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Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus

xylophilus) and leads to wilting and death of pines. It is one of the most

damaging diseases of pines worldwide. Therefore, accurate and rapid

detection methods are of great importance for the control of B. xylophilus.

Traditional detection methods have some problems, such as being time-

consuming and requiring expensive instruments. In this study, the loop-

mediated isothermal amplification (LAMP) and clustered regularly interspaced

short palindromic repeats (CRISPR) were used to establish a set of intelligent

detection and analysis system for B. xylophilus, called LAMP-CRISPR/Cas12a

analysis, which integrated field sampling, rapid detection and intelligent control

analysis. The process can be completed within 1 hour, from sample

pretreatment and detection to data analysis. Compared with the single LAMP

method, the LAMP-CRISPR/Cas12a assay uses species-specific fluorescence

cleavage to detect target amplicons. This process confirms the amplicon

identity, thereby avoiding false-positive results from non-specific amplicons,

and the large amounts of irrelevant background DNA do not interfere with the

reaction. The LAMP-CRISPR/Cas12a assay was applied to 46 pine wood

samples and the samples carrying B. xylophilus nematodes were successfully

identified. To meet the needs of different environments, we designed three

methods to interpret the data: 1) naked eye interpretation; 2) lateral flow

biosensor assay; and 3) integrated molecular analysis system to standardize

and intellectualize the detection process. Application of the B. xylophilus

detection and analysis system will reduce the professional and technical

requirements for the operating environment and operators and help to

ensure the accuracy of the detection results, which is important in grass-

root B. xylophilus detection institutions.
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Introduction

The pine wood nematode, Bursaphelenchus xylophilus, is the

causal agent of pine wilt disease. B. xylophilus is listed as a

quarantine pest in more than 40 countries (Zhao et al., 2009).

Many pines die from pine wilt disease, which substantially damages

economies and ecosystems. Current methods for the treatment of

pine wilt disease are not ideal, so early detection and prevention

have become the primary methods for managing the disease.

Detection of B. xylophilus has been based mainly on

morphological and molecular identification. Morphological

identification is time-consuming and requires a high level of

taxonomical expertise (Floyd et al., 2002; Kikuchi et al., 2009;

Cha et al., 2019), and can sometimes be difficult or impossible

because species in genus Bursaphelenchus have similar

morphologies (Kang et al., 2004).

Molecular identification is more accurate than morphological

identification, but standard identification methods such as PCR

assays require expensive equipment and take more time.

Isothermal amplification-based detection technologies have

overcome the limitations associated with PCR-based assays

(Zhao et al., 2015). Isothermal amplification approaches, such as

loop-mediated isothermal amplification (LAMP) and

recombinant polymerase amplification (RPA), have been

successfully applied to detect B. xylophilus. These approaches

have eliminated the need for thermocycling instruments and

can be used for real-time detection, thereby supporting field and

point-of-care testing (Zhou et al., 2022; Meng et al., 2022).

However, these technologies generally are unable to distinguish

nucleotide sequences that differ in only one, or even several, bases;

they need to be optimized, and may result in false positives

because of non-specific amplification, cross-contamination, and/

or primer dimerization (Wang et al., 2018; Joung et al., 2020).

Therefore, a fast, sensitive, and highly specific diagnostic platform

for nucleic acid detection is still needed.

Clustered regularly interspaced short palindromic repeats

(CRISPRs) are DNA sequences found in prokaryotic genomes

(Barrangou, 2015). The CRISPR-associated immune system is

exploited in molecular biology to target and cleave specific

nucleic acid sequences and is typically used in gene editing.

Additionally, after binding to the target double-stranded DNA

(dsDNA) or RNA, several CRISPR proteins can be activated to

release non-specific endoribonuclease activity for the

degradation of single-stranded DNA (ssDNA) and RNA,

thereby providing a novel diagnostic method for nucleic acid

detection (Abudayyeh et al., 2017; Chen et al., 2018; Gootenberg

et al., 2018; Myhrvold et al., 2018; Chertow, 2018). The Cas12

single RNA-guided endonuclease has been used for the CRISPR

diagnosis targets dsDNA and ssDNA. Cas12 requires a

protospacer adjacent motif site in the target region for dsDNA

cleavage and sieving ssDNA (Yan et al., 2019). Cas12a was first

reported in 2018 (Chen et al., 2018). The DETECTR detection

method directs Cas12a of bacteria in family Lachnospiraceae or
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other organisms to dsDNA targets through its complementary

CRISPR RNA (crRNA), triggering collateral cleavage of short

ssDNA reporters that carry a fluorophore and a quencher.

Target recognition and reporter cleavage lead to separation of

the quencher from the fluorophore, which produces a

fluorescent signal. DETECTR attains attomolar sensitivity

when combined with RPA. Besides DETECTR, other Cas12a-

based detection technologies have been developed, such as

HOLMES (one-hour, low-cost, multipurpose, highly efficient

system), which uses PCR and Cas12a of Lachnospiraceae for

preamplification (Li et al., 2018a; Li et al., 2018b), and

HOLMESv2 (Li et al., 2019), which uses LAMP combined

with a thermostable Cas12b from Alicyc lobaci l lus

acidoterrestris in a one-pot reaction. HOLMES and

HOLMESv2 have a detection limit of approximately 10 aM.

Cas12f also targets dsDNA and ssDNA and is better than Cas12a

at discriminating single-nucleotide polymorphisms in ssDNA

(Harrington et al., 2018). The Bio-SCAN toolkit uses RPA and

CRISPR to make the Bio-SCAN as an attractive molecular

diagnostic tool for diverse populations applications in

agriculture (Sánchez et al., 2022). The CRISPR technology is

already being used in a variety of different ways. For example,

testing for pathogens bacteria (Zhang et al. , 2021),

authentication of halal food (Wu et al., 2021), and detection of

transgenic crops (Zhu et al., 2022). CRISPR technology has a

promising application prospect in the detection of pathogenic

agents, Mu et al. report a CRISPR-Cas12a-based nucleic acid

assay for an early and rapid diagnosis of wheat Fusarium head

blight (Mu et al., 2022), Xia et al. developed a label-free assay for

Salmonella enterica detection based on the G-quadruplex-

probing CRISPR-Cas12 system (termed G-CRISPR-Cas),

allowing highly sensitive detection of S. enterica and

investigation of their colonization in chickens (Xia et al.,

2021). Aman et al. report the development of a simple, rapid,

and efficient RT-RPA method, coupled with a CRISPR/Cas12a-

based one-step detection assay, to detect plant RNA viruses

(Aman et al., 2020). Zhang et al. report an assay to directly

analyze pathogenic genes based on CRISPR-Cas12 (Zhang et al.,

2021). but there are few studies on its application to pine wilt

disease caused by B. xylophilus.

In this study, we developed a novel molecular assay that

combines the CRISPR/Cas12a system with LAMP to detect B.

xylophilus and visualized the combined LAMP-CRISPR/Cas12a

assay results. First, we amplified the target DNA using LAMP

technology, and then used crRNA to guide CRISPR protein to

detect the amplified products. However, when the amplified

products was the target, the CRISPR protein would cut the target

and be activated to cut the reporter molecule, which produced

fluorescence after being cut (Figure 1). This molecular assay has the

potential to detect B. xylophilus with high sensitivity and specificity

without the need for expensive experimental equipment, and

provides a convenient and straightforward method that can be

deployed in the field for rapid B. xylophilus detection.
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Materials and methods

Specimen collection and preparation,
and DNA extraction

Wood and nematode samples were collected for

DNA extraction.

We sampled pine trees using a wood sampler (Wang et al.,

2017), and DNA was extracted from the samples by the Chelex-

100 method (Gou et al., 2015). We modified the Chelex-100 by

removing the ice bath process and increasing the boiling water

bath time, which was improved by taking 50 mg of the log,

putting it in a 2 mL centrifuge tube, and adding 400 µL of

extraction buffer (3 M·L−1 guanidine isothiocyanate

[CH5N3·HSCN], 50 mM·L−1 Tris-HCl [pH 8.0], 20 mM·L−1

EDTA [pH 8.0], and 1% Triton X-100). The mixture was stirred

and boiled for 10 min, then 200 µL of 5% (w/v) Chelex-100 was

added. The mixture was stirred and incubated in a boiling water

bath for 8 min. The purity, quality, and concentration of the

extracted DNA were determined using a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies, USA). The

extracted DNA was stored at −20°C.

To collect pure nematode samples, nematodes were isolated

from wood samples using the Baermann funnel technique and
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observed with a binocular microscope (Nikon, SMZ-2,

Stereoscopic Zoom Microscope, Japan). The nematode isolates

were maintained on cultures of Botrytis cinerea grown on potato

dextrose agar at 25°C. The prepared nematode cultures were

stored in the laboratory until use. Nematode DNA was

extracted using a DNA extraction kit (TIANGEN Biotic

Company, China).
Polymerase chain reaction

We selected the B. xylophilus synaptogenesis protein gene

SYG-2 as the target gene. The SYG-2 nucleotide sequences of B.

xylophilus and B. mucronatus showed notable interspecies

differences but intraspecies conservation (Gou, 2014). PCR

amplification of SYG-2 was performed using primers SYG2-

part2-F and SYG2-part2-R. Each PCR amplification was

performed in a final volume of 25 µL comprising 1 µL

template DNA, 12.5 µL PCR Mix (New England BioLabs,

USA), 1 µL of each 10 µM primer, and 9.5 µL ddH2O, using a

T100 Touch PCR (Bio-Rad, USA). The PCR protocol was 94°C

for 3 min, followed by 35 cycles at 94°C for 1 min, 53°C for 30 s,

and 72°C for 45 s, with a final extension at 72°C for 10 min,

followed by storage at 4°C.
A B

C

FIGURE 1

(A) Schematic illustration of loop-mediated isothermal amplification (LAMP). (B) Schematic illustration of CRISPR-Cas12a detection. Step 1: LAMP
products are obtained. Protospacer adjacent motif (PAM) sites guide the CRISPR/Cas12a-gRNA complex to recognize target sites. Step 2:
Cas12a effectors are activated. Step 3: The activated effectors nonspecifically cleave single-stranded DNA reporter molecules by trans-cleavage.
(C) Schematic illustration of the LAMP-CRISPR/Cas12a assay workflow. The LAMP-CRISPR/Cas12a assay involves three closely linked steps: rapid
template preparation (step 1), LAMP reaction (step 2), and CRISPR-Cas12a cleavage and signal detection (step 3).
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LAMP reaction

The LAMP assay was established using two pairs of primers

and total genomic DNA extracted from B. xylophilus. The initial

conditions of the LAMP reaction were based on those reported

previously (Notomi et al., 2000; Gou, 2014). Each reaction was

performed in a final volume of 25 µL comprising 2.5 µL of 10×

Isothermal Amplification Buffer (New England BioLabs), 1.6 µM of

both 4FIP and 4BIP, 0.8 µM of LoopF, 0.2 µM of both 4F3 and 4B3,

1.4 mM dNTPs mix (TIANGEN Biotic Company), 8 U Bst 2.0

WarmStart DNA Polymerase (New England BioLabs), 10 mM

MgSO4 (New England BioLabs), and 2 µL total genomic DNA. To

reduce heat transfer and prevent contamination, 20 ml of mineral oil

was added to cover the LAMP reaction mixture.The reaction was

conducted in a 0.2 mL clear PCR tube at 65°C for 60 min in a water

bath. The Bst 2.0 WarmStart DNA Polymerase was inactivated at

80°C for 10 min. The LAMP results were interpreted and visualized

using SYBRgreenI and hydroxynaphthol blue (HNB) dyes. The

primers were designed based on the SYG-2 nucleotide sequence and

were specific for B. xylophilus (Gou, 2014).
Preparation of crRNA

We designed the crRNA using CRISPR-offinder software

(Zhao et al., 2017) and targeted a previously identified conserved

gene that encodes SYG-2 crRNA targeting SYG-2. The crRNA

was complemented to the target sites with a 5′ TTTV

protospacer adjacent motif sequence in the DNA strand

opposite the target sequence (Table 1). The crRNA was

synthesized by Integrated DNA Technologies (USA).
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Generation of the
LAMP-CRISPR/Cas12a assay

Each Cas12a reaction mixture contained 250 nM Cas12a,

500 nM crRNA, 300 nM ssDNA-fluorophore-quencher (FQ)

reporter (FAM-TTATT-BHQ1), 2.5 µL NEBuffer 2.1, and 2 µL

PCR product or 2 µL LAMP product. The total volume was

adjusted to 25 µL with nuclease-free water. The tubes were

incubated at 37°C for 60 min then inactivated at 98°C for 2 min.

The LAMP-CRISPR/Cas12a assay was monitored using a

LAMPPY DNA detection system (OZ Optics Ltd, Canada).

The PCR products were used to demonstrate the feasibility of

the method and the LAMP products were used to confirm that

binding to LAMP took place. Cas12a of Lachnospiraceae (Lba

Cas12a) and NEBuffer 2.1 were purchased from New

England Biolabs.
Lateral flow biosensor assay

For lateral flow detection, 100 µL HybriDetect Assay

Buffer and 10 ml aliquot of products from the CRISPR-

Cas12a trans-cleavage mixture (250 nM Cas12a, 500 nM

crRNA, 400 nM ssDNA-lateral flow biosensor reporter, 2

µL LAMP product, and 2.5 µL NEBuffer 2.1) were added to a

reaction tube. A HybriDetect 1 lateral flow dipstick (Milenia

Biotec GmbH, Giessen, Germany) was placed in the solution

and the tube was incubated for 5–15 min in an upright

position. At the end of the incubation period, the dipstick

was removed from the assay solution and the test result was

interpreted immediately.
TABLE 1 Sequences of LAMP and PCR primers, crRNA, and report ssDNA.

The name of the primer Primer sequence (5’-3’)

4B3 AAGCGGTCTAAGCGAAAC

4F3 TGTAAACACCGTATAAAGGAATT

4BIP CCGATTGTCTAACTTCTGCTGCGCTTGTTCTCTGAGACCATA

4FIP CATCCTTTGGTCGCTTTCTGAGTTTTAAAAATTTCACCACGTT

4LBA
syg2-PART2- F
syg2-PART2-R

TTCCGAAAAGCTTGGGTAAAATCCT
GGTAATATTATTGGAGGAAGGAATATAA
TGAGAACTGCTCGACGATCTTG

crRNA-1 AGAAAGCGACCAAAGGAUGGUUG

crRNA-2 GUCGCUUUCUGAAAAAAAUAUUU

crRNA-3
ssDNA-FB
ssDNA-LFB

GGAAAAUACAAAAAUAGGCAGCA
/56-FAM/TTATT/3BHQ1
/56-FAM/TTATT/3Biotin
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Reaction time of the LAMP-CRISPR/
Cas12a assay

After adding B. xylophilus genomic DNA, the LAMP

reaction was performed at 65°C for 10, 15, 20, 25, 30, 35, 40,

50, or 60 min. LAMP products generated under the different

reaction times were collected and added to the Cas12a reaction

system. Fluorescence intensity was measured to determine the

optimal reaction time.
Specificity and sensitivity of the LAMP-
CRISPR/Cas12a assay

The analytical specificity of the LAMP-CRISPR/Cas12a

assay was tested on at least 5 ng of templates extracted from

four B. xylophilus strains and three related species, B.

mucronatus, B. doui, and Botrytis cinerea.

The analytical sensitivity for detecting a decreasing number

of gene copies was evaluated using purified B. xylophilus DNA

concentrations diluted from 10−1 to 10−8 to give DNA

concentrations of 66.4 ng/mL, 6.64 ng/mL, 664 pg/mL, 66.4 pg/

mL, 6.64 pg/mL, 0.664 pg/mL, 66.4 fg/mL, and 6.64 fg/mL.
We perform base alterations or deletions at one or more

locations of the target DNA sequence to test that CRISPR-

Cas12a enhanced fluorescence analysis can distinguish several

base changes (Supplementary Table S1).
Interpretation of the LAMP-CRISPR/
Cas12a assay results

The LAMP-CRISPR/Cas12a assay results were interpreted in

three different ways: 1) the reaction results were irradiated with

blue or ultraviolet light, and the green fluorescence was observed

by the naked eye; 2) lateral flow dipsticks were used to visualize

the experimental results; and 3) a fluorescence detection

instrument was used to detect the fluorescence changes in

real-time.
Detection of B. xylophilus in field
samples by LAMP-CRISPR/Cas12a assay

To assess the ability of the LAMP-CRISPR/Cas12a assay to

detect B. xylophilus in field samples, we tested 46 samples and

compared the results with the results of the PCR assay

(Supplementary Table S2). The Chelex-100 method was used

to extract DNA from the field samples. PCRs were used to verify

the detection results. The DNA used for the PCR amplification

was extracted using a DNA extraction kit.
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Results

Optimization of the LAMP-CRISPR/
Cas12a assay

In this study, we established a CRISPR–Cas12a enhanced

fluorescence assay coupled with PCR amplification to detect B.

xylophilus. Negative control DNA and B. xylophilus genomic

DNA were used separately as templates to evaluate the validity of

the assay. Blue-light transilluminators were used to determine

whether the products could be visualized to detect B. xylophilus

with the naked eye. A fluorescent signal emitted under blue light

reflected cleavage of the FAM-TTATT-BHQ1 reporter. Three

crRNAs of B. xylophilus were designed and synthesized as in

vitro transcripts. CRISPR-Cas12a fluorescence assays showed

the different detection activities of the three crRNAs. Among

these, SYG-crRNA-2 had the highest detection activity for the

target PCR product (Figure 2A). Therefore, SYG-crRNA-2 was

used to enhance the fluorescence intensity for CRISPR-Cas12a-

assisted detection of B. xylophilus DNA. We also tested the

optimal reaction temperature, comparing the reaction rates at

27°C, 32°C, 37°C, 42°C and 47°C, and found that the optimal

reaction temperature was 37°C (Figure 2B). When the crRNA

concentration of the reaction was 5nM, 50nM, 250nM, 500nM

and 750nM, it was found that the reaction speed increased with

the increase of the concentration, but reached the maximum

value at 500nM (Figure 2C).
Optimal reaction time of the
LAMP-CRISPR/Cas12a assay

B. xylophilus was detected by CRISPR-Cas12a combined

with LAMP. The LAMP-CRISPR/Cas12a system combines

LAMP and CRISPR-Cas12a detection. The optimal time of the

LAMP reaction is crucial for the whole detection system;

therefore, we investigated the optimal LAMP reaction time.

After addition of B. xylophilus DNA, the LAMP reaction was

performed for 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 min,

followed by the Cas12a reaction for 120 min. We found that the

best LAMP reaction time was 30 min (Figure 2D).
Specificity of the
LAMP-CRISPR/Cas12a assay

We made base changes or deletions at one or more positions

in the target DNA sequence and detected the modified DNA

sequences by Cas12a (Figure 3).

We also explored the specificity of the LAMP-CRISPR/

Cas12a assay by comparing the amplification results with two
frontiersin.org
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related, B. mucronatus, B. doui, and one unrelated, Botrytis

cinerea¸ species. By real-time monitoring of the reaction

fluorescence, we found that the LAMP-CRISPR/Cas12a assay

detected different B. xylophilus strains and accurately

distinguished two related, and one unrelated species

(Figures 4A, B). This system also detected base changes or

deletions in target sequences and distinguished a four-base

difference and a five-base deletion (Figure 4C).
Frontiers in Plant Science 06
Sensitivity of the
LAMP-CRISPR/Cas12a assay

Sensitivity of the LAMP-CRISPR/Cas12a assay for SYG-2

gene detection was compared with that of the PCR assay. The

concentration of the extracted DNA was determined to be 664

ng mL−1. The analytical sensitivities for detecting decreasing

numbers of gene copies were evaluated by diluting the purified
FIGURE 3

Specificity of the CRISPR-Cas12a enhanced fluorescent assay evaluated by its ability to distinguish base mismatches. Protospacer adjacent motif
(PAM) sequences are shown in red; base mismatches are shown in green.
D

A B

C

FIGURE 2

(A) Fluorescence changes of three crRNA reactions for 1 h detected by CRISPR-Cas12a fluorescence assays. Values are shown in the graph
as means ± SD (n = 3). (B) Fluorescence curves at different reaction temperatures. (C) Fluorescence curves of different crRNA concentrations.
(D) Effects of different LAMP reaction times on the Cas12a reaction. NTC: no template control.
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DNA of B. xylophilus from 10−1 to 10−8 per reaction. The

LAMP-CRISPR/Cas12a assay detection limit was 0.664 pg/µL

(Figure 5C), but when the reaction time was prolonged, the

concentration of 66.4 fg/mL could also produce weak

fluorescence (Figure 5A). The detection limit of the PCR assay

for the same DNA template was 664 pg/µL (Figure 5D).
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Comparison between the LAMP-CRISPR/
Cas12a assay and the traditional LAMP

We compared LAMP-CRISPR/Cas12a assay with traditional

LAMP (Table 2). The LAMP-CRISPR/Cas12a assay was used to

detect DNA at different concentrations, and the results were
D

A

B

E

F

G

C

FIGURE 5

(A) Sensitivity of the LAMP-CRISPR/Cas12a assay for B xylophilus detection. Purified B xylophilus genomic DNA was diluted by 10−1, 10−2, 10−3,
10−4, 10−5, 10−6, 10−7, and 10−8 to give DNA concentrations of 66.4 ng/µL, 6.64 ng/µL, 664 pg/µL, 66.4 pg/µL, 6.64 pg/µL, 0.664 pg/µL, 66.4 fg/
µL, and 6.64 fg/µL. Different concentrations of DNA were detected by LAMP-CRISPR/Cas12a assay and visualized by blue light. (B) Results of the
LAMP-CRISPR/Cas12a assay visualized by lateral flow biosensor. (C) Real-time fluorescence profiles of DNA at different concentrations in LAMP-
CRISPR/Cas12a assay. (D) Sensitivity of the PCR assay for B xylophilus detection. The image shows amplification bands targeting the SYG-2
gene. Lanes 1–6 lanes are B xylophilus genomic DNA dilutions 664 ng/mL, 66.4 ng/µL, 6.64 ng/µL, 664 pg/µL, 66.4 pg/µL, and 6.64 pg/µL (3
replicates per concentration). (E, F) Different concentrations of DNA were detected by traditional LAMP and visualized by HNB and SYBRgreenI.
(G) Real-time fluorescence curves of DNA with different concentrations in LAMP.
A B

C

FIGURE 4

(A) Specificity of the LAMP-CRISPR/Cas12a assay evaluated by its ability to distinguish B xylophilus strains and related species. B.C: Botrytis
cinerea; B.M: B mucronatus; QY: B xylophilus (from Liaoning); NJ: B xylophilus (from Nanjing); CQ: B xylophilus (from Chongqing); HS: B
xylophilus (from Anhui); B.D: B doui; NTC: negative control (ddH2O). (B) End-point fluorescence visualization of the specificity test.
(C) Detection of base changes or deletions in target sequences by LAMP-CRISPR/Cas12a assay by measuring fluorescence intensity under blue-
light irradiation 1 h after the reaction. Panel 1: From left to right, 0–5 base changes; the last tube is the negative control. At four base changes,
the fluorescence intensity dropped significantly. Panel 2: From left to right, 0–5 base deletions. the last tube is the negative control. At five base
deletions, the fluorescence intensity dropped significantly.
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visualized by irradiation with blue light (Figure 5A). We tested

the ability of lateral flow biosensor to visualize the results of the

LAMP-CRISPR/Cas12a assay; however, the detection limit of

the lateral flow biosensor was not as straightforward as that of

direct blue-light irradiation (Figure 5B). When the DNA

concentration was diluted to 10-7, fluorescence was produced,

but it took a long time and the fluorescence was not strong.

When the DNA concentration was diluted to 10-8, no

fluorescence was produced (Figure 5C). The LAMP results

were visualized using HNB dyes (Figure 5D) and SYBRgreenI

(Figure 5E). The results showed that the line between positive

and negative became blurred as the concentration decreased, and

the use of HNB dyes showed a decrease in color when the

concentration was 66.4 pg/mL. When the concentration was 6.64

pg/mL, SYBRgreenI showed a color reduction. Compared with

the LAMP-CRISPR/Cas12a assay, although the traditional

LAMP also had an amplification curve at 10-6 (Figure 5F), it

was only with the aid of the instrument that amplification could

be accurately judged. When using the dye method, the color

would not be obvious at 10-4, making it difficult to determine

whether amplification was possible. Whereas the LAMP-

CRISPR/Cas12a assay detected the DNA even at low

concentrations, the traditional LAMP failed to distinguish

DNA from the negat ive control a t the low DNA

concentrations. The CRISPR system cuts up reporter

molecules to produce fluorescence that clearly separates

positive samples from negative ones. Compared with LAMP,

LAMP-CRISPR/Cas12a assay is also more specific for detecting

specific amplified sequences, while LAMP only assesses whether

a test target is amplified or not, and cannot identify non-

specific amplification.
Detection of LAMP-CRISPR/Cas12a assay
in field samples

The LAMP-CRISPR/Cas12a assay was used to detect B.

xylophilus in 46 dead pine samples, and B. xylophilus was

detected in 38 of them (Supplementary Table S2). We verified

the results by isolating the nematodes and identifying them

using the Baermann funnel method. DNA was extracted from
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the isolated nematodes and PCR amplifications were performed.

The results were consistent with those obtained by the LAMP-

CRISPR/Cas12a assay.
Discussion

The causative agent of pine wilt disease, B. xylophilus, is

particularly prevalent in China and causes significant economic

and ecological losses. Establishing a sensitive, reliable, effective,

and rapid diagnostic method is key to detecting B. xylophilus and

preventing infection. Currently, molecular diagnostic techniques

for B. xylophilus rely mainly on PCR (Kanzaki and Futai, 2002;

Cardoso et al., 2012) and real-time qPCR techniques (Cao et al.,

2005; François et al., 2007). Although these techniques have been

widely validated and are useful tools for detecting this disease,

reducing the detection time and instrument requirements

remains a challenge. In this study, we established a convenient,

highly sensitive LAMP coupled with CRISPR/Cas12a assay to

rapidly detect B. xylophilus. The assay requires three steps, DNA

extraction, LAMP reaction, and CRISPR detection, which can be

completed in 1 h (Figure 6).

LAMP (Notomi et al., 2000) is a highly efficient nucleic acid

amplification technology that can potentially improve disease

diagnosis in plant protection. LAMP technology has been

applied for detecting B. xylophilus and the methods have

constantly been improved (Kikuchi et al., 2009; Leal et al.,

2015; Meng et al., 2022). LAMP assays can detect B. xylophilus

with high sensitivity and efficiency; however, interpretation of

LAMP reaction results has been a critical issue. Currently

available analysis methods include colorimetric agents,

fluorescent agents, agarose gel electrophoresis, and

turbidimeters (Zhang et al., 2014), which are not specific to

target amplicons and thus cannot differentiate specific and non-

specific amplification. We have shown that combining LAMP

with the CRISPR system can avoid non-specific amplification.

In this study, we designed three crRNAs that target SYG-2 for

the rapid detection of B. xylophilus. The effects of the three

crRNAs were not significantly different, with crRNA-2 being the

most effective. We compared the specificity of this method for

four strains of B. xylophilus, and B. mucronatus, B. doui, and
TABLE 2 Comparison of the LAMP-CRISPR/Cas12a Assay with Traditional LAMP for detection of B. xylophilus.

Detection methord Traditional LAMP LAMP-CRISPR/Cas12a Assay

Assay reaction time 60min 40-50min

Temperature of reaction 65°C 65°C and 37°C

Analysis object dsDNA, Pyrophosphate ions or Mg2+, etc dsDNA

Need large instrument or not No No

Number of tests 1 2

Assay cost low low
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Botrytis cinerea. To test whether this method could identify single-

base differences in sequences, we changed the target sequence. We

found that this method could identify only the change of four

bases and the deletion of five bases, which is different from the

single base change reported by Gootenberg (Gootenberg et al.,

2018). Although single base changes were not identified, the

LAMP-CRISPR/Cas12a assay was better than the single LAMP

reaction at determining whether the amplified product was a

target gene rather than a non-specific amplification.

Considering that LAMP is the first step before the CRISPR

reaction and that the LAMP reaction time has a crucial impact on

the CRISPR reaction, we tested different LAMP reaction times and

found that after LAMP for 30 min, the CRISPR reaction resulted

in the fastest growth of the fluorescence value, which reached its

maximum at 30 min. The CRISPR reaction process is quite fast,

and fluorescence was very obvious at 10 min when the blue-light

irradiation showed very obvious green fluorescence.

Interpretation of test results is always a crucial part of the

whole testing process. Many methods are available for the

interpretation of CRISPR results, including blue and ultraviolet

light irradiation and excitation fluorescence. Using a blue-light

flashlight or UV flashlight is a simple and convenient method

that can provide a straightforward interpretation of the CRISPR

results. An instrument for real-time detection can be used to

interpret fluorescence curves. The lateral flow dipstick method,

which is based on introducing two small molecular markers

FAM and biotin at both ends of the probe, has also been used to

interpret CRISPR results (Wang et al., 2020; Wei et al., 2022).

For this method, the anti-FAM antibody was labeled with
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colloidal gold, and the detection line on the NC film was

coated with streptavidin, which could bind biotin. The

concentration of the probe was adjusted to ensure that all the

colloidal gold was in the lower line before the probe was cut.

Once the probe was cut, the colloidal gold crossed the lower line

and reached the upper line for color development. The lateral

flow dipstick method does not need an instrument, but the

current test strip price is high, which will significantly increase

the detection cost.

The cost of detection is a major problem that has restricted

the popularization and application of detection methods. For

example, the fluorescence quantitative PCR instrument is

expensive and recombinant polymerase amplification-lateral

flow dipsticks are approximately 50 CHY each (Zhou et al.,

2022). The DETECTR detection method (Chen et al., 2018) was

shown to accurately detect the risk of human papillomavirus

(HPV) infection, HPV16 (100%) and HPV18 (92%), and

DETECTR tests cost less than one U.S. dollar each. The

LAMP-CRISPR/Cas12a detection system that we developed

uses simple blue-light irradiation to visualize the results and

does not require expensive instruments; a single detection cost

less than 15 CHY. Thus, the detection cost was greatly reduced.

However, applying CRISPR detection to B. xylophilus

diagnosis still has some problems; for example, storage of

reagents at room temperature is a significant problem.

Lyophilized applications of entire CRISPR reaction systems

have been reported (Nguyen et al., 2021; Rybnicky et al.,

2022), suggesting that this is where the future application of

CRISPR detection should be focused.
FIGURE 6

Processing scheme for the LAMP-CRISPR/Cas12a assay includes the following steps: DNA extraction, isothermal amplification reactions, and
CRISPR-Cas12 detection of the B xylophilus by fluorescence.
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Conclusions

B. xylophilus causes pine wilt disease, which is one of the

most damaging diseases of pines worldwide. In this study, we

established a new method for detecting B. xylophilus, which was

more sensitive and faster than traditional PCR assays, and

effectively avoided false positives caused by unrelated DNA

that can appear with the single LAMP method. The developed

LAMP-CRISPR/Cas12a assay has a simple read-out system that

does not require any special instrumentation and can be

performed in areas with minimal laboratory infrastructure,

making it an attract ive alternat ive method for B.

xylophilus detection.
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