardware equipment, including seed germination

climate chamber, image acquisition device - a miniature gantry

structure with RBG camera on top for real-time monitoring of

seed germination process. (b) Seed germination image acquisition

process. The wheat seed germination test is conducted in a climate

chamber. The temperature and humidity for seed germination

and cultivation are set accordingly. The RGB camera is mounted

on top of the germination box. Data is transmitted via the GigE

connection. Seed germination images are displayed on the user

interface and saved in local storage. It can be used for training

neural network models in an industrial computer database.

Finally, a series of single-group wheat seed germination test

maps are created.
Frontiers in Plant Science 03
The image-processing-based monitoring module has an

industrial camera (MV-HS510GC, Wei, Shanxi; M1224-MPW2,

computer, Tokyo, Japan) with an image resolution of 2448 × 2048

pixels. Figure 1B shows the camera beingmounted in a 40-cm-high

micro-frame above the seed tray to capture seed images from a

low-altitude view. The camera was configured to take images every

30 minutes to capture the entire process of seed germination. A

series of images were transmitted to an edge computer (Microsoft

Corporation; Redmond, WA, USA) via the camera’s gigabit

network (GigE). The edge computer can immediately process the

images according to the processing pipeline and visualise the

results to the user for real-time monitoring.
2.2 Data acquisition and pre-processing

2.2.1 Data collection scheme
A total of 400 wheat seeds of uniform fullness and size were

carefully selected, sterilised them with 2.5% sodium hypochlorite

for 10 min, rinse them five times using distilled water and air-dry

them in the shade afterwards. Then, the treated wheat seeds were

soaked in distilled water for 12 h, the seeds were taken out to dry

and placed on a blue filter paper waiting to be germinated. The

bottom plate was a plastic tray with the size of 25 cm × 25 cm × 2

cm (acid and alkali resistant polyphenylene material), a total of

100 seeds were randomly placed on each tray and the same

experiment was repeated four times. The seed germination Petri

dishes were placed in a crop seed germination monitoring

incubator with consistent environmental settings (24 h of light

and 25°C room temperature). An RGB camera was set up on the

developed user interface to take and collect pictures of all wheat

seeds during germination every 30 minutes. Each experiment

was conducted for 5 days and there were 48 images collected
FIGURE 1

WSVAS hardware platform for real-time monitoring of seed germination.
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each day. A total of 960 images were collected during the entire

experiment. All the captured images were saved in.jpg format on

a local disk and the image resolutions were all 2448 × 2048

pixels, as shown in Figure 2. Meanwhile, Setting up salt stress

experiments, four wheat varieties with different salt tolerance

were selected as test materials, namely Huai Mai 33, Rotation

987, Zhen Mai 9 and Yang Mai 22. In addition, three sets of

repeated tests were set to prevent test errors. Before the

experiment, the wheat was firstly treated and then an equal

number of seeds were subsequently placed in the given culture

panels for different varieties. (Place 48 seeds in the given culture

panel, including 4 wheat varieties, 12 seeds for each variety).

There were three treatments applied in each culture panel under

the same environmental settings: control (CK), 100 mmol/L salt

stress (S1) and 150 mmol/L salt stress (S2).

2.2.2 Data pre-processing
The data set used to train the seed germination detection

model consisted of processed images and manual labels for

each seed.

Data screening: Amongst the 960 images collected, there

were images with severe root overlap of wheat seeds at the late

germination stage, thereby affecting data labelling. After data

cleaning, a total of 880 images were finally obtained for labelling.

Data augmentation: In deep learning training, data

augmentation is used to expand the sample size to improve the

robustness and generalisation ability of the model. Themethods of

data enhancement commonly used in target detection tasks are

image scaling, flipping, cropping, colour transformation, adding

noise, dithering and so on. Seed placement method and several

seeds on model recognition accuracy, image cropping, random

flip, and brightness transformation were used to perform offline

data enhancement on 880 images to avoid the influence of

brightness, as shown in Figure S1. There were a total of 1760

images after the enhancement.

Data annotation: Manual annotation was performed using

the open-source tool LabelImg. The labels were set to two types:
Frontiers in Plant Science 04
“sprouting” and “not sprouting”. We considered wheat seeds

germinating when the roots were visible and reached half the

length of the seed itself, as shown in Figure 3. After tagging the

images, a file with the file name ‘.xml’ was generated accordingly,

which recorded the location of the tag box and the

target category.

Data set partitioning: The data sets were randomly

partitioned based on the ratio of 8:2, in which 80% of the

training set was used for model training (a total of 1408

sheets) and 20% of the test set was used for model

performance evaluation (a total of 352 sheets). During the

training process, 10% of the validation set was divided into the

training set for cross-validation to improve the model

generalisation ability and prevent the occurrence of overfitting,

which was used for the correction in model training (a total of

141 sheets). Table 1 shows the information of the data set.
2.3 CNN training

2.3.1 Target detection model networks
With the development of computer image technology,

several neural networks for target detection and classification,

such as YOLO, SSD, RetinaNet, Fast R-CNN and Faster R-CNN

have been proposed. YOLO series is a classic representative of

one stage detection algorithm, whose main idea is to use a single

CNN to process images. The main idea is to use a single CNN to

process the image and directly output the regression border

coordinates and prediction categories thereby reducing the

number of operations and increasing the detection speed.

Therefore, YOLOv4, which has superior performance in small

target detection and faster detection speed, is chosen in this

study to meet the accuracy while satisfying real-time monitoring,

and the model structure is shown in Figure 4.

We used CSPDarknet-53 as the backbone network, SPP as

an additional module, PAN path aggregation network as the

neck and YOLOv3 as the head to form the overall structure of
FIGURE 2

Continuous collection of growth images of wheat seeds during germination.
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YOLOv4 (Bochkovskiy et al, 2020; Liu et al, 2021). The model

uses DarkNet-53 constructed by a residual network as the base

network to deepen the network layers and reduce the problem of

gradient loss or training degradation, thus enhancing the

learning of image features and improving the recognition of

germinated and ungerminated seeds (Suo et al, 2021).

2.3.2 Model training and parameter design
Deep learning network model training usually requires a

high configuration of the training platform, which can be trained
Frontiers in Plant Science 05
on a CPU or GPU. Given that the computational power of GPU

is higher and its training cost is lower than that of CPU, thus

training on GPU is chosen. This study uses Windows 10

operating system, processor AMD Ryzen 9 5950X at 4.9GHz,

graphics card GeForce RTX 3070, memory 64G, CUDA 10.1,

cuDNN 7.6.5 and CMake 3.16 configured in Pycharm2019

development software. Using Python 3.8 freeze training can

speed up the training efficiency and prevent the overfitting

problem, we divide the whole training process into two phases,

including the freeze training phase and unfreeze training phase.
TABLE 1 Wheat seed data set information.

Number of pictures Category Proportion

Sprout Unsprout

Training set 1267 43763 73081 1:1.67

Validation set 141 4241 8853 1:2.09

Test set 352 12116 20162 1:1.66

Total 1760 60120 102096 1:1.70
FIGURE 3

Schematic diagrams of germinated and ungerminated wheat seeds. (A-C). Examples of ungerminated seeds. (A) Seeds are dewy with no germ
radicle. (B). There is a germ without a radicle. (C). There is a germ radicle, however, it does not reach half of its length. (D-F). Examples of
germinated seeds. (D) Seeds have a radicle and the radicle has three distinct roots and it reaches half of its length. (E). Seeds are lying on their
sides. (F). The radicle has taken on a green colour and is growing upward growth trend.
frontiersin.org
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The hyperparameters include iteration number epoch,

batch_size, learning rate, momentum, weight_ decay and so

on. This model training mainly discusses the learning rate,

batch_size and freezing epoch, the detailed discussion results

are shown in schedule S1. Finally, different training parameters

are adjusted to obtain the loss function change curve of the

model. The untrained test set data are used to evaluate the

performance of different models and compare the best detection

model. The specific parameters are shown in Table 2.
Frontiers in Plant Science 06
2.3.3 Model evaluation metrics
Accuracy (Precision), Recall (Recall), Average Precision

(AP), mAP (mean Average Precision) and Intersection Over

Union (IOU) are metrics widely used in the field of CNN to

evaluate the quality of model training results. In this paper, we

set “sprout” as positive and “not sprout” as negative in the target

classification, and the four cases are shown in Figure 5.

The index evaluation of seed germination target identification

results was calculated based on Equations (1–4).
TABLE 2 Training parameters of YOLO v4 wheat seed detection model.

Training stage Parameter Value

Freeze training stage

Input size 416x416

Batch size 8

Epochs 20

Classes 2

Optimiser Adm

Initial learning rate l0 1 × 10-3

Minimum learning rate lmin 1 × 10-5

Decay 5 × 10-4

Post-thawing training stage

Input size 416 x 416

Batch size 4

Epochs 100

Classes 2

Optimiser SGD

Initial learning rate l0 5 × 10-4

Minimum learning rate lmin 5 × 10-5

Decay 5 × 10-4
fron
FIGURE 4

YOLOv4 network structure.
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Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

AP =
Z 1

0
p rð Þdr (3)

IOU =
ps∩

​gs
ps∪

​gs
(4)

where “p”, “r”, “p(r)”, “ps” and “gs” represent Precision, Recall, a

parameter with a function of r, feature part of the seeds identified

by the network model and features of the seeds tagged in the

label, respectively.

2.3.4 Indicators of germination vigour
Seed vigour is the sum of all characteristics that determine

the activity and expression of the seed or seed germ

during germination in various environments (Filho, 2015).

Germination rate and germination index are commonly used

in agriculture to detect seed vigour in crops. The calculation

Equations are as follows (5):

Germination rate  ¼  
Nt

N
ñ100% (5)

Germination index  ¼  oGt

Dt
(6)
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where “Nt”, “N”, “Gt” and “Dt” denote the number of

germinating seeds on the day “t”, the total number of seeds

tested, the number of germinating seeds on the day “t” and seed

growth period, respectively. Three biological replicates were

measured for each treatment.
FIGURE 6

Comparison of the total number of detected targets for the
three models on the four test sets. test01, test02, test03 and
test04 represent the test set data of the early stage, middle
stage, late stage and test set data of seed germination after data
enhancement, respectively, to obtain the actual total number of
germinating seed targets (GT, the Ground truth) and the total
number of detected targets. The number of pictures of each test
set is represented in parentheses.
FIGURE 5

Evaluation indices of the model.
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3 Results and discussion

3.1 Wheat germination identification
and prediction

This study will compare the evaluation performance indices

and detection effect plots under three models to select the best

model for wheat seed germination target detection, VGG16 +

Faster R-CNN, ResNet50 + Faster R-CNN and YOLO v4.

Table 3 shows that the YOLO v4-based wheat seed target

detection model outperforms VGG16 + Faster R-CNN and

ResNet50 + Faster R-CNN in terms of detection accuracy and

speed, which coincides with the design requirements of high

accuracy, high efficiency and low cost for wheat seed target
Frontiers in Plant Science 08
detection system. (The performance parameters of the different

detection models are shown in schedules S2 - S4)

In this study, the best iterative models under the training of

three CNNs, VGG16 + Faster R-CNN, ResNet50 + Faster R-CNN

and YOLOv4 were selected to test four different test sets, which

represent the pre-, mid-, post-, and data-enhanced images of seed

germination. Figure 6 shows that in terms of the comparison

between the total number of detected targets and the actual total

number of targets, the YOLO v4-based seed germination target

detection model is closer to the real situation than the other two

models. Meanwhile, Figure 6 also shows that in terms of test sets,

the model is closer to the real value in terms of the number of

targets detected in the middle and late stages of seed germination,

and has higher accuracy in identifying germinating seeds and lower
FIGURE 7

Comparison of the detection effect plots of the three models on the four test sets. (A) Test set test01 (B) Test set test02 (C) Test set test03 (D)
Test set test04.
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leakage rate and in terms of the data-enhanced data sets, the model

showed a better detection performance. (A comparison of the total

number of detected targets for each category with different model

training parameters for YOLOv4 is shown in the attached

Figure S2.)

In Figure 7A in the test01 dataset, there weremissed and under-

detected cases in the VGG16 + Faster R-CNN and ResNet50 +

Faster R-CNN based models, while in the YOLOv4 model, the

ungerminated seeds were all detected. As shown in Figure 7B test02

dataset, the VGG16 + Faster R-CNN and ResNet50 + Faster R-

CNN based models identified the unsprouted wheat seeds as

sprouted and there was misclassification of the detection targets,

while the YOLOv4 model exhibited correct classification. As shown

in Figure 7C, the test03 dataset shows the different performance of

the three models when the seed roots overlap in the late

germination stage, the VGG16 + RPN and ResNet50 + Faster R-

CNN models incorrectly classify the two seeds into one category,

while the YOLOv4 model labels two different detection boxes for

the two seeds and detects the number of target seeds closer to the

actual labelled boxes.

As shown in Figure 7D, in the data-enhanced test04 dataset, the

YOLOv4 model performs slightly worse than the VGG16 + Faster

R-CNN and ResNet50 + Faster R-CNN models, which is reflected

for targets with obscure seed features outside the images, the

VGG16 + Faster R-CNN and ResNet50 + Faster R-CNN models

are biased towards the detection of the seeds. Faster R-CNNmodels

are biased towards no labelling, and the YOLOv4 model exhibits

over-checking.

The correct detection rate, missed detection rate and over

detection rate of the three models can be derived based on the

above discussion, as shown in Table 3. As can be seen from the

table, the YOLOv4-based wheat seed target detection model

performs the best on the total test set, with a much higher correct

rate than VGG16 + Faster R-CNN and ResNet50 + Faster R-CNN,

and a lower miss detection rate than the latter two. However, the

YOLOv4 model is too sensitive to seed features, and it recognises

more seeds than the actual number of seeds in cropped wheat

images and has a higher overdetection rate, which is almost 2–3

times higher than the VGG16 + Faster R-CNN and ResNet50 +

Faster R-CNN models.
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3.2 Wheat salt tolerance sprouting
vigour detection

Seed germination is the beginning stage of plant growth and

the most sensitive and vulnerable stage to salt stress (Fercha

et al., 2014). Therefore, this experiment was conducted at the

seed germination stage for salt stress to compare the salt

tolerance of plants. Germination rate and germination index,

as attributes of germination rate and more sensitive indicators of

seed performance than cumulative germination percentage, can

reflect the effect of salt stress on the germination rate of four

wheat seeds with different salt tolerance genotypes. This reflects

the differences in the performance of different genotypes of

wheat seeds under salt stress and provides a basis for qualitative

analysis of seed vigour.

Seeds under salt stress often show reduced germination and

vigour and even death in severe cases, and such phenomena are

mainly caused by water stress and ion imbalance (Çatav et al.,

2021). Figure 8A reflects that the germination curve of wheat

seeds showed a decreasing trend with increasing salt

concentration, and the germination rate was CK > S1 > S2 in

descending order, which is consistent with the results of previous

studies (Zhu et al., 2021). Figure 8B reflects the decreasing trend

of wheat seed germination with increasing salt concentration

compared to the control. Figure 8C reflects the overall significant

decrease of wheat seed germination index with increasing

salinity in the salinity range from 0 to 150 mmol/L. There was

a significant effect at the T25 stage of salt stress on the inhibition

of germination vigour of wheat seeds of the four genotypes,

where salt concentration in the T50 stage, the germination index

of wheat under salt stress decreased significantly with the

increase of salt concentration; in the Gmax stage, the

germination indices of Huai Mai 33, Verticillium 987 and

Zhen Mai 9 under salt stress all reached more than 5%, while

that of Yang Mai 22 was only about 2.5%. The above results

show that the salt stress significantly inhibited rosette 987 and

town wheat 9 in the early germination stage, and all four

genotypes of wheat were affected by salt stress in the middle

germination stage. In addition, the germination rate of Yang

wheat 22 was the lowest under salt stress in the late germination
TABLE 3 Comparison between detection accuracy and speed under three models.

Model Input size mAP Recall FPS

VGG16 + Faster R-CNN 600 × 600 90.38 86.33 2.41

ResNet50 + Faster R-CNN 600 × 600 93.52 90.17 1.61

YOLO v4 412 × 412 97.59 97.35 6.82
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stage, followed by Huai wheat 33. (Sprouting vigour of different

wheat varieties under salt stress is shown in schedule S5)

The variability of manual and platform counts was

compared comprehensively to verify the accuracy of this seed

germination platform. Three sets of trials were used to conduct

manual counts according to image sequences (Figure 9). The

cumulative number of germinations in each image and the

image sequence during germination were recorded to compare

the linear relationship between machine germination counts and

manual counts as shown in Figure 9. Figure 9 also includes the
Frontiers in Plant Science 10
results of manual and machine scoring of seed germination

numbers in three sets of trials, where the red line shows the

deviation between manual and machine counts. The Pearson

correlation index r for both manual and machine scoring in this

trial reached a high level, thus indicating a good fit and a strong

linear correlation. The highest degree of fit between manual and

machine counts was achieved in the salt concentration of 100

mmol/L (treatment S1), with Pearson correlation index r

reaching 0.9887, and the platform performed poorly in the

salt concentration of 0 mmol/L (treatment CK) and salt
B CA

FIGURE 8

Results of germination vigour analysis of wheat seeds under different salt stresses. (A) A series of images and cumulative germination curves of
the germination test process of wheat seeds under three groups of salt stress treatments (B) Quantitative germination rates, including the
germination rates of wheat seeds of four genotypes at T25, T50 and Gmax stages under three groups of salt stress (C) Quantitative germination
indices, including the germination indices of wheat seeds of four genotypes at T25, T50 and Gmax stages under three groups of salt stress.
According to ANOVA and LSD, different letters indicate significant differences in specific sequences, P< 0.05.
FIGURE 9

Linear correlation between manual scoring and machine scoring.
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concentration of 150 mmol/L (treatment S2), with Pearson

correlation index r reaching only 0.9772 and 0.9774.

A large number of machine learning evaluation model

metrics were used including mean square error (MSE), root

mean square error (RMSE), mean absolute error (MAE),

absolute coefficient (R2) and Pearson correlation metric (r).

The results were generated as shown in Table 4. Table 4 shows

that the deviation between manual and machine counts in salt

concentration of 100 mmol/L (treatment S1) was the smallest

and the error was within a reasonable range, and the MAE and

RMSE were 1.0066 and 1.3471, respectively, which were

more accurate for detection. Then, was followed by a salt

concentration of 0 mmol/L (treatment CK), and the worst

detection accuracy of the platform under salt concentration of

150 mmol/L (treatment S2).
4 Summary and prospect

In this study, a YOLOv4 CNN-based wheat seed salt

tolerance germination vigour detection method was proposed

to test the germination vigour of four different wheat species

under three salt stresses and analyse the differences in salt

tolerance of different wheat varieties to achieve an accurate

assessment of wheat seed germination vigour under salt stress

environment and real-time detection.

(1) The method uses YOLOv4 CNN to achieve accurate and

rapid detection of a wheat seed number. In terms of model

detection accuracy, the mean value of accuracy mAP and recall of

the wheat seed germination detection model were 97.59% and

97.35%, respectively; in terms of detection speed, the speed of seed

germination target detection model was designed based on

YOLOv4 was as high as 6.82 frames per sec. Comparing the

evaluation performance indices under the two models of

YOLOv4 with VGG16 + Faster R-CNN and ResNet50 + Faster

R-CNN, YOLOv4 outperforms the VGG16 + Faster R-CNN and

ResNet50 + Faster R-CNNmodels in detection accuracy by 11.02%

and 7.18%; in terms of detection speed, respectively. The seed

germination target detection model designed based on YOLOv4 is

the fastest, up to 6.82 frames/second. In addition, the experimental
Frontiers in Plant Science 11
results show that different types of wheat seeds and salt stress

environments do not greatly affect the quantitative detection results,

indicating that this paper is feasible for accurate detection of wheat

seeds by the lightweight CNN YOLOv4.

(2) The optimal detection model of wheat germinating seed

target identification based on the YOLOv4 network was used to

count the number of germinating seeds in the pictures. The

germination curve of wheat seed germination number with time

was plotted, and the germination index and germination rate of

wheat under salt concentration were obtained and then the effect

of salt stress on the germination vigour of different genotypes of

wheat seeds was analysed. The differences between the number

of germination and manual counts based on the crop seed

germination monitoring system were also compared. A linear

regression analysis was performed to provide technical support

for the establishment of seed germination vigour ratings and

wheat seed breeding for salt tolerance. In addition, this study can

provide some technical references for studying the germination

vigour of more seeds and establish a perfect seed vigour

rating model.

WSVAS can meet more parameters of detection by further

developing and optimising different users’ collection needs,

which provides a powerful tool for studying diverse seed early

growth performance and predicting future yield with high

process value.
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