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Climate change has a devastating effect on wheat production; therefore, crop

production might decline by 2030. Phosphorus (P) nutrient deficiency is

another main limiting factor of reduced yield. Hence, there is a dire need to

judiciously consider wheat yield, so that human requirements and nutrition

balance can be sustained efficiently. Despite the great significance of

biostimulants in sustainable agriculture, there is still a lack of integrated

technology encompassing the successful competitiveness of inoculated

phosphate-solubilizing bacteria (PSB) in agricultural systems in the context of

climatic conditions/meteorological factors and soil nutritional status.

Therefore, the present study reveals the modulation of an integrated P

nutrient management approach to develop potential PSB consortia for

recommended wheat varieties by considering the respective soil health and

agro-climatic conditions. The designed consortia were found to maintain

adequate viability for up to 9 months, verified through field emission

scanning electron microscopy and viable count. Furthermore, a significant
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increase in grain yield (5%–8%) and seed P (4%) content was observed in

consortia-inoculated wheat plants with 20% reduced Diammonium phosphate

(DAP) application under net house conditions. Fluorescence in situ

hybridization analysis of roots and amplification of the gcd gene of

Ochrobactrum sp. SSR indicated the survival and rhizosphere competency of

the inoculated PSB. Categorical principal component analysis (CAT-PCA)

showed a positive correlation of inoculated field-grown wheat varieties in

native soils to grain yield, soil P content, and precipitation for sites belonging to

irrigated plains and seed P content, soil organic matter, and number of tillers for

sites belonging to Northern dry mountains. However, the impact of inoculation

at sites belonging to the Indus delta was found significantly correlated to soil

potassium (K) content, electrical conductivity (EC), and temperature.

Additionally, a significant increase in grain yield (15%) and seed P (14%)

content was observed in inoculated wheat plants. Thus, the present study

demonstrates for the first time the need to integrate soil biological health and

agro-climatic conditions for consistent performance of augmented PSB and

enhanced P nutrient uptake to curtail soil pollution caused by the extensive use

of agrochemicals. This study provides innovative insights and identifies key

questions for future research on PSB to promote its successful implementation

in agriculture.
KEYWORDS

soil-specific consortia, rhizoscanning, soil organic matter, root architecture, climatic
conditions, fluorescence in situ hybridization, field emission scanning
electron microscopy
Introduction

Global warming is causing a rapid increase in the Earth’s

surface temperature, leading agriculture to face multiple challenges

(Camaille et al., 2021). In addition, climate change is the major

uncontrollable factor, adversely affecting global food production

(Farooq et al., 2022). Climate change is likely to increase the

intensity of extreme climate events that will affect patterns of

agricultural production, water cycle, and eventually food security

(Muluneh, 2021). All of these events resulted in increasing floods,

declining food production and quality, and increasing food prices.

Such events caused substantial yield losses in major cereal crops

such as 5.5% yield reduction in wheat (Shah et al., 2021). On the

other hand, global food demand is expected to increase by 60%

with the increasing global population (Bijl et al., 2018). Therefore,

there is a pressing need at this crucial time to transit toward

sustainable crop production that enables crops to grow well under

resource-limited environmental challenging conditions with

optimum yields across a wide array of environmental conditions

(Reynolds et al., 2021).

Today, novel and advanced techniques such as smart

irrigation, fertilizers with enhanced efficiency, integration

fertilizers, and pest management have been adapted for
02
sustainable crop production (Ahmad et al., 2022). The

challenge faced by 40% of the global phosphorus (P)-deficient

soil has been addressed by the application of phosphatic

chemical fertilizers in recent years. However, most of these

chemical fertilizers applied to the soil become unavailable to

the plant, and their excessive application to overcome the P

deficiency leads to environmental pollution concerning

contamination of groundwater and eutrophication (Alori et al.,

2017). Rock phosphate (RP), on the other hand, is the primary

source of P, but it is a nonrenewable resource that is

progressively exhausted worldwide (Pavinato et al., 2022). RP

has low agronomic effectiveness due to its crude nature, high

reactivity, and less solubility in the soil (Soumare et al., 2020).

Integration of plant growth-promoting bacteria in

agriculture biotechnology represents a promising solution for

improved soil ferti l ity and crop yield. A group of

microorganisms called phosphate-solubilizing bacteria (PSB) is

the key component to increasing the availability of insoluble P

for plant use. Nowadays, PSB-based biofertilizers are considered

crucial constituents that contribute to sustainable production in

agro-ecosystems (Mitter et al., 2021). The persistence of PSB is

the most important underlying factor in designing successful

bioinoculants because it indicates the interaction of the
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microbial inoculation with the host plant, its capability to

compete with indigenous microbes and cope with abiotic

conditions that depend on soil type, its characterization, and

agro-climatic conditions (Finkel et al., 2017). Therefore,

designing climate-smart biofertilizers and evaluating their

persistence in native soil and climate would be a potential

approach to boost plant growth and substantial resilience

in agriculture.

To the best of our knowledge, a holistic approach to

disentangle the system in the context of climatic conditions/

meteorological factors and soil nutritional status is scarce. As

previous microbial inocula are either being evaluated under

controlled conditions (Chen and Liu, 2019; Elhaissoufi et al.,

2020) or if conducted under field conditions (Sedri et al., 2022;

Liu et al., 2022), no emphasis is usually given to the native

microbial bacteria, soil nutrient status, and climatic conditions

of the agricultural site. Most of the previous studies are based on

identifying microbes in the wheat rhizosphere and application of

the same bacteria to different environments (Mahoney et al.,

2017; Ullah et al., 2022; Sedri et al., 2022); however, studies on

the development of soil-specific PSB consortia and their

application in respective climatic zones are entirely missing.

Hence, the present study is the first comprehensive report in

which soil-specific consortia were developed, composed of

indigenous PSB from wheat-growing agro-climatic zones of

Pakistan, and implemented in their respective soils under field

conditions for wheat. It was thus hypothesized (H1) that the

application of soil-specific consortium along with recommended

wheat varieties can improve wheat yield predominantly by

relating to the soil nutritional status and meteorological

conditions to ensure the survival of inoculated native PSB in

the wheat rhizosphere. A positive correlation might exist (H2)

between meteorological and soil nutritional factors and wheat

yield that might result in improved wheat production.
Materials and methods

Sample collection, soil physicochemical
analysis, and environmental data

Soil samples were collected from different provinces of

Pakistan. Province 1, i.e., Site 1: Faisalabad (31°23’45.1”N, 73°

01’3.4”E), Site 2: Nankana Sahib (31°27′0″N, 73°42′24″E), and
Site 3: Pindi Bhattian (31°6’954”N, 73°18’66”E); Province 2, i.e.,

Site 4: Hazara (34°25′12″N, 73°15′0″E); and Province 3, i.e., Site

5: Husri (25°19′0″N, 68°25′0″E) and Site 6: Tando Jam (25°25′
40.21″N, 68°31′40.4″E) were selected for the study. Soil samples

from each site were collected at the depth of 20 cm and analyzed

for soil physicochemical properties. Soil pH and electrical

conductivity (EC) were measured using a pH meter (PHS-3C,

REX, Shanghai) and an electrical conductivity meter (DDS-

307A, REX, Shanghai), respectively (Rhoades, 1993). The wet
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oxidation method was used to determine soil organic matter

(Nelson and Sommers, 1996). Soil total nitrogen (N) was

determined by the Kjeldahl method (Bremner and Mulvaney,

1983). Soil-available P was measured by the sodium bicarbonate

method (Olsen, 1954). Sodium content and soil exchangeable

potassium (K) were determined using a flame photometer

(Model 410, Corning, Halstead, UK; Simard, 1993).

Meteorological data of each site were collected from Pakistan

Meteorological Department (PMD) (https://www.pmd.gov.pk/

en/).
Bacterial strains used

Bacterial strains used in this study are a subset of a large

collection of PSB isolated from the rhizosphere soil of wheat

grown in different agro-ecological zones of Pakistan (Yahya

et al., 2021). PSB, i.e., Bacillus sp. TAYB, Enterobacter spp.

ZW9, Enterobacter spp. ZW32, Enterobacter spp. D1,

Ochrobactrum sp. SSR, Pantoea sp. S1, and Pseudomonas sp.

TJA were used in the study for consortium development and

obtained from the National Institute for Biotechnology and

Genetic Engineering (NIBGE) Biotech Resource Center

(NBRC: http://www.nibge.org/Default.aspx). The 16S rRNA

gene sequences of these strains were deposited to NCBI

GenBank (https://www.ncbi.nlm.nih.gov/). Enterobacter spp.

ZW32 (accession number: MK817561), Ochrobactrum sp. SSR

(accession number: MK422612), and Enterobacter spp. ZW9

(accession number: MK024209) were isolated from Province 1

(Punjab). Enterobacter spp. D1 (accession number: MK422618)

and Pantoea sp. S1 (accession number: MK422619) were isolated

from Province 2 [Khyber Pakhtunkhwa (KPK)]. While Bacillus

sp. TAYB (accession number: MN754081) and Pseudomonas sp.

TJA (accession number: MK422620) were isolated from

Province 3 (Sindh).

All of the strains used in the present study have multiple

plant growth-promoting attr ibutes , i .e . , phosphate

solubilization, zinc solubilization, indole acetic acid

production, and organic acid production (Yahya et al., 2021).
Development of bioformulation with
soil-specific consortia

Three different consortia were designed by selecting soil-/site-

specific PSB for recommended wheat varieties to that particular

site. Wheat variety-1 Faislabad-2008 recommended for Province 1

(Punjab) was inoculated with consortium-1, i.e., Enterobacter spp.

ZW32, Ochrobactrum sp. SSR, and Enterobacter spp. ZW9.

Consortium-2 comprising Enterobacter spp. D1, Ochrobactrum

sp. SSR, and Pantoea sp. S1 was designed for wheat variety-2

(Fakhr-e-Sarhad) recommended for Province 2 (KPK). Whereas

consortium-3 comprising Bacillus sp. TAYB, Ochrobactrum sp.
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SSR, and Pseudomonas sp. TJA was used for wheat variety-3

(TD1) recommended for Province 3 (Sindh).

For the preparation of the inoculum, a loopful of each

bacterial culture was transferred to 25 ml of Luria-Bertani

(LB) broth medium separately and grown anaerobically on a

rotatory shaker at 28°C ± 2°C for 24 to 48 h. Bacterial cultures

for each consortium were mixed separately to make a suspension

(1 × 109 CFU ml-1).

Three filter mud (FM) and soil-specific consortia-based

bioformulations were developed. FM, an agro-industrial by-

product of sugar cane (Yahya et al., 2022), was ground and

sieved through a 2-mm sieve and further autoclaved before

inoculation. The bacterial suspension (300 ml) of each

consortium (1 × 109 CFU ml-1) was then aseptically and

uniformly mixed in 700 g of FM, packed in polythene bags,

and incubated at 28°C (Pastor-Bueis et al., 2019). Uninoculated

control was prepared by mixing LB broth (300 ml) with sterilized

FM (700 g).
Field emission scanning electron
microscopy of bioformulations

Field emission scanning electron microscopy (FESEM) was

used to assess the presence of inoculated PSB in the tested

formulations up to 270 days post-inoculation (DPI).

Furthermore, the viability of inoculated bacteria was estimated

from each bioformulation on LB agar medium and National

Botanical Research Institute’s phosphate (NBRIP) agar medium

by the serial dilution method (Nautiyal, 1999).
Evaluation of soil-specific consortia in
earthen pots under net house conditions

The effect of three bioformulations was assessed on wheat

variety Faisalabad 2008 using native soil collected from Faisalabad

(loamy soil texture, available P 1.87 mg kg-1, organic matter

0.57%, and pH 8) in earthen pots under net house conditions.

Seeds were sterilized with 1.5% sodium hypochlorite (NaOCl)

solution for 5 min and washed with autoclaved sterilized water

five times. Sterilized seeds were pelleted with bioformulation (2 kg

of carrier per 50 kg seeds) comprising respective consortium

suspension (1 × 109 CFU ml-1). Seeds were then incubated for

30 min. Seeds pelleted with uninoculated sterilized FM were used

as controls. Six seeds were sown per pot (30 cm diameter)

containing 5 kg of soil and arranged in a completely

randomized design. All inoculated treatments were

supplemented with 80% DAP, i.e., 20% reduced amount of

DAP, and two uninoculated controls supplemented with 80% or

100% DAP.
Frontiers in Plant Science 04
Measurement of plant growth
parameters and soil nutrient analysis

Plants were uprooted after 35 DPI to evaluate plant growth

parameters, i.e., root length, shoot length, and dry weight of

plant. Plants were harvested at maturity, and data regarding plant

height, number of tillers, grain yield, plant biomass, and plant

P content (Tandon, 1993) were recorded. Six plants were selected

from each replicate of each treatment for analysis. Rhizospheric

soil was analyzed for available P by the molybdenum

blue method (Olsen, 1954) and alkaline phosphatase activity by

p-nitrophenyl method (Tabatabai and Bremner, 1969).

Detection of inoculated Phosphate Solubilizing
bacteria (PSB)

The survival of inoculated Phosphate Solubilizing bacteria

(PSB) was assessed by viable count (Somasegaran and Hoben,

2012). Root colonization and persistence of inoculated PSB were

studied by fluorescence in situ hybridization (FISH). FLUOS-

labeled green probe EUB338 was used to detect the PSB

population. Reisolated colonies of PSB were identified by

comparing morphological characteristics and P solubilization

to that of pure colonies (Yasmin et al., 2016). Morphologically

similar colonies of SSR obtained from all inoculated treatments

were further validated by amplification of the gcd gene

(MK883703) specific for Ochrobactrum strain SSR (Rasul

et al., 2021).

Evaluation of soil-specific consortia for wheat
yield parameters in multilocational field trials

The developed consortia were further evaluated under

different wheat-growing agro-climatic field conditions during

the winter season of 2019–2020 in Province 1 (Punjab), i.e.,

NIBGE field, Faisalabad, Pindi Bhattian, Nankana Sahib;

Province 2 (KPK), i.e., Hazara; and Province 3 (Sindh), i.e.,

Husri and Tando Jam (Figure 1). All three consortia were

prepared as described in the above section. Bacterial cultures

for each consortium were mixed separately to make a suspension

(1 × 109 CFU ml-1), then mixed uniformly with FM (700 g) and

incubated at 28°C (Pastor-Bueis et al., 2019). Three treatments

composed of consortium-inoculated seeds supplemented with

80% of the recommended dose of DAP (i.e., 20% reduced DAP)

and two uninoculated controls supplemented with 80% or 100%

of DAP (i.e., recommended dose of DAP) were considered for

multilocation trials.

Experiments were carried out in a randomized complete block

design. Each treatment consisted of three replicates and a plot size

of 4 m × 6 m at NIBGE, 4 m × 4 m at Pindi Bhattian, 6 m × 6 m at

Nankana Sahib and Hazara, and 4 m × 5 m at Husri and Tando

Jam. Seeds were sown by the drill method using a hand drill. The

experiment was conducted under standard agronomic practices.

At maturity, plants were harvested and data were recorded for
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grain yield, plant biomass, harvest index (HI), plant height,

number of tillers, and seed P. Soil-available P (Olsen, 1954) and

alkaline phosphatase activity (Tabatabai and Bremner, 1969) were

determined according to standard protocols.
Statistical analysis

Data were statistically analyzed using ANOVA. Least

significant difference (LSD) compared variations between the

treatments at a 5% level of confidence using Statistix 10 software

(Tallahassee, FL, USA). Principal component analysis (PCA)

was performed using SPSS 23.0 software (SPSS Inc., USA).
Results

Soil physicochemical analysis and
environmental data

Biochemical analysis of soil parameters revealed the

difference in soil properties for all of the soils from five

different sites belonging to major wheat-growing areas

(Table 1). Organic matter of the soils from the Indus delta

(Sindh) was below 1%. While in soils from the Northern

irrigated plains (Punjab) and in particular from the Northern

dry mountains Khyber Pakhtunkhwa (KPK), the organic matter
Frontiers in Plant Science 05
was up to 1.7%. As Pakistani soils are alkaline calcareous in

nature, the pH of the soils ranged from 7 to 8.5. Soil EC was

much higher in soils belonging to the Indus delta (3.42 dS m-1)

and lower in soils of the Northern dry mountains (1.1 dS m-1).

Whereas soil N, P, and K content were higher in the KPK soils

and much lower in soils belonging to Sindh.
Shelf life of the bioformulations

Three FM-based soil-specific consortia were evaluated for

shelf life under controlled conditions. The survival of all PSB

included in the three consortia was confirmed up to 270 DPI as

indicated by both viable count and visualization of PSB by

FESEM (Figure 2; Table S1). Maximum viability of soil-

specific consortia was maintained (up to 2 × 109 CFU ml-1) at

90 DPI for consortium-1 (Table S1).
Evaluation of soil-specific consortia in
earthen pots under net house conditions

All PSB consortia improved wheat growth significantly in

the pot experiment under net house conditions (Figure 3).

Consortium-1 showed the maximum increase in grain yield

(5.95 g plant-1) followed by consortium-2 (5.83 g plant-1) and
FIGURE 1

Map of Pakistan with multilocation trials targeted in the present study for evaluation of soil-specific consortia on recommended wheat varieties.
Different shades of green colors highlight the region showing wheat production in the main wheat districts of Pakistan (source: https://ipad.fas.usda.
gov/countrysummary/Default.aspx?id=PK&crop=Wheat). Thermometers and bar graphs show climatic temperature (Pakistan Meteorological
Department; source: https://www.pmd.gov.pk/en/) soil available P and organic matter of the soil of study sites.
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consortium-3 (5.77 g plant-1) as compared to 80% and 100%

uninoculated controls. A significant increase (3.6%–4.1%) in

seed P was observed in inoculated plants compared to

uninoculated controls. Upon inoculation with the consortia, an

increase in available soil P (5.7–6.25 mg g-1 soil) and phosphatase
activity (22–24 mmol g-1 soil h-1) was observed (Table S2).

The presence of inoculated PSB was detected on wheat roots

from the earthen pot experiment at 35 DPI (Figure 4). The

highest density of PSB was observed in roots inoculated with

consortium-1 and consortium-3 (Figures 4B, D). Reisolated PSB

colonies were identified based on their morphological

characteristics and phosphate solubilization (233–359 µg ml-1).

Furthermore, one of the PSB strains, Ochrobactrum SSR, was

validated by the amplification of the strain-specific gcd gene that

confirmed the presence of inoculated bacteria in consortia-

inoculated soil (Figure S1).
Frontiers in Plant Science 06
Evaluation of soil-specific consortia on
wheat yield parameters in multilocational
field trials

Soil-specific consortia improved various plant growth

parameters of wheat under respective soil conditions.

Maximum grain yield (5,390 kg ha-1) was observed as a result

of consortium-1 inoculation at site 2 followed by site 3 (5,240 kg

ha-1) and site 1 (4,806 kg ha-1). In the case of consortium-2, grain

yield of 5,174 kg ha-1 was observed at site 4 with a 20% reduced

application of DAP. Maximum grain yield (5,324 kg ha-1) was

observed as a result of consortium-2 inoculation at site 6

followed by site 5 (4,806 kg ha-1). HI ranged from 30% to 36%.

Inoculation of consortium-1 increased (up to 15%) grain

yield at site 2 followed by site 3 (12%) and site 1 (2%). However,

inoculation of consortium-2 increased the grain yield by 8% at
FIGURE 2

Shelf life study of filter mud-based formulation inoculated with soil-specific consortia under controlled conditions. Field emission scanning
electron microscopic (FESEM) analysis of uninoculated filter mud-based bioformulations (A) and inoculated filter mud-based bioformulations
with consortium-1 (B), consortium-2 (C), and consortium-3 (D).
TABLE 1 Physicochemical properties of soils collected and environmental data of the experimental field sites.

Parameters Experimental sites

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
Faisalabad Nankana

Sahib
Pindi

Bhattian
Hazara Husri Tando Jam

Physico-chemical
Properties

pH 7.94 ± 0.41 7.98 ± 0.42 7.62 ± 0.38 7.50 ± 0.52 8.20 ± 0.41 8.50 ± 0.43

EC (dS m-1) 1.25 ± 0.06 1.51 ± 0.08 1.45 ± 0.07 1.10 ± 0.05 2.16 ± 0.41 3.42 ± 0.17

Organic matter (%) 1.57 ± 0.03 1.60 ± 0.03 1.06 ± 0.03 1.71 ± 0.05 0.32 ± 0.04 0.56 ± 0.05

Available P (µg kg-1) 4.21 ± 0.29 4.73 ± 0.36 4.45 ± 0.31 4.60 ± 0.31 3.27 ± 0.22 3.52 ± 0.28

Total N (%) 0.030 ± 0.002 0.327 ± 0.002 0.031 ± 0.001 0.042 ± 0.003 0.017 ± 0.001 0.025 ± 0.001

Extractable K (mg kg-1) 153 ± 7.65 149 ± 7.45 129 ± 6.45 125 ± 6.57 181 ± 9.05 145 ± 7.25

Soil Texture Sandy Loam Loam Sandy Loam Loam Clay Loam Clay Loam

Climatic Conditions Rain fall (mm) 225.67 ± 11.28 254.50 ± 12.73 244.50 ± 12.23 166.43 ± 8.32 7.53 ± 0.38 8.07 ± 0.40

Average min Temp(°C) 12.08 ± 0.60 11.75 ± 0.59 11.49 ± 0.57 9.80 ± 0.49 13.23 ± 0.66 13.87 ± 0.69

Average max Temp(°C) 24 ± 1.20 23.50 ± 1.18 23.50 ± 1.18 23.60 ± 1.18 27.60 ± 1.38 27.73 ± 1.39

Relative Humidity (%) 62.87 ± 3.14 64.40 ± 3.22 64.17 ± 3.21 63.00 ± 3.15 55.83 ± 2.79 56.17 ± 11.95

Sunshine Duration (hours/month) 195.33 ± 9.77 183.67 ± 9.18 182.53 ± 9.13 157.37 ± 7.87 239.00 ± 11.95 237 ± 11.85
Physicochemical properties of soils collected from different sites of wheat-growing areas, Pakistan. Values are an average of six biological replicates EC, Eclectic conductivity; KPK, Khyber
Pakhtunkhwa.
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site 4 as compared to 80% control. The increase in grain yield

was 5% at site 5 and 14% at site 6 in inoculated treatments with

consortium-3 as compared to 80% control (Table 2).

Effect of PSB inoculation on plant P content
A significant increase in plant P content was observed as a

result of PSB inoculation. The PSB-inoculated treatments

showed a significant increase in plant seed P content

compared to the 80% and 100% controls. The plant P content

was significantly higher (4%–4.9%) in inoculated treatments at

sites 1, 2, and 3 followed by sites 4, 6, and 5 (Table 2). Maximum
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plant P content (4.9%) was observed at site 2 followed by site 1

(4.5%) in PSB-inoculated treatment as compared to both 80%

and 100% controls, whereas plant P content at site 6 (3.7%) and

site 5 (3.5%) also increased as compared to both controls.

Effect of PSB inoculation on soil-available P
and phosphatase activity

Soil phosphatase activity was also significantly higher in PSB-

inoculated treatments. There was a pronounced increase in soil

phosphatase activity at sites 2, 3, and 1, followed by sites 4, 6, and 5.

Maximum soil phosphatase activity (26 µmoles g-1 soil h-1) was

observed for site 1 in consortium-1-inoculated treatment as

compared to both 80% and 100% controls. The maximum soil

phosphatase activity (24 µmoles g-1 soil h-1) was for site 4 in

consortium-2-inoculated treatment.While soil phosphatase activity

(17 µmoles g-1 soil h-1) for sites 5 and 6 in consortium-3-inoculated

treatment was higher as compared to both 80% and 100%

controls (Table 2).
Trends and variations of meteorological
factors at multilocational field sites

The trends in the change of key meteorological factors were

analyzed during the wheat season 2019–2020 at the six field sites

with respect to precipitation and temperature (Figure 4).

Maximum precipitation was recorded at site 4 during the

month of March. However, precipitation was recorded during

the months of January, February, and April at site 4. Minimum

precipitation was recorded at sites 5 and 6, which was almost

negligible. Whereas a moderate level of precipitation was

recorded for sites 1, 2, and 3 throughout the wheat season

except for the month of March. On the other hand, the

maximum temperature was observed at sites 5 and 6, while

the minimum temperature was recorded at site 4 (Figure 5).
Correlation between growth parameters,
soil physicochemical attributes, and
meteorological factors

Plant growth parameters were subjected to categorical

principal component analysis (CAT-PCA). The PCA plot

showed the correlation between the wheat yield parameters,

with the two principal components (PCs) contributing up to

73% to the variance on the x-axis (PC1 = 51%) and y-axis (PC2 =

22%). Inoculated plants had a significant (positive) effect on

grain yield, plant tillers, soil-available P, soil phosphatase

activity, and seed P content. No parameter was found

negatively affected by the PSB inoculation. The analysis

demonstrated the treatment differences in all six soils. Among

the six soils, the effect of treatments was pronounced at sites 2, 3,

5, and 6. PCA showed a pronounced effect of soil-specific
FIGURE 3

Evaluation of soil-specific consortia for plant yield parameters of
wheat grown in pots under net house conditions (A, B). Effects
of bioformulation on plant biomass (C) and grain yield were
recorded. Mean values denoted by the same letter are not
significantly different at P = 0.05 according to LSD.
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consortium on plant growth parameters and soil parameters

(Figure 6). Regression analysis confirmed a positive correlation

between wheat yield parameters, i.e., seed P content, wheat grain

yield, and soil-available P as a result of PSB consortium

application in multilocational field trials (Figure S2).

Furthermore, CAT-PCA of wheat yield parameters, soil

physicochemical analysis, and meteorological factors revealed

that the success of each consortium was the result of varying

factors associated with the meteorological conditions and soil

nutritional status of that site (Figure 7). A total of 71% variation

was explained by PCA, where 64% variance was accounted for by

PC1 and 7% by PC2. A positive correlation of PSB-inoculated

field-grown wheat to grain yield, soil P content, and precipitation

was observed for sites 2 and 3 belonging to irrigated plains. While

seed P content, soil organic matter, and number of tillers were

found positively correlated with site 4 belonging to Northern dry

mountains. However, the impact of inoculation at sites 5 and 6

belonging to the Indus delta was found considerably correlated to

soil K content, EC, and temperature.
Discussion

The burgeoning global biofertilizer market for agricultural

use is driven by the pressure to surge sustainable crop production.

The success of biofertilizers is primarily dependent upon the

ability of inoculants to persist and perform effectively under

natural environmental conditions (Lopes et al., 2021). Although

an elite bacterial strain is essential for the efficacious development

of inoculants, non-biological components are the foremost

dynamics for the consistent performance of inoculum under

field conditions (Mendoza-Suárez et al., 2021). Extensive field

evaluation of inoculum has rarely been evaluated under a range of

soils and environmental conditions and is urgently needed to

foster successful implementation by farmers or growers. The

potential impact of the environment on inoculation is usually
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neglected. Therefore, this study provides the first holistic report

on the development of soil-specific PSB consortia and their

application in respective agro-climatic conditions.

Three consortia were designed for their native soils and

respective recommended wheat varieties by using the most

efficient PSB having multiple plant growth-promoting traits

such as indole acetic acid production, zinc solubilization, and

siderophore production (Yahya et al., 2021). This is because

native microorganisms are more adaptable and persist longer in

native soils (Souza et al., 2015). A shelf-life study of three

consortia up to 270 DPI indicated that these are the elite PSB

strains and that FM had significantly maintained a higher

bacterial load. This also suggests that the carrier material

based on FM provides a more suitable microenvironment for

inoculated PSB and has a longer shelf life. This is an essential

property of carrier materials for maintaining microbial viability

(Soumare et al., 2020).

Therefore, for designing the optimal inoculant formulation, a

well-characterized FM-based carrier material was used in the study.

Other contributing factors for the maintenance of microbial

viability are the constitutional essential elements in FM,

predominantly silicon (Si), iron (Fe), P, calcium (Ca), magnesium

(Mg), carbon (C), and oxygen (O) (Yahya et al., 2022). Studies

showed that a significant amount of Si, Fe, P, Ca, and Mg in FM

made it a suitable product as a source of nutrients (Dotaniya

et al., 2016).

To investigate the contribution of these PSB bioformulations to

crop yield, a pot experiment was performed with Faisalabad 2008

variety of wheat grown under net house conditions. Significant

increase (up to 1.4%) in grain yield, plant biomass (1-1.3%), seed P

content (up to 4.32%), and soil phosphatase activity (up to 24%)

and subsequent P availability in the soil (up to 6.25%) was observed

in inoculated plants treated with reduced (20%) application of DAP.

The survivability of inoculated PSB in wheat rhizosphere was

verified by viability and FISH, indicating that inoculated PSB were

rhizosphere-competent phosphobacteria. Furthermore, the P-
FIGURE 4

Confocal laser scanning microscopy of wheat roots at 35 days after inoculation of consortia in pot experiment under net house conditions.
Oligonucleotide probes labeled with FLUOS dye showed green fluorescent signals for the entire bacterial population in the uninoculated control
(A) and in wheat inoculated with consortium-1 (B), consortium-2 (C), and consortium-3 (D). IB, inoculated bacteria; RC, root cells.
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TABLE 2 Effect of PSB consortia on various wheat yield and soil parameters in multilocational field trials.

Province Sites Districts Treatments No. of Plant Plant
biomass
(kg ha-1)

Grain yield
(kg ha-1)

1Seed
P (%)

2Soil
Available P

3Phosphatase
Activity

Harvest
Index(%)

14,500 ± 725 A 4,806 ± 240 A 4.50 ± 0.23 A 6.30 ± 0.31 A 26.33 ± 1.32 A 33

14,300 ± 715 A 4,728 ± 236 A 4.00 ± 0.20 B 5.60 ± 0.28 B 23.20 ± 1.16 B 33

14,400 ± 720 A 4,789 ± 239 A 4.17 ± 0.21AB 5.97 ± 0.29 AB 24.20 ± 1.21 AB 33

17,050 ± 852 A 5,390 ± 270 A 4.50 ± 0.23 A 6.37 ± 0.32 A 27.00 ± 1.32 A 32

14,333 ± 717 B 4,610 ± 231 B 4.05 ± 0.20 B 5.64 ± 0.28 A 24.20 ± 0.50 B 32

15,250 ± 763 B 4,810 ± 247 AB 4.13 ± 0.21 AB 6.07 ± 0.30 A 25.20 ± 0.96 B 32

17,167 ± 858 A 5,240 ± 262 A 4.00 ± 0.20 A 5.33 ± 0.27 A 27.00 ± 1.35 A 31

15,167 ± 758 B 4,590 ± 230 B 3.65 ± 0.18 B 4.99 ± 0.25 B 23.63 ± 1.18 B 30

16,033 ± 767 B 5,020 ± 251 A 3.81 ± 0.19 AB 5.08 ± 0.25 AB 25.30 ± 1.27 AB 31

14,489 ± 724 A 5,174 ± 259 A 3.55 ± 0.18 A 4.52 ± 0.23 A 24.67 ± 1.24 A 36

13,051 ± 653 C 4,747 ± 237 C 3.20 ± 0.16 B 4.13 ± 0.21 B 21.33 ± 1.07 B 36

13,905 ± 698 B 4,954 ± 248 B 3.25 ± 0.16 B 4.30 ± 0.22 AB 22.00 ± 1.10 AB 36

15,075 ± 841 A 4,806 ± 240 A 2.91 ± 0.15 A 3.95 ± 0.20 A 20.07 ± 1.00 A 32

14,789 ± 703 A 4,550 ± 228 B 2.62 ± 0.13 B 3.58 ± 0.18 B 18.17 ± 0.91 B 31

14,855 ± 708 A 4,642 ± 232 B 2.79 ± 0.14 AB 3.61 ± 0.18 B 15.33 ± 0.96 AB 31

16,276 ± 813 A 5,324 ± 266 A 3.05 ± 0.15 A 4.50 ± 0.23 A 21.33 ± 1.07 A 33

14,089 ± 704 B 4,587 ± 229 B 2.72 ± 0.14 B 4.14 ± 0.21 B 19.67 ± 0.98 B 33

14,389 ± 719 B 4,712 ± 236 B 2.80 ± 0.14 B 4.37 ± 0.22 AB 20.17 ± 1.01 B 33

ifferent letters. KPK, Khyber Pakhtunkhwa.
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(tillers m-2)

height(cm)

Province 1
(Punjab)

1 Faisalabad Inoculated 373 ± 19 A 107 ± 5.51 A

80% Control 321 ± 16 A 104 ± 5.22 A

100% Control 338 ± 17 A 105 ± 5.25 A

2 Nankana Sahib Inoculated 480 ± 24 A 110 ± 5.57 A

80% Control 370 ± 19 B 105 ± 5.00 B

100% Control 407 ± 20 B 108 ± 5.03 AB

3 Pindi Bhattian Inoculated 340 ± 17 A 109 ± 5.43 A

80% Control 262 ± 13 B 105 ± 5.25 A

100% Control 277 ± 14 B 108 ± 5.38 A

Province 2
(KPK)

4 Hazara Inoculated 440 ± 22 A 107 ± 5.35 A

80% Control 342 ± 17 B 105 ± 5.25 A

100% Control 357 ± 18 B 106 ± 5.30 A

Province 3
(Sindh)

5 Husri Inoculated 351 ± 19 A 85 ± 4.25 A

80% Control 322 ± 16 A 82 ± 4.24 A

100% Control 338 ± 17 A 85 ± 4.12 A

6 Tando Jam Inoculated 373 ± 19 A 89 ± 4.47 A

80% Control 328 ± 16 B 81 ± 3.75 A

100% Control 347 ± 17 AB 85 ± 3.77 A

Data are an average of three replicates.
1Plant P content is given in % of total plant weight.
2Soil-available P is presented in mg g-1 soil.
3Soil phosphatase activity is presented in µmoles g-1 soil h-1.
± represents standard deviation. Means with significant differences (P < 0.05) among treatments are represented by d
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solubilizing ability of reisolated PSB was compared to their pure

cultures, indicating the persistence of inoculated PSB.

Morphologically similar reisolated colonies of SSR obtained from

inoculated treatments were further validated by amplification of the

gcd gene (MK883703) specific for Ochrobactrum strain SSR (Rasul

et al., 2021). As SSR is one of the most potent strains for which

strain-specific primers were available. Persistent colonization of
Frontiers in Plant Science 10
PGPR in the rhizosphere indicates that bacteria can perform their

functions (Lopes et al., 2021) and form associations with local

microbial communities (Santoyo et al., 2021).

The P-solubilizing efficacy of the three PSB consortia was

further evaluated under field conditions in their respective wheat-

growing areas and recommended wheat varieties. The results

showed an increase in grain yield (2%–14%) and seed P content
FIGURE 5

Trends of meteorological factors at multilocation field sites with respect to precipitation (green), minimum temperature (blue) and maximum
temperature (red) during the wheat season 2019-20. Site1: Faisalabad, Site 2: Nankana Sahib, Site 3: Pindi Bhattian, Site 4: Hazara, Site 5: Husri
and Site 6: TandoJam.
B

A

FIGURE 6

Principal component analysis (PCA) of wheat varieties inoculated with PSB and reduced application of DAP; treatment-wise (A) and location-
wise analysis (B). Treatments: inoculation of soil-specific consortia and uninoculated controls. Site 1: Faisalabad, Site 2: Nankana Sahib, Site 3:
Pindi Bhattian, Site 4: Hazara, Site 5: Husri, and Site 6: Tando Jam.
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(3%–5%) in inoculated treatments with a reduced application of

DAP as compared to uninoculated controls. Previous studies

indicated that P-solubilizing microorganisms showed the best

effect with reduced application of DAP fertilizers (Rasul et al.,

2019; Rosa et al., 2020; Yahya et al., 2022). Higher seed P content

might be due to P translocation to seed because of PSB inoculation

(Feng et al., 2021). Maximum grain yield (5,390 kg ha-1) was

observed as a result of consortium-1 inoculation at site 2 followed

by site 3 (5,240 kg ha-1) and site 1 (4,806 kg ha-1). In the case of

consortium-2, a grain yield of 5,174 kg ha-1 was observed at site 4

with a 20% reduced application of DAP. An increase in grain yield

(5,324 kg ha-1) was observed as a result of consortium-3 inoculation

at site 6 followed by site 5 (4,806 kg ha-1).

CAT-PCA of wheat yield parameters, soil physicochemical

analysis, and meteorological factors revealed a positive

correlation of PSB-inoculated field-grown wheat to grain yield,

soil P content, and precipitation at irrigated plains, while seed P

content, soil organic matter, and number of tillers were found

positively correlated to sites belonging to the northern dry

mountains. However, the impact of inoculation at sites

belonging to the Indus delta was found to correlate with soil K

content, EC, and temperature. The higher grain yield at site 4

may be due to higher soil organic matter and N contents that

favor the persistence of inoculated PSB in dry mountainous soils.

For instance, the organic matter of site 2 was higher (0.6%) as

compared to that of site 3 and site 1 belonging to the irrigated
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plains. Similarly, the organic matter of site 6 was higher (0.56%)

as compared to site 5 belonging to the Indus delta. This is due to

the soils having a high organic matter that have higher microbial

dynamics and thus eventually need lesser requirements for

chemical fertilizers (Backer et al., 2018). The increase in soil

organic matter is the key factor in maintaining soil fertility and

plant nutrient uptake (Gerke, 2022). This can sustain

agricultural productivity by restricting the use of chemical

fertilizers (Allam et al., 2022). Therefore, it could be more

important to amend the soil with organic matter instead of

seed pelleting to augment the soil with appropriate soil fertility.

Other than organic matter, soil pH, carbon content, and water

availability are the important determinants for successful

inoculum survival in soil under field conditions (Hartmann

et al., 2015; Mahoney et al., 2017; Cao et al., 2021; Gao et al.,

2021). It also depends on the soil type and the growing season

(Bolyen et al., 2019; Khandare et al., 2020; Yan et al., 2020).

Hence, it is essential to take into account all of these factors so

tha t b a c t e r i a c an co l on i z e e ffi c i en t l y i n na t i v e

environmental conditions.

Secondly, the other factors that can contribute to wheat

production are the climatic conditions, i.e., temperature

(minimum and maximum), rainfall, relative humidity, and

sunshine. These climate changes directly affect the productivity

and stability of the agriculture sector (Lobo et al., 2019). Studies

have shown that the most influential climatic factors in wheat

production in Pakistan are relative humidity, maximum

temperature, and rainfall. Maximum temperature negatively

influenced the wheat yield (Ghani et al., 2021). In this study, a

similar trend was observed, for example, the minimum yield was

observed for sites 5 and 6, which have maximum average

temperature throughout the wheat season, whereas the minimum

temperature is reported to have a significant positive impact on

wheat yield. Likewise, the minimum temperature was observed at

site 4 with concomitant enhanced wheat yield. On the other hand,

precipitation can influence the effectiveness of biofertilizers, which

usually depends on soil properties. Biofertilizers are more effective

in arid climates than in snowy climates (Jennifer et al., 2018). In the

present study, a positive correlation of field-grown PSB-inoculated

wheat with grain yield, soil P content, and precipitation was

observed for sites 2 and 3, which belong to the semiarid zone.

However, bacterial communities can be distinct for each site or

ecosystem along the precipitation gradient (Bachar et al., 2010).

Soil microbial activity largely depends upon the temperature

and soil moisture level in rain-fed agriculture (Cookson et al.,

2002). The practical implication of moisture and temperature

requirements is needed optimally around the establishment of

crops in Mediterranean climates (Gupta et al., 2011). Studies

indicated that the successful use of inoculants can only be

possible for arid environments when they are applied in a

timely manner (Rubin et al., 2017; Chandran et al., 2021),

since rapid wetting and drying cycles can be detrimental to the

survival of the inoculum (Vriezen et al., 2007). Therefore, the
FIGURE 7

Categorical principal component analysis (CAT-PCA) of wheat
yield parameters, seed P content, soil nutrient parameters, and
climatic/meteorological conditions at the trial sites in response
to inoculation of phosphate-solubilizing bacteria. Site 1:
Faisalabad, Site 2: Nankana Sahib, Site 3: Pindi Bhattian, Site 4:
Hazara, Site 5: Husri, and Site 6: Tando Jam.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1074383
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yahya et al. 10.3389/fpls.2022.1074383
inoculum must be applied to soil when the moisture content is

adequate for seed germination and colony propagation.

Knowing the soil’s nutritional status guides the sensible use

of the inoculum. Subsequently, it is important to identify soil

deficiencies in concert with the application of the inoculum. The

interaction between soil C and N should also be considered,

since inoculants capable of building soil organic C and

improving soil structure only have this potential if soil-

available N is adequate (Callaghan et al., 2022). Soil properties

that can disrupt the microbial community and strategic

cultivation could provide an opportunity to balance the soil

conditions in favor of inoculated microbe. Hence, this study is of

significant worth, and for the first time, it reports the

development and application of soil-specific biofertilizers for

agroecological zones of wheat. Meanwhile, it integrates soil

nutritional status and agro-climatic conditions simultaneously

which are found to be the key factors for consistent performance

of augmented PSB. The potential gcd gene containing

phosphobacteria used in the study was found promising for P

biofortification; therefore, these might be used in the future for

the development of potential biofertilizers to foster sustainable

wheat production in diverse agro-climatic zones.
Conclusion

Despite the significance of the growing biofertilizer market,

microbial inoculants still failed to deliver on their potential

except for a few products. To the best of our knowledge, this

study provides innovative insights into the imminent

significance of soil-specific biofertilizers for sustainable wheat

production by integrating soil nutritional status and

meteorological conditions at the site of application. These

consortia were found promising for P biofortification; hence,

these will be used for the development of potential biofertilizers.

However, the persistence and efficacy of inoculated microbe are

the key components to harnessing their potential. Therefore,

targeted application of biofertilizers in native soils will provide a

sound basis for the efficacious inoculants.

Furthermore, new approaches like metabarcoding should be

opted for the selection of a potential native PGPR consortium

that can survive and establish in complex microbial

communities. Research priorities are needed to allow greater

exploitation of microbiomes in sustainable agriculture including

core microbiomes and metagenomes of target crops.

Nevertheless, metabarcoding is a powerful tool to estimate soil

microbial biodiversity. There is a dire need to integrate other

crucial environmental factors to obtain a full picture of

biodiversity attributes that can influence the functioning of

ecosystems. This could lead to developing potential soil-

specific consortia with concomitant adaptability under native

agro-climatic conditions and soil nutritional status.
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