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Gossypol, as an important oil and raw material for feed, is mainly produced by

cotton pigment gland, and has a wide range of applications in the fields of

pharmaceutics, agriculture and industry. Accurate knowledge of the

distribution of pigment gland in cotton leaves is important for estimating

gossypol content. However, pigment glands are extremely small and densely

distributed, manual counting is laborious and time-consuming, and difficult to

count quickly and accurately. It is thus necessary to design a fast and accurate

gland countingmethod. In this paper, themachine vision imaging technology is

used to establish an image acquisition platform to obtain cotton leaf images,

and a network structure is proposed based on deep learning, named as

Interpolation-pooling net, to segment the pigment glands in the cotton leaf

images. The network adopts the structure of first interpolation and then

pooling, which is more conducive to the extraction of pigment gland

features. The accuracy of segmentation of the model in cotton leaf image

set is 96.7%, and themIoU (Mean Intersection over Union), Recall, Precision and

F1-score is 0.8181, 0.8004, 0.8004 and 0.8004 respectively. In addition, the

number of pigment glands in cotton leaves of three different densities was

measured. Compared with manual measurements, the square of the

correlation coefficient (R2) of the three density pigment glands reached

0.966, 0.942 and 0.91, respectively. The results show that the proposed

semantic segmentation network based on deep learning has good

performance in the detection and counting of cotton pigment glands, and

has important value for evaluating the gossypol content of different cotton

varieties. Compared with the traditional chemical reagent determination

method, this method is safer and more economical.
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Introduction

Cotton is an important economic crop. It is not only the

main source of high-quality natural fibers, but also the resource

of protein and oil (Qu et al., 2017). Cotton pigment gland is a

widely distributed unique tissue structure of cotton plants in

most organs of cotton plants except pollen and seed coat. It is the

dark brown opaque spots in cotton leaves (Liu et al., 2010; Zhang

et al., 2021). Cotton pigment glands contain gossypol and other

terpenoid aldehydes (Gao et al., 2020). Gossypol is a yellowish-

brown polyphenol pigment insoluble in water but soluble in

organic solvents, which is synthesized in the roots and carried in

various organs of cotton plants (Zhao et al., 2020). Gossypol is

widely used in pharmaceutical, agricultural and industrial

application. For agricultural application, gossypol (Kong et al.,

2010; Krempl et al., 2016) is used to control crop diseases and

insect pests due to its good insect resistant characteristic and also

for the control of rodent damage in the field due to its fertility

resistance (Hahn et al., 1981). In pharmaceutics, the antifertile

trait of gossypol is made use of in the manufacturing of

contraceptives (Qian and Wang, 1984), drugs that inhibit the

growth and proliferation of tumor cells (Badawy et al., 2007; Ni

et al., 2013), and it has obvious effect on the treatment of

gynecological diseases (Hsieh et al., 2020). However, the

toxicity of gossypol limits its wide application as an important

oil and feed raw material. Excessive intake of gossypol will cause

human and animal digestive dysfunction and gastric mucosa

damage (Lordelo et al., 2005; Gadelha et al., 2014). Therefore, the

detection of gossypol content in cotton plants is very crucial in

the improvement of the economic value of cotton.

At present, chemical reagent method is most commonly

used for the detection of gossypol content such as High

Performance Liquid Chromatography (HPLC) (Benbouza

et al., 2002), Capillary Electrophoresis (Liu et al., 2005) and

Ultraviolet Spectrophotometry (Przybylski et al., 2006).

However, they will not only damage the samples, but also are

costly. The relationship between cotton pigment glands and

gossypol is close and complex. Pigment glands are the storage

organ for gossypol and derivatives of gossypol. Their

distribution density is positively correlated with the glanded

cotton (Wilson and Smith, 1976). The number of pigment

glands is an important predictor for estimating the gossypol

content in glanded cotton. Pigment glands are small with an

average diameter of 100 ~ 400 mm (Qian et al., 2017) and densely

distributed, and the accurate counting of pigment glands is

difficult to perform manually. At present, there are some

methods for counting the pigment glands of cotton. The

mainstream method used is the microscope observation

method. Wang et al. (2018) used stereomicroscope to take

pictures of the leaves of four species of cotton plants,

Gossypium barbadense L., Gossypium hirsutum L., Gossypium

herbaceum L., and Gossypium arboretum L., and counted the

number of pigment glands in total, then divide it into the total
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area and got the number per square centimeter. This process is

time-consuming and laborious, and the experience of labors may

influence the result, and thus the accuracy of the count number

can’t be insured.

Computer vision or more precise plant phenotyping has been

proved to be a reliable too in the field of plant biology, and the

application of computer vision technology on the study of plant

phenotype has achieved some fruitful results (Dee and French,

2015). The cotton pigment glands only account for a very small

percentage in the whole cotton leaf image and so the small object

detection method has to be used to detect the number of cotton

pigment glands (Lin et al., 2014; Zhu et al., 2016). The coverage area

that small objects in the image is generally dozens of pixels, or even

a few pixels, with less information on the features and lacking

feature expression ability. The small object detection method has

always been the focal point of studies of many researchers (Li et al.,

2022). At present, small object detection methods mainly are the

traditional image processing method and deep learning method.

The traditional image processing method mainly rely on manual

analysis of image features, extraction of image features with

algorithms, and distinguishing objects by feature values (Su et al.,

2020). However, the feature extraction process is complex and time-

consuming, and it is difficult to achieve the same detection accuracy

as the detection of large object. With the improvement of

computing power of equipment, deep learning has become more

and more popular for image recognition and image segmentation

(Tetila et al., 2019; Su et al., 2020). Different from the traditional

image processing method, deep learning extracts image features

from the network framework. Convolutional Neural Network

(CNN) has excellent performance in exploring more deep

information of images. Sun et al. (2021) introduced the

segmentation masks to remove background images based on the

original SSD model, which improved the detection performance of

the Tsinghua-Tencent 100K and Caltech pedestrian dataset by

adding context information. In Convolutional Neural Network,

the shallow feature map has a small receptive field to detect small

objects, while the deep feature map has a large receptive field to

detect large objects. Zhou et al. (2018) proposed a novel Scale-

Transferable Detection Network (STDN) by embedding a super-

resolution layer in a Dense Convolutional Network (DenseNet).

Firstly, the small-scale feature map is obtained, and then the large-

scale feature map is obtained by reducing the number of channels of

the feature map in the super-resolution layer to explicitly explore

the inter-scale consistency. However, the objects are closely adjacent

to each other in the single image where the small objects have

dozens or even hundreds of objects to be detected (Ming, 2021),

which is easy to cause detection overlapping and false detection of

small objects (Goldman et al., 2019; Pan et al., 2020), not tomention

the identification and counting of dense small objects, which is

more challenging.

Pigment glands are small, numerous and densely distributed,

so it is difficult to manually count them accurately. On the basis

of previous research work, we inverted the structure of the
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classical U-Net network and designed a semantic segmentation

model of pigment glands based on deep learning to realize the

rapid recognition and counting of densely distributed pigment

glands. The model first performs the interpolation operation for

up-sampling to amplify the image features, and then performs

the pooling operations to achieve multi-scale fusion of the

network by fusing deep semantic information and shallow

representation information. First of all, a cotton leaf image

acquisition device was built to collect the RGB image of cotton

leaf with a color industrial camera, and then the image was

manually annotated, binary image conversion, rotation and

cropping, so as to build the data set of cotton leaves. After

that, the improved model was trained and validated. The shape

feature filtering method was used to optimize the segmentation

results to reduce the error caused by the leaf vein shadow in the

image. Finally, the pigment glands in the images were counted.

The flow chart is shown in Figure 1. In order to evaluate the

segmentation performance of the network, we compared the

segmentation and counting results of the improved model with

original U-Net, DeepLabv3+ and manual counting. The

comparison results showed that the improved model had

achieved high-throughput and accurate detection of cotton

pigment glands.
Materials and methods

Image collection

In August 2021, cotton leaf image acquisition experiments

were carried out at the innovation experimental park of Hebei

Agricultural University in Baoding City (38.85°N, 115.30°E),
Frontiers in Plant Science 03
Hebei Province, China. The true leaves of seedling stage of

upland cotton with a growth cycle of 35 days were taken as

samples, among which those with intact leaf phenotype and

uniform chlorophyll distribution were selected for cleaning

and drying.

An image acquisition platform was established in advance, as

shown in Figure 2. The cotton leaf was placed under the white

square light and the color mesh industrial camera was connected

(MV-GED200C-T, Mind Vision, China, maximum resolution:

1600×1200) to the computer. The camera support knob was

adjusted to keep the camera at an appropriate height so that the

leaf can be in the camera aperture completely, and extend in as

much as possible to collect cotton leaf images of different

densities. The focal length and aperture of the camera lens

(OPT, focal length: 12mm) were adjusted, as well as the light

source controller to make the pigment glands in the cotton leaf

as clear as possible. Finally, the RGB images of cotton leaves were

collected by the industrial camera controlled by the industrial

camera software.
Data set processing

33 RGB images of cotton leaves with a resolution of

1600×1200 were collected by the image acquisition device, and

saved as BMP file. The collected 33 cotton leaf images were

screened to eliminate the ones that were blurred, damaged and

dark leaf images, and 9 qualified cotton leaf images were sifted

out and labeled manually. The image annotation was performed

by annotation tool LabelMe (Russell et al., 2008), it contained

about 37,584 labeled pigment glands in 9 images, and the

average labeling time of each image was about 5.5 hours. The
FIGURE 1

Flow chart of cotton pigment gland detection.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1075051
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


She et al. 10.3389/fpls.2022.1075051
json files generated after labeling were saved in the computer. In

order to improve the generalization performance of the training

model, the 9 labeled json files were converted into binary images

of black and white, where the pigment glands were white and the

background was black, as shown in Figure 3. Then, the binary

images were reversed horizontally, vertically and mirrored, and

36 images were generated. Because the leaf image field of view

was extensive, to allocate GPU memory was difficult. To solve

the problem, the image was cropped into smaller size and 6912

sub-images of 100×100 of pixel size were generated. 80% of them

were used as the training set and 20% as the validation set.

In addition, we also selected another 7 clear images of

different densities as the counting study of this model, and the

7 images were cropped into 453 sub-images. In order to verify
Frontiers in Plant Science 04
the counting accuracy of pigment glands with different densities,

the sub-images were divided into three grades according to the

density. It is assumed that the number of pigment glands in

4.5×4.5mm area was less than 40 be level 1, the number more

than 40 but less than 80 be level 2, and the number more than 80

be level 3. The three levels were categorized into three different

datasets DS1, DS2 and DS3 respectively, and the number of sub-

images of DS1, DS2 and DS3 was 184, 156 and 113 respectively.

The sub-images of three datasets with different densities are

shown in Figure 4.
Model improvement

In the image, the pigment glands occupy a small area, so the

object detection method is more challenging in locating the

bounding box than the large and mesoscale objects. In the

prediction process, if the prediction bounding box is shifted by

one pixel, the impact on the small object will be much higher

than that on the large and mesoscale object, so it is difficult to

achieve high detection accuracy. The method of image

segmentation is to classify each pixel in the image at pixel

level. So, we used a semantic segmentation model based on

deep learning to classify the leave images into pigment glands

and non-pigment glands at pixel level. Compared with the

manual object detection method, the label map generated by

semantic segmentation was simpler, and thus easier to stitch the

sub-images together, and the context information was

enhanced better.

U-Net was originally used in medical image segmentation.

Because the network structure fused the deep features and

shallow features with skip connections, U-Net is more effective

in dealing with the complex segmentation. U-Net is a process of

encoding and decoding, mainly composed of contracting path,

expansive path and prediction network (Ronneberger et al.,

2015). The contracting path is composed of five effective

feature layers, and each of them performs two 3×3
A B

FIGURE 3

Manual labeling of cotton leaves at seedling stage. (A) Original image; (B) Annotated image. The background is in black, and the cotton pigment
glands are in white.
FIGURE 2

Cotton leaves image acquisition device.
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convolution operations and one 2×2 maximum pooling

operation for feature extraction. The structure of extraction is

to reduce the feature images. After a series of convolution and

pooling operations, the size of the feature image was halved and

the number of channels increased. The expansive path is

symmetric with that of the contracting path, and each effective

feature layer was subjected to two 3×3 convolutions and one 2×2

deconvolution operation, that is to say, the five effective feature

layers obtained from the feature extraction network were for up-

sampling to magnify the reduced image. Finally, the

corresponding effective feature layers in the contracting path

and the expansive path were spliced and fused through skip

connections. The fused feature layer combines the complex

information extracted from the deep network and some simple

information from the shallow network, such as edge feature, so

that the network can handle more complex segmentation tasks.

Then the final feature layer fused during feature extraction and

enhanced feature extraction was predicted, and the input images

were classified on the pixel level. During prediction, the number

of channels was converted once, resulting in the number of

output channels to be the number of categories classified.

In this experiment, the cotton pigment glands were the only

a few pixels in the leaf image. The cotton leaf image will be

downscaled by half every time while U-Net model was down-

sampled, making feature extraction more difficult, and the

feature loss more serious during the training of the model and

thus impair the successful realization of cotton pigment glands

segmentation. We inverted the classic U-Net structure with a

conical structure of interpolation followed by pooling instead of

the original “U” structure of down-sampling followed by up-

sampling, and the improved network model was named

interpolation-pooling net (abbreviated as Ipp Net). This

network structure can effectively suppress the loss of pigment

gland features caused by the pooling operations. The improved

network model has three chief components, up-sampling, down-

sampling and network prediction. The Ipp Net model structure

is shown in Figure 5.

Up-sampling. The sub-images of cotton leaves were entered

into the model as input. After two 3×3 convolution layers and

batch standardization, the nonlinear ability was strengthened
Frontiers in Plant Science 05
through the ReLU activation function. Then the nearest-

neighbor interpolation method was used to amplify the image

features. The nearest pixel among the 4 pixels around the pixel to

be interpolated was selected as the target pixel and inserted into

the amplified image, and the final image was amplified from the

original 120×120 to 240×240, and the number of channels

increased to 16. After convolutions and interpolation

operation, the feature image size was doubled again to

480×480, and the number of channels remained unchanged.

For each convolution and interpolation operation, the image size

doubled once. The un-sampling process of feature extraction was

to enlarge the feature map. Unlike the traditional U-Net model,

the improved Ipp Net adopts the Same convolution. The size of

the convolution kernel won’t affect the size of the feature map

after convolution, but not the step size used for convolution,

which was set as 1. The result shows that the size of the output

feature map after convolution was the same as the input image.

In this mode, the size of the feature image is unchanged during

forward propagation, and the convolution operation does not

need to accurately calculate the size of the image.

Down-sampling. The feature extraction after the feature

images were amplified was performed using convolution and

max pooling operations. The pooling method used max pooling

to retain the salient features of the image and reduce the feature

dimension, so that the model can learn the edge and texture

structure of pigment glands, and stably segment the phenotypic

traits of pigment glands. After two convolutions and one

pooling, the salient features of the image were retained, and

the image size was reduced from 480×480 to 240×240. Then, two

more convolutions and one pooling operation are performed,

and finally reduced to the size of the input image. After each set

of convolution and pooling operations, the size of the feature

image was reduced to half of the original size. The improved

network is also a cross-layer connection, the Concat dimension

splicing and fusion method are adopted to fuse the primary

features corresponding to the up-sampling and the down-

sampling, and the channel number was also increased the

same as the corresponding feature layer. On the one hand, the

fused feature layer recovered the lost image position information

during down-sampling, on the other hand, the low-level details
A B C

FIGURE 4

The sub-images of three datasets with different densities. (A) DS1; (B) DS2; (C) DS3.
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from different scale feature maps were combined with high-level

semantics, which enriched the feature information.

Network prediction. The last layer of the network is a 1×1

convolution layer. The feature vector can be converted into the

number of required classification results in the layer. The results

in the output layer of the network are transformed into

nonlinear values by ReLU activation function, that is, the

values less than 0 become 0, and the values greater than 0 are

assigned as 1, which is used for the conversion of discrete

probability values to binary. Finally, the output is single-channel.
Image cropping and stitching

Since the leaf image contains a wide-angle view, which

makes GPU memory allocation difficult, and also because that
Frontiers in Plant Science 06
the global semantic information of the pigment gland is not

so important in the pigment gland segmentation, even a

portion of an intact leaf is taken out, the pigment gland can

still be identified. Therefore, we cropped each image into sub-

images with the size of 100×100, as shown in Figure 6, and a

total of 6912 sub-images were cropped. Image cropping

reduced the GPU pressure on the one hand and expanded

the data set on the other hand. However, in the process of

stitching, we found that the undetectable white stripe will

appear on the edge. To identify it, we expanded the original

sub-image of 100×100 to 120×120 and fed into the network.

When the part of 4×5 pixels on the sub-image edge was

cropped off, and the remaining images were stitched, which

effectively suppressed the impact of edge defects on

segmentation, and reduced the counting error caused by

incomplete pigment glands at the cropped edges.
FIGURE 6

Image cropping and stitching. The red box was one of the sub-images, which has been cropped and segmented and then stitched.
FIGURE 5

Ipp Net model. The structure of up-sampling and down-sampling is adopted, and the up-sampling and down-sampling are performed twice
respectively to obtain image features.
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Result

Model parameter

Python 3.6 was used as the server environment for network

training to train and test the model under TensorFlow 1.14.0 and

CUDA 10.0. The server was equipped with NVIDIA GeForce

GTX 1080Ti graphics processing unit for acceleration and 16GB

video memory.

Mean square error (MSE) is used as the loss function of the

model to evaluate the difference between the predicted value and

the real value of the model, so as to provide the model with an

object that can be optimized and make the optimizer move in the

right direction.

MSELoss =
1
nok

yk − tkð Þ2 (1)

where yk s the output of the network, tk the label value of

training data, and k represents the size of the training set, n is the

number of samples.

To make each parameter of the loss function reach the most

appropriate value and make the loss function as smooth as

possible, we used the adaptive motion estimation (Adam)

optimizer to dynamically adjust the learning rate of each

parameter using the first-order moment estimation and

second-order moment estimation of the gradient. Under

Adam, the learning rate bias was corrected, and the

parameters were more stable and better adapted to the

problem of gradient sparsity. The parameter settings of

training model are shown in Table 1.
Evaluation indicators

The segmentation results of the model are shown in Figure 7.

It is known from Figure 7 that the model has a good effect on the

identification of pigment glands in cotton leaves. In order to

objectively and reasonably evaluate the effect of the network

model in the pigment gland segmentation of cotton leaves, four

model evaluation indicators were introduced to evaluate the

segmentation effect of the model and they were mIoU (Mean

Intersection over Union), Precision, Recall and F1-score
Frontiers in Plant Science 07
respectively. Four evaluation indicators defined by the

equations from (2) to (5) were calculated by the confusion

matrix, as shown in Table 2, the columns in the table

represent the predicted values of the model, and the rows

represent the label values of the model.

mIoU =
1

k + 1o
k

i=0

TP
TP + FP + FN

(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − score =
2� Precision� Recall
Precision + Recall

=
2� TP

2� TP + FP + FN
(5)

Where, True Positive (TP) is the number of the correctly

identified pigment gland pixels defined by the model; False

Negative (FN) refers to the number of pixels wrongly

identified by the model as the background; False Positive (FP)

indicates the number of pixels incorrectly identified as the

pigment gland, True Negative (TN) is the number of pixels of

the background correctly identified as the background.

Mean Intersection over Union (mIoU) is a common

evaluation metric for semantic image segmentation, which first

computes the IoU for each semantic class and then computes the

average over classes. It is a commonly used metric for the

measurement of the image segmentation performance of the

algorithm at pixel level. It is also used to compare the similarities

and differences between the segmentation results and the label

set. The Precision indicates that the proportion of pigment

glands predicted by the model is close to the actual result.

Recall indicates how many positive examples in the sample are

predicted correctly. F1-score, also called balanced F score, is

defined as the harmonic mean of Precision and Recall. During

the model training, mIoU, Recall, Precision and F1-score of each

epoch output is calculated in detail using the validation set,

followed by the model performance evaluation using the test set

not involved in the training.
A B

FIGURE 7

Segmentation results. (A) Original image; (B) Segmented result.
TABLE 1 The parameter settings of training model.

Parameter Value

optimizer adam

Epochs 60

Steps per epoch 250

Batch size 2
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After each epoch, the accuracy and loss values are calculated in

the training set and validation set to monitor the fitting degree of

the model. The total model training last about 9.5 h. The loss value

of the model appeared to be flat at the 40th epoch and the accuracy

of the model stabilized at 0.967; the loss value was finally stabilized

at 0.0238, mIoU, Recall, Precision and F1-score was 0.8181, 0.8004,

0.8004 and 0.8004 respectively.

In addition, two other classical models, U-Net and DeepLabv3

+, were trained and compared with the Ipp Net in this paper. The

segmentation results are shown in Figure 8. The experiment results

based on the performance measurement evaluation are shown in

Table 3. Figure 9 is the scores of box plot of the three models in the

different epochs of the test set. It mainly contains six data nodes,

which respectively calculate the upper edge upper quartile Q3,

median, lower quartile Q1, lower edge and outliers of test sets in

different epochs of mIoU, Recall, Precision and F1-score. Compared

with the original U-Net, mIoU, Recall, Precision and F1-score

increased by 9.51%, 9.51%, 21.78% and 16.24% respectively, and

which was 14.78%, 7.98%, 37.43% and 26.49% better than

DeepLabv3+. The segmentation results show that U-Net and

DeepLabv3+ are not effective in the segmentation of cotton

pigment glands with small objects and dense distribution. In

contrast of the model used in this paper, U-Net and DeepLabv3+

will cause the feature loss of pigment glands during feature

extraction, so the lost feature information will be classified as

background during pixel classification. The model in this paper

adopts the structure of interpolation and pooling, which is to

amplify the features of the image first and then extract the image

features. Therefore, the Ipp Net model has a better segmentation

effect in dealing with small objects.
Frontiers in Plant Science 08
Results optimization

Due to the vein shadows in cotton leaves which are similar to

pigment glands, they will be classified as foregrounds, thereby

reducing the accuracy of the model. At this time, if the pigment

glands are directly counted from the segmentation results, some leaf

vein shadows will also be inclusive and counted, and the counting

result will be much higher than the actual number of pigment

glands. By optimizing the segmentation results, the mistakenly

inclusive vein shadows can be filtered, thus weaken the influence

of vein shadows on the final counting results. The segmented leaf

images were optimized using the machine vision software

HALCON 17.12.0.0, and the optimization results are shown in

Figure 10. Select_shape is an operator that can select the regions

according to the shape features such as the area and roundness of

the input connected domain. Its usage is simple and has good effect

on image filtering and optimization. The diameter of the pigment

glands is generally 100~400mm, approximately a few pixels as an

image. 3 pixels was the minimum pixel value of the pigment glands

in the sample image and we optimized the image with shape feature

selection and morphological filtering. The connected domains with

area parameters between 2-938 744 pixels were selected and

counted, while the connected domains with area parameters less

than 2 pixels were filtered out. Then, the count_obj operator was

used to count the connected domains selected by the select_shape

operator, and the optimized image was saved to count the

pigment glands.

The image was optimized by the combination of morphological

filtering and shape feature screening, which eliminated the shadow

impurities of leaf veins, and at the same time preserved the
TABLE 2 Confusion matrix.

P\L Positive Negative

Positive 42681 10644

Negative 10645 666030
fr
A B C D

FIGURE 8

Comparison of segmentation results of the three models. (A) Original image; (B) The segmentation result of Ipp Net; (C) The segmentation
result of U-Net; (D) The segmentation result of DeepLabv3+.
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characteristics of the pigment glands in the image. Compared with

other filtering methods, such as median filtering, shape feature

screening, this method can well preserve the features of very small

pigment glands.
Counting results

In order to better evaluate the Ipp Net model, the pigment

glands of 453 sub-images in three datasets DS1, DS2 and DS3

used for model evaluation were segmented and counted,

Figure 11 shows the comparison results of Ipp Net, U-Net and

DeepLabv3+ with manual counting at three densities. The

abscissa in Figure 11 is the result of manual counting, and the

ordinate is the counting result of Ipp Net, U-Net and DeepLabv3

+. As shown in Figure 11, the square of the correlation coefficient

(R2) of Ipp Net reached 0.97, 0.94 and 0.91 respectively in the
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three datasets, DS1, DS2 and DS3, which were 0.03, 0.11, 0.21

and 0.04, 0.06, 0.28 higher than those of U-Net and DeepLabv3+,

respectively. With the increase of pigment gland density, the

detection and counting ability of the three models decreased, but

Ipp Net still performed well in the detection and counting high-

density pigment glands, and R2 still reached 0.91. The results

show that Ipp Net has the best fitting degree and is more

accurate than U-Net and DeepLabv3+ at different densities.

The proposed method can realize high-throughput detection

and counting of cotton pigment glands.
Discussion

Gossypol is a peculiar substance of Gossypium plants. It is

toxic and has extremely high research value in agriculture,

pharmaceutics and other fields. At present, the detection of
TABLE 3 Evaluation indicators.

Model Acc mIoU Precision Recall F1-score

U-Net 0.995 0.723 0.7053 0.5826 0.638

DeepLabv3+ 0.994 0.6703 0.7206 0.4261 0.5355

Ipp Net 0.967 0.8181 0.8004 0.8004 0.8004

The bold values are the improved algorithm and corresponding evaluation indicators.
fro
A B

C D

FIGURE 9

Evaluation indicators of U-Net, DeepLabv3+ and Ipp Net models of different epochs. (A) mIoU; (B) Precision; (C) Recall; (D) F1-score.
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gossypol mainly leverages High Performance Liquid

Chromatography (HPLC), spectrophotometry, Capillary

Electrophoresis and other chemical reagent methods. These

methods require to break up the cotton organ samples for

detection. Although the result can achieve high accuracy, they

are not economical and non-destructive. Plant phenotypic
Frontiers in Plant Science 10
analysis has made important progress in crop identification

and detection. Pigment gland is the main carrier of gossypol.

There is a significant correlation between the phenotypic traits of

pigment gland and gossypol content, which can be used as a

basis for measuring the amount of gossypol in phenolic gossypol.

Pigment glands are small and densely distributed. At present,

people mostly analyze the distribution of pigment glands by

hand, and the workload is huge. To reduce work, we proposed a

machine vision method to detect the number of pigment glands

in cotton leaves. Compared with the manual method, it is more

convenient and detect faster, and the distribution of pigment

glands in cotton leaves can be analyzed more accurately.

The densely distributed cotton pigment gland is only a few

pixels in the image of cotton leaves, and the detection is counted

as small object detection. Due to the small coverage area in the

image and hardly available features of small objects that are

distributed in a dense manner, it is difficult to locate the general

large objects. At the same time, the predicted bounding box may

also filter out a large number of correct ones due to the non-

maximum suppression operation during post-processing,
A B

FIGURE 10

Segmentation results optimization. (A) Segmentation results of
Ipp Net; (B) Optimized images of the segmentation results.
A B C

D E F

G H I

FIGURE 11

Comparison results of Ipp Net, U-Net and DeepLabv3+ with manual counting at three different densities. (A–C): DS1, low-density; (D–F): DS2,
medium-density; (G–I): DS3, high-density.
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resulting in overlooking detection. Therefore, some commonly

used convolutional neural networks cannot achieve good

detection results for the detection of dense small objects. The

U-Net network performs feature fusion of different dimensions

in the channel dimension for the network to segment and detect

images of different sizes. In the middle of detection, the object

will be aggregated at one point in the feature image after multiple

times of down-samplings, which makes the feature extraction

more difficult. Therefore, the detection effect on the cotton leaf

pigment gland using the U-Net network is not accurate.

In this paper, a semantic segmentation model based on

interpolation-pooling network is proposed to materialize

automatic segmentation of cotton pigment glands, and count

the segmentation results. The improved Ipp Net is in the

sequence of interpolation first and then pooling to avoid the

target feature information loss caused by down-sampling in the

classic U-Net network structure, and improve the detection

accuracy of the network for small objects. The experiment

results show that the improved Ipp Net has high segmentation

accuracy of 0.967 for the cotton leaf image data set. In order to

verify the ability of Ipp Net to detect the pigment glands with

different densities, three data sets were made according to the

density distribution of pigment glands in cotton leaf sub-images

to test the counting results of the model. Compared with the

manual counting methods, the detection accuracy of Ipp Net is

slightly lower than that of manual counting, but the required

detection time is shorter and labor is saved. For the trained

model, the average detection time of each sub-image is only 202

ms, and it takes about 91.5 s to detect the 453 sub-images, while

the manual method takes about 11 hours to complete the

statistical task of pigment glands. Therefore, the semantic

segmentation model proposed in this paper can replace the

manual method for counting the cotton pigment glands.

Different from other small object detection methods, we

used the semantic segmentation method to detect the pigment

glands, and used the object detection method to detect small

objects with very dense distribution. After sampling for several

times, the small objects adjacent to the aggregation area would

be aggregated together in the deep feature map, resulting in the

model being difficult to distinguish. The boundary distance

between small objects in the aggregation area is too close,

which will lead to the difficulty of bounding box regression

and the difficulty of model convergence. It is difficult to achieve

the ideal detection effect. The method of semantic segmentation

is to classify each pixel in the image, so that the detection of

pigment glands is more accurate, and the counting result of

pigment glands is closer to the real value.

Before constructing the Ipp Net model, we used the

traditional image segmentation methods such as threshold

segmentation to detect the pigment glands in cotton leaves.

However, due to the small size and dense distribution, the

traditional image segmentation method was not ideal for the

segmentation of pigment glands. Especially in some images
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containing veins and leaf edges, the detection results were too

different from the real values, and the pigment gland counting

task cannot be completed at all. In addition, the pigment glands

in the image were basically unrecognized in the intact leaves with

a wide field of view.

However, the model still suffers from false detection of

pigment glands. The convolutional neural network model is

easily affected by the quality of image annotation. The main

reason for that is because of the veins and leaf edges in cotton

leaves. When labelling the pigment glands on the leaf veins,

some of the veins will also be annotated. In this way, the model

will also learn from wrong labelling. Affected by the white light,

the edges of the leaf were too bright, making it more difficult to

mark manually, so the leaf edge will also cause false detection. In

addition, the color of the pigment gland was very close to vein

shadow, making it even harder for the computer to distinguish.

Consequently, some vein shadows are mistakenly identified as

pigment glands in the model, thus reducing the accuracy of the

model. When the semantic segmentation of general objects is

carried out in neural network, the edges of the object in the

image have been through pixel mutation and contain richer

feature information than the inside of the object, so it is easier to

recognize them. The pigment glands have fuzzy edges which

contain very little information. Although the pigment glands in

the image are easy to identify, the edge segmentation is usually

not ideal. On the other hand, the closing operation of

morphological filtering is used for image optimization, which

leads to some adjacent pigment glands forming a connected

domain of adhesion after closing operation. As shown in

Figure 12, A is the leaf image segmented by the improved Ipp

Net, and B is the optimized image, and the counting result will be

smaller than the true value.

Image enhancement of the data set is an important method

to improve the accuracy of convolutional neural network.

Illumination and noise in the imaging process are important

influential factors on the detection accuracy of the model.

Although the IPP Net model has a good effect in identifying
A B

FIGURE 12

Cases of misjudgment. (A) The segmentation result of Ipp Net
model; (B) The result after filtering and optimization. The red box
is the part of the image optimized to cause the adhesion of
pigment glands.
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the pigment glands in cotton leaves, its segmentation effect is

easily affected by the veins shadow of cotton leaves and the

image noise of leaf edge. The results were optimized by shape

feature filtering, but there is still some gap between the automatic

counting results and the true value. In the follow-up research, on

the one hand, the cotton leaf data set was smoothed and filtered

to eliminate the influence of veins and their shadows on the

model accuracy as much as possible while retaining the

characteristics of pigment glands; on the other hand, we will

proceed to further improve the model and try to integrate the

global context information into the detection model, so as to

improve the detection accuracy of the model in the veins to

minimize the influence of vein shadow. In addition, the function

to calculate the area of pigment glands and to estimate the

content of Gossypol in cotton leaves by combining the area and

quantity will be added to the model. A non-destructive and

accurate estimation model of Gossypol content will be

constructed, and then the model of cotton disease resistance,

insect resistance, gland phenotypic traits and physical and

chemical parameters of Gossypol content was established to

realize the auxiliary decision-making technology of disease

resistance and insect resistance quality identification.
Conclusions

Cotton pigment gland is the main carrier of gossypol, an

important structure for studying gossypol and its derivatives. Its

density and size reflect the amount of gossypol in glanded

cotton. Cotton pigment glands are extremely small and

densely distributed. At present, researchers mostly use

microscope observation to estimate the density of pigment

glands based on artificial experience. The manual counting

method is easily influenced by the experience of researchers

and is time-consuming and laborious, which brings great

inconvenience to the study of cotton pigment glands

and gossypol.

In this paper, a neural network model for automatic

detection and counting of pigment glands in cotton leaves is

proposed, aiming to detect small and densely distributed

pigment glands in cotton leaves by computing of the semantic

segmentation model. The interpolation-pooling network is

proposed, and the practice of interpolation first and then

pooling can effectively avoid the loss of target feature

information caused by convolution, which is more conducive

to the extraction of small objects information with small

individual or small proportion in the image. The model was

validated using the images of glanded cotton true leaves, and

mIoU, Recall, Precision and F1-score were used to evaluate the

network performance. The final validation set scores were
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0.8181, 0.8004, 0.8004 and 0.8004 respectively. Compared with

U-Net and DeepLabv3+, the mIoU, Recall, Precision and F1-

score of Ipp Net are higher by 9.51%, 9.51%, 21.78%, 16.24% and

14.78%, 7.98%, 37.43% and 26.49% respectively. The

segmentation has better outcome. In addition, the detection

ability of the Ipp Net model in cotton pigment glands of different

densities was analyzed, and found that it has good performance

in different densities. The results show that the Ipp Net model

has better segmentation effect and good robustness, and can

replace manual counting for cotton pigment gland counting in

some researches, which provides an important practical

reference for the study of cotton pigment gland.
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