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Monitoring tar spot disease in
corn at different canopy and
temporal levels using aerial
multispectral imaging and
machine learning
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Introduction: Tar spot is a high-profile disease, causing various degrees of yield

losses on corn (Zea mays L.) in several countries throughout the Americas.

Disease symptoms usually appear at the lower canopy in corn fields with a

history of tar spot infection, making it difficult to monitor the disease with

unmanned aircraft systems (UAS) because of occlusion.

Methods: UAS-based multispectral imaging and machine learning were used

to monitor tar spot at different canopy and temporal levels and extract

epidemiological parameters from multiple treatments. Disease severity was

assessed visually at three canopy levels within micro-plots, while aerial images

were gathered by UASs equipped with multispectral cameras. Both disease

severity and multispectral images were collected from five to eleven time

points each year for two years. Image-based features, such as single-band

reflectance, vegetation indices (VIs), and their statistics, were extracted from

ortho-mosaic images and used as inputs for machine learning to develop

disease quantification models.

Results and discussion: The developed models showed encouraging

performance in estimating disease severity at different canopy levels in both

years (coefficient of determination up to 0.93 and Lin’s concordance
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correlation coefficient up to 0.97). Epidemiological parameters, including initial

disease severity or y0 and area under the disease progress curve, were modeled

using data derived from multispectral imaging. In addition, results illustrated

that digital phenotyping technologies could be used to monitor the onset of tar

spot when disease severity is relatively low (< 1%) and evaluate the efficacy of

disease management tactics under micro-plot conditions. Further studies are

required to apply and validate our methods to large corn fields.
KEYWORDS

maize, disease modeling, epidemics, fungus, phyllachora maydis, plant disease,
unmanned aircraft systems
1 Introduction

Tar spot, caused by Phyllachora maydisMaubl., is a relatively

new and high-profile disease in the United States (Ruhl et al.,

2016). Since the early-to-mid 1900s, tar spot has been prevalent

in Mexico, the Caribbean, and Central and South America

(Valle-Torres et al., 2020). The fungus P. maydis is a

presumably obligate parasite that forms black stromata, which

are small, raised, round to semi-circular masses of fungal tissue

that contain spore-bearing structures. In some cases, tan or

brown lesions appear around the stromata, forming ‘fisheye’

lesions (Bajet et al., 1994; Kleczewski et al., 2019; Valle-Torres

et al., 2020). P. maydis can infect corn leaves, leaf sheaths, and

husks, cause premature senescence and reduce grain and forage

yield and quality (Bajet et al., 1994; Kleczewski et al., 2019;

Telenko et al., 2019). It is reported that tar spot can reduce the

grain yield of susceptible hybrids by up to 2,900 kg/ha (58%) in

Mexico (Loladze et al., 2019). During the 2018 epidemic in the

Midwestern United States, tar spot caused minor to severe

infection (40 – 50% leaf surface with symptoms) and yield loss

of up to 4,035 kg/ha in hybrids during corn performance trials

(Telenko et al., 2019). In 2021, tar spot caused a grain yield loss

of 5.88 million metric tons with an economic impact of US$1.25

billion for the United States, with a 1.44% decline in grain yield

(Crop Protection Network, 2022).

Plant disease evaluation, including identification and

quantification, is traditionally conducted by highly trained

personnel for crop production or research purposes. However,

visual assessment of diseases is susceptible to subjectivity and

errors introduced by human raters, such as variation in ability,

value preferences, lesion number and size relative to the area

infected, the complexity of symptoms and timing (Bock et al.,

2010). In addition, it is also time-consuming and costly to train

personnel and improve visual assessment accuracy. Digital

phenotyping technologies offer an opportunity to enhance the

objectivity and efficiency of plant disease detection and

quantification (Lee et al., 2021).
02
Digital phenotyping technologies, such as automation,

sensing and photography, and computer vision, have been

evaluated and used to monitor plant diseases, including data

acquisition, mining, and analysis (Mahlein, 2016; Bock et al.,

2020). Various platforms such as smartphones, robots, airplanes,

unmanned aircraft systems (UASs), and satellites have been used

to acquire data for plant disease detection (Nilsson, 1995; Qin

and Zhang, 2005; Franke and Menz, 2007; Johannes et al., 2017;

Chen et al., 2018; Barman et al., 2020; Cubero et al., 2020; Tetila

et al., 2020; Rodrıǵuez et al., 2021). Among these platforms,

UASs are of interest to researchers and producers due to their

high throughput in data acquisition, the flexibility of

deployment, and relatively low cost (compared to imaging

methods based on robots, airplanes, and satellites). Along with

these platforms, different sensors and imagers, such as red-

green-blue or RGB, multispectral, hyperspectral, and thermal

cameras, are deployed to collect data (Zhang et al., 2019a; Deng

et al., 2020; Tetila et al., 2020). Vegetation indices (VIs), texture,

thermal, and morphological features (e.g., canopy cover and

volume and contour) are extracted from data for plant disease

monitoring (Zhang et al., 2019a; Lee et al., 2021; Vishnoi et al.,

2021). Machine learning algorithms are commonly applied to

data collected or features extracted to automatically identify,

classify, and quantify plant diseases (Johannes et al., 2017; Wang

et al., 2020; Fernández-Campos et al., 2021; Gao et al., 2021).

UAS-based remote sensing, along with machine learning,

has been applied to plant disease monitoring, demonstrating

encouraging results in many studies (Huang et al., 2019; Stewart

et al., 2019; Zhang et al., 2019a; Zhang et al., 2019c; Chivasa et al.,

2020; Wang et al., 2020). For instance, UAS-based multispectral

imaging was used to monitor the resistance of twenty-five corn

varieties to maize streak virus (Chivasa et al., 2020). Significant

correlations between data derived from UAS and visual scores

were observed in the study (r = 0.74 – 0.84); through random

forest classifiers and optimized variables, corn varieties were

classified into three resistance levels to maize streak virus with

overall classification accuracies of 77.3% and Kappa of 0.64.
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Inaddition, many studies attempted to map the spatial or

horizontal distribution of plant disease using UAS-based

remote sensing (Smigaj et al., 2015; Deng et al., 2020; Wang

et al., 2020; Ye et al., 2020). Wang et al. evaluated UAS-based

remote sensing and different machine learning classifiers

(supervised, unsupervised, and combined unsupervised

classification) to automatically map cotton root rot-infested

fields (Wang et al., 2020). One of their proposed new methods

that utilized k-means segmentation and morphological

information outperformed other methods in classifying

healthy and diseased plants with an overall accuracy of 88.5%.

In contrast to these studies, where disease detection and

mapping focused on horizontal distribution over the top

canopy, research that monitors disease distribution in vertical

space (from lower to upper canopy) using remote sensing has

not been well studied. Oh et al. quantified tar spot intensity at the

middle and upper canopy using UAS-based remote sensing;

however, the lower canopy was not included in the study (Oh

et al., 2021). Developing methods to monitor plant diseases at

various canopy levels is critical for epidemiological modeling

and disease management (Gongora-Canul et al., 2020).

Different regression models have delineated temporal

dynamics of epidemics in which disease progress and crop

responses were monitored (e.g., disease resistance and yield

loss) (Berger, 1981; Madden et al., 2000; Jeger and Viljanen-

Rollinson, 2001; Gongora-Canul et al., 2020). Population-

dynamics model s , inc luding exponent ia l , log is t ic ,

monomolecular, and Gompertz models, are valuable for

representing, comparing, and understanding plant disease

epidemics (Gongora-Canul et al., 2020). Meanwhile, spectral

data acquired by sensors from multiple time points have been

used for disease monitoring in many studies; however, spectral

data from multiple time points were analyzed separately, not

temporally, in most cases (Franke and Menz, 2007; Zhang et al.,

2019a; Gongora-Canul et al., 2020). Previous studies using UAS-

based remote sensing have not characterized the temporal

development of diseases using population-dynamics models

and associated epidemiological parameters. Research to

characterize the temporal dynamics of a disease with UAS-

based spectral data is desired and could facilitate disease

surveillance and on-time management.

Efficient and scalable phenotyping technologies, for example,

integration of UAS-based imaging and machine learning, are

needed for detecting and quantifying the vertical distribution

and temporal development of plant diseases. Such phenotyping

information is crucial to crop disease modeling and management

(Gongora-Canul et al., 2020). In addition, Practical applications of

digital phenotyping technologies in disease monitoring interest

various stakeholders, including growers, agricultural consultants,

and researchers (Zhang et al., 2019b). We hypothesized that

digital phenotyping technologies using UAS-based multispectral

imaging and machine learning offer an opportunity to detect and

quantify the vertical distribution and temporal development of
Frontiers in Plant Science 03
plant diseases. To test the hypothesis, we used tar spot of corn as a

model system and focused on the following objectives: (1)

estimate the vertical distribution (lower, middle, and upper

canopy) of tar spot disease within the corn canopy with UAS-

based multispectral imaging and machine learning; (2) monitor

the temporal development of tar spot using data derived from

multispectral imaging; and (3) evaluate the application of

information derived from digital phenotyping technologies on

disease monitoring (e.g., aerial detection of the onset of tar spot

and comparison of disease management tactics).
2 Materials and methods

2.1 Tar spot experiment setup

Field experiments were conducted in 2020 and 2021 at the

Pinney Purdue Agriculture Center (PPAC, 41°27’20.13”N, 86°

56’28.58”W), Indiana, United States, a location known for its

high risk for tar spot development (Telenko and Creswell, 2019).

Four and two experiments were involved in 2020 and 2021,

respectively (Supplementary Figures 1, 2). Different

combinations of hybrids, tillage types, fungicides, and

fungicide application timing were evaluated in various

experiments, creating variations in disease severity (Table 1).

All experiments were organized in a randomized complete block

design with four replications. Each micro-plot in the

experiments consisted of four rows of corn with 76 cm row

spacing and 10 m or 9 m micro-plot length (84,000 plants per

ha). Plants relied on natural infection caused by the presence of

P. maydis in the environment.
2.2 Visual assessment of disease severity
and UAS-based multispectral imaging

Data acquisition through visual assessment and UAS-based

multispectral imaging was carried out weekly or biweekly by two

groups of trained plant pathologists in two years, and the time of

data acquisition was recorded as day after planting or DAP.

Visual evaluation of disease severity consisted of quantifying the

ratio of leaf area with stromata or chlorosis/necrosis to total leaf

area multiplied by 100 (Oh et al., 2021). Disease severity of tar

spot in 2020 was evaluated by the first group of pathologists

based on the combination of stromata or chlorosis/necrosis (or

short for Chl/Nec) symptoms. However, the severity of stromata

and Chl/Nec in 2021 were evaluated separately by the second

group of pathologists. Visual phenotyping standards often differ

among laboratories, and for that reason, visual assessment data

were modified to bring the disease severity of 2021 to a scale that

did not exceed 100% severity per leaf. Hence, when the severity

based on stromata was greater than that based on Chl/Nec,

severity based on stromata was used, and vice versa. The reason
frontiersin.org
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for this transformation is that at the early stage of disease

development, stromata were the prevalent symptom, while

towards the end of the growing season, Chl/Nec was more

dominant. Disease severity was evaluated on one leaf from the

lower, middle and upper canopies. In this study, the ear leaf was

considered as L0, while leaves below or above the ear leaf were

labeled as L- and L+ (plus a number), respectively. Therefore, a

corn plant’s given lower, middle, and upper canopy included

leaves from L - n (lowest leaf) to L - 3, L - 2 to L + 1, and L + 2 to

L + n (flag leaf), respectively. The middle two rows in each

micro-plot were used in the visual assessment to avoid potential

treatment overlaps from neighboring micro-plots, and

assessment was conducted from around the tasseling (VT) to

physiological maturity (R6) stages for all trials and both years

(Oh et al., 2021).

Images were acquired by a multispectral camera mounted on

a Phantom 4 Multispectral UAS (SZ DJI Technology Co., Ltd.,

Shenzen, China) in 2020 and a MicaSense Rededge-M camera

(MicaSense Inc., Seattle, WA, USA) mounted on a Matrice 200

UAS (SZ DJI Technology Co., Ltd., Shenzen, China) in 2021.

Due to the differences in cameras, each year was considered an

independent environment and no model transferring was

conducted. Before aerial image acquisition, images of a

reflectance panel (MicaSense Inc., Seattle, WA, USA) were

acquired at ground level for radiometric calibration. UASs

were programmed to collect data at altitudes of 30 m in 2020

and 50 m in 2021 with front and side overlaps of 75% and flight

speed of 3 m per second, which resulted in ground sampling

distances (GSD) of ~1.5 and ~3.5 cm for orthomosaic images
Frontiers in Plant Science 04
derived from the cameras as mentioned, respectively.

Considering weather conditions that limited UAS operations

at given times, images were acquired within two days of the dates

for visual assessment with one exception (within four days).
2.3 Image processing and
feature extraction

Individual multispectral images obtained were processed in

Metashape (AgiSoft LLC, St. Petersburg, Russia) and

DroneDeploy (DroneDeploy, San Francisco, California, USA) to

generate ortho-mosaic images covering the entire experiment(s),

as shown in Figure 1. Images were radiometrically calibrated with

irradiance obtained by a downwelling light sensor and reflectance

panel. Orthomosaic images were then processed with a

customized pipeline developed in MATLAB (MathWorks Inc.,

2021). Vegetation indices (VIs), such as normalized difference

vegetation index (NDVI), simple ratio (SR), renormalized

difference vegetation index (RDVI), among others, were

calculated from different combinations of spectral bands for

feature extraction in a later step (Zarco-Tejada et al., 2005;

Harris Geospatial Solutions, 2022). More details about VIs used

in this study can be found in Supplementary Table 1, and RDVI

and NDREmaps for plots from different DAP of the Tar 2 trial of

2021 can be found in Supplementary Figures 3, 4. Before feature

extraction, backgrounds such as soil and shaded canopy, in the

ortho-mosaic images were removed to minimize their influence

on VIs. For instance, the shaded canopy can lead to higher values
frontiersin.org
TABLE 1 Details of tar spot experiments during the 2020 and 2021 growing seasons.

Year Trial
name

Effects
studied

Planting
date

Number of
treatments

Number of
Hybrid(s)

Tillage
type

Number of fungi-
cide treatments

Number of data
acquisition

2020 Tar 4a Fungicide timing 8-Jun-20 10 1 Strip 9 + 1 control 9

Tar 3b
Fungicide
efficacy and
timing

9-Jun-20 18 1 Strip 16 + 2 controls 11

Tar 1c
Fungicide
efficacy

9-Jun-20 10 1 Strip 9 + 1 control 10

Tar 2d
Tillage, hybrids,
and fungicide

6-Jun-20 12 3
Strip,
Conventional

1 + 1 control 10

2021 Tar 2d
Tillage, hybrids,
and fungicide

26-May-21 12 3
Strip,
Conventional

1 + 1 control 9

Tar 3e
Fungicide
efficacy and
timing

27-May-21 18 1 Strip 16 + 2 controls 5
a(Ross et al., 2021b).
b(Da Silva et al., 2021).
c(Ross et al., 2021a).
dRoss et al., personal communication.
e(Da Silva et al., 2022).
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for NDVI and SR while lower values for RDVI, compared with a

sunlit canopy (Zhang et al., 2015). For that reason, we used the

reflectance from upper and middle canopies to estimate the

disease severity of the lower canopy. Pixels were considered as

background and removed if the ‘value’ (a relative intensity of

light) in the hue, saturation, and value (HSV) color space and

RDVI value was less than thresholds (0.05 – 0.25 and 0.13 for

‘value’ and 2.00 – 2.50 and 0 for RDVI in 2020 and 2021,

respectively). Thresholds for ‘value’ and RDVI were selected

and adjusted based on visual inspection of sunlit and shaded

canopy, vegetation, soil, and quality of foreground after

background removal. Following that, micro-plots (3 m by 9 or

10 m) in each experiment were separated semi-automatically by a

customized pipeline, where the user only needs to identify four

corners of the experiment field in the ortho-mosaic image and the

pipeline extrapolates the coordinates of each micro-plot. More

details about the usage of the pipeline can be found in Zhang et al.

(2019a). Corresponding to the visual assessment procedure, the

multispectral information in the middle two planting rows was

used for feature extraction. Edges at the beginning and end of the

two rows of micro-plots were excluded to avoid border effects

(Figure 1). With the four corners of each micro-plot, image-based

features including canopy area, green canopy area, and mean,
Frontiers in Plant Science 05
median, sum, and standard deviation values of five spectral bands

and VIs were extracted.
2.4 Modeling of disease severity
estimation and disease progression

Disease severity estimation models were developed using

features extracted along with visual assessment. The features

from multispectral images were normalized using equation (1)

to avoid the impact of differences in data scales, for example,

NDVI ranges from -1 to 1, while RDVI varies from -15 to 15.

F̂ = F −meanð Þ=std (1)

Where F̂ is the normalized value of a feature for a micro-

plot, F is the raw value of a feature for a micro-plot, while mean

and std are the average and standard deviation of a feature. Least

absolute shrinkage and selection operator (LASSO) regression

was used to develop models to estimate disease severity at

different canopy levels. LASSO develops linear regression

models by removing redundant predictors (or features in our

case) and fitting least-squares regression coefficients between

predictors and response (or disease severity in our case).
frontiersin.org
FIGURE 1

The procedure of image processing and feature extraction. VIs, vegetation indices; NDVI, normalized difference vegetation index; GNDVI, green
normalized difference vegetation index; RDVI, renormalized difference vegetation index; NDRE, red edge normalized difference vegetation
index; ExG, excess green; blue and yellow rectangles in micro-plot separation step indicate rows and beginning and end of rows of micro-plots
that were excluded from multispectral information extraction.
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Normalized features were partitioned into training and testing

datasets at a ratio of 3:1, and stratification partition was

implemented based on the date of data collection. Models

were developed and tested with training and testing datasets

along with disease severity from different canopy levels, and

specifications of parameters used in LASSO can be found in

Table 2. The whole procedure of model development and testing

was repeated four times (four iterations) with resampling of

training and testing data. Estimated disease severity (from the

developed model) was compared with actual disease severity

(assessed by human raters). Performance of disease estimation

models was evaluated by coefficient of determination (R2,

measuring the precision between estimated and actual disease

severity), root mean square error (RMSE), and Lin ’s

Concordance Correlation Coefficient (Lin’s CCC, measuring

the accuracy that is a product of precision and bias, shown in

equation 2) (Madden et al., 2007).

Lin0s CCC or rc =
2 ∗suw

mu − mwð Þ2 + s2
u + s 2

w
(2)

Where mu and mw are means from estimated and actual

disease severity, s 2
u and s 2

w are variances, and suw is the

covariances calculated from estimated and actual disease

severity. In addition, transferability of estimation models

between trials was evaluated with data collected in 2021. For

example, models (or coefficients for linear regression) developed

with multispectral features from the Tar 2 trial were used to

estimate the visual assessment of the Tar 3 trial with the help of

multispectral features from the Tar 3 trial, and vice versa.

Temporal development or disease progress of tar spot were

modeled using actual and estimated disease severity to evaluate

the feasibility of monitoring disease progress through

multispectral imaging. The logistic regression curve, a model

that has previously been shown to fit tar spot severity data

(Gongora-Canul et al., unpublished), was used to depict disease

progress empirically; the equation (3) used for modeling is
Frontiers in Plant Science 06
shown below (Neher and Campbell, 1992).

y = Kmax = 1 + exp − ln
y0

Kmax − y0

� �
− rL*t

� �� �
(3)
Where y is the disease severity at the time of data collection,

y0 is the initial disease severity, Kmax is the asymptote or the

maximum level of disease intensity, rL is the apparent infection

rate, t is the time of data collection. The logistic disease progress

curves were modeled using the nonlinear least-squares solver

(lsqcurvefit function in MATLAB, version R2021a) and fitted

independently for visual and the estimated disease severities

according to different treatments (Coleman and Li, 1994;

Coleman and Li, 1996). Key parameters depicting disease

progress, including y0, Kmax, rL, and area under the disease

progress curve (AUDPC), were modeled during curve fitting.

Kmax was modeled, instead of assuming 100% as the maximum

disease severity, to avoid underestimation of the disease growth

rate (Neher and Campbell, 1992). Parameters extracted from

curves modeled using actual and estimated disease severity were

compared using t-tests in SAS (SAS Institute, Cary, NC, United

States). The comparison of parameters was conducted by year

and canopy level.
2.5 Application of digital phenotyping
technologies in disease monitoring

UAS-based detection of tar spot onset and quantification can

be less reliable compared to the field-based visual method,

because an individual stroma (0.5 – 2.5 mm wide by 2 –

3 mm long) cannot be delineated from UAS images taken for

a regular mapping mission of an agricultural field (GSD of

3.5 cm for multispectral images collected at 50 m in this study)

(Rocco da Silva et al., 2021). Therefore, we performed tar spot

detection for each trial (Table 1) using UAS-based imaging with

a slackened voting approach as shown below. From this

approach, tar spot was considered present in a trial when at

least a specific percentage of micro-plots was found to be

infected by UAS-based disease detection.

A detailed procedure for the slackened voting approach is as

follows. First, the best model for each canopy level was selected

from four cross-validated models to estimate disease severity of

each micro-plot. Second, the number of micro-plots with

estimated disease severity greater than zero was counted. The

number of micro-plots with tar spot for different combinations

of trials and the three canopy levels was converted to a

percentage, resulting in the estimated incidence rate per data

collection date. Third, different thresholds, such as 5%, 10%,

20%, 30%, 40%, and 50% of micro-plots, were tested to

determine if tar spot presented in a trial and the false warning

rates (or the number of false negatives and positives of tar spot

onset to the number of micro-plots) were calculated to select the

best threshold. For example, when 10% of micro-plots with
TABLE 2 Specifications of least absolute shrinkage and selection
operator regression (LASSO).

Parameter Value/Method

Ratio of training and testing data 3:1

Data partitioning for stratification Partitioned by data
collection dates

Weight of lasso versus ridge optimization (a) 1

Number of cross validations 5

Number of Monte Carlo repetitions for cross
validation

3

Predictor selection method within cross-
validated models

Minimum mean square
error

Number of repeated five-fold cross validation 4
frontiersin.org
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estimated disease severity over zero was used to determine if tar

spot presented in the trial, it resulted in a false warning rate of

4%. Fourth, actual incidence rate and maximum actual disease

severity for different combinations of trials, DAP, and canopy

levels were obtained as ground references to evaluate the

performance of onset detection. Sensitivity of detection was

computed by dividing the number of infected plots identified

correctly by estimated disease severity to the number of actual

infected plots.

The efficacy of disease management tactics evaluated by digital

phenotyping was compared to that of visual assessment.

Spearman’s rank correlation (rs) was used to evaluate the

similarity of rankings of treatments assessed by digital

phenotyping and visual assessment. Spearman correlation analysis

was applied to each trial for two years, and data from each time

point and canopy level were also analyzed independently.
3 Results

3.1 Estimation of disease severity at
different canopy levels

The actual disease severity (assessed by human raters)

generally increased from the lower to the upper canopy at

each time point of data collection and correlations of disease

severities between canopy levels were observed. For example,

based on actual disease severity data collected in 2020, the

Pearson correlation coefficients were 0.88 between lower and

middle canopy, and 0.73 between lower and upper canopies.

Such correlations of disease severities between canopy levels

were the foundation of estimating disease severity at different

canopy levels using UAS-based multispectral imaging.
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Models developed with UAS-based multispectral imaging

and machine learning demonstrated encouraging performance

in estimating disease severity during both years and three

canopy levels (Table 3). Estimation precision (coefficients of

determination or R2) of models for training and testing data was

greater than 0.75 in most cases, and the highest testing precision

reached 0.93; RMSEs were less than 12% in all cases. Moderate to

high agreements (Lin’s CCC of 0.75 to 0.97) between estimated

and actual disease severity were also observed. At the same time,

coefficients and intercepts or biases for linear relations between

estimated and actual visual assessment were very close to one

and zero, respectively. Models for the Tar 3 trial in 2021

demonstrated better performance with high estimation

precision (over 0.91) and Lin’s CCC (over 0.96), regardless of

canopy levels (Figures 2A–C). Image-based features, for

instance, green canopy area, the mean of blue band, the

median of MCARI2, the median of RDVI, the sum of red

band, and standard deviation from most of the five spectral

bands and VIs were frequently selected as predictors.

Meanwhile, features selected by LASSO varied between years

or canopies, and models for 2020 used more features (49 – 58

features) than those for 2021 (20 – 34 feature).

Estimation models of disease severity were transferred

between disease management trials with reasonable

performance in 2021; for example, models developed based on

data from one trial were used to estimate the visual assessment of

the second trial (using data from the second trial). Estimation

precision of transferred models (R2 = 0.68 to 0.91) and RMSEs (<

14%) were comparable to models trained and tested with data

collected from the same trials in 2021. However, agreements

between estimated and actual disease severity (Lin’s CCC = 0.78

to 0.92) were slightly lower, while biases for transferred models

were higher (intercept = -2.27 to 2.99) compared with
TABLE 3 Performance of disease severity estimation models of different canopy levels.

Canopy level Year Trial Training Testing Lin’s CCC Coeff. Intercept

Precision RMSE (%) Precision RMSE (%)

Lower 2020 Combineda 0.62 8.11 0.56 8.71 0.75 0.99 0.06

2021 Tar 2 0.93 9.28 0.92 10.42 0.96 1.00 -0.08

Tar 3 0.94 9.96 0.92 11.39 0.96 1.00 -0.07

Middle 2020 Combined 0.80 9.09 0.78 9.47 0.89 1.00 -0.04

2021 Tar 2 0.88 9.86 0.87 10.11 0.94 1.00 -0.09

Tar 3 0.95 7.45 0.93 8.49 0.97 1.00 -0.01

Upper 2020 Combined 0.80 4.97 0.78 5.20 0.88 1.00 -0.02

2021 Tar 2 0.78 11.05 0.73 11.89 0.86 1.02 -0.14

Tar 3 0.95 7.23 0.93 8.21 0.97 1.00 -0.03
fr
aData from four trials in 2020 were combined; RMSE, root mean square error; Lin’s CCC, Lin’s Concordance Correlation Coefficient; Coeff; coefficient for the linear relation between
estimated and actual visual assessment.
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counterparts in 2021. Moreover, transferred models using

parameters from models of the Tar 2 trial and data from the

Tar 3 trial in 2021 underestimated disease severity (coefficient =

1.21 to 1.31, Figures 2D–F), while transferred models using

parameters from models of the Tar 3 trial and data from the Tar

2 trial overestimated disease severity (coefficient = 0.64 to 0.76).

Transferred models using parameters from models of the Tar 3

trial and data from the Tar 2 trial resulted in estimation of

disease severity beyond 100%. The model transferability test

showed that models can be transferred between disease

management trials in 2021, and implied subtle differences

between trials. Nevertheless, results indicated that UAS-based

multispectral imaging and machine learning can be used to

estimate disease severity at different canopy levels or monitor the

vertical distribution of tar spot disease on corn and that models

can be transferred to disease management trials. However,

further improvements are required, including model

transferring between years and multispectral cameras.
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3.2 Monitoring disease progress using
data derived from multispectral imaging

The shapes of disease progress curves fitted for estimated

disease severity were similar to their counterparts fitted for actual

(or visual) disease severity in most cases. At the early stages of tar

spot infection, curves fitted for actual and estimated disease

severity were almost identical (Figure 3). However, at the

middle or later growth stages, some curves fitted for estimated

disease severity diverged from their counterparts, and divergence

between fitted curves varied among treatments. The comparison

of y0 and AUDPC also demonstrated the similarity of disease

progress curves derived from actual and estimated disease severity,

where no significant difference between y0 or AUDPC derived

from actual and estimated disease severity was observed in both

years and all canopy levels (Table 4). However, significant

differences (a = 0.05) between Kmax or rL derived from actual

and estimated disease severity were observed, mainly in 2020.
A B

D E F

C

FIGURE 2

Estimation of visual assessment using image-based features and machine learning. (A–C) models trained and tested with data from the Tar 3
trial in 2021 (results of one iteration of training and testing); (D–F) evaluation of model transferability using parameters from models of the Tar 2
trial and data from the Tar 3 trial; (A, D) results of estimating visual assessment for the lower canopy; (B, E) results for the middle canopy;
(C, F) results for the upper canopy.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1077403
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1077403
A B

C

FIGURE 3

Disease progress curves for actual and estimated disease severity of treatment #7 in the Tar 4 trial during 2020. (A–C): disease progress curves
derived from the lower, middle, and upper canopy, respectively; Act, disease progress curve or parameters based on actual disease severity; Est,
disease progress curve or parameters based on estimated disease severity; Kmax, the asymptote or the maximum level of disease intensity of a
treatment; y0, initial disease severity; rL, apparent infection rate, AUDPC, area under the disease progress curve.
TABLE 4 Comparison of parameters of disease progress curves derived from actual and estimated disease severity using a t-test.

Year Canopy level Kmax Y0 rL AUDPC

Lower <.0001 0.45 0.00 0.25

2020 Middle 0.00 0.11 0.00 0.70

Upper 0.06 0.21 0.02 0.76

Lower 0.66 0.33 0.28 0.54

2021 Middle 0.13 0.35 0.85 0.80

Upper 0.03 0.48 0.19 0.50
F
rontiers in Plant Science
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 fron
Kmax, the asymptote or the maximum level of disease intensity of a treatment; y0, initial disease severity; rL, apparent infection rate; AUDPC, area under the disease progress curve;
significance level or a of 0.05; number in bold indicates significant difference between parameters derived from actual and estimated disease severity.
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3.3 Digital phenotyping technologies for
disease monitoring

The threshold to determine tar spot onset in a trial through

digital phenotyping was selected as 5% of micro-plots (with

estimated disease severity over zero), based on evaluation of the

number of false warnings obtained by different thresholds.

Digital phenotyping can detect the tar spot onset when visual

assessment started, even the disease severity was at very low level

(<1%) (Table 5). Tar spot onset was correctly detected for all

combinations of trials and DAP of the lower canopy and most

combinations of the middle and upper canopies, with three false
Frontiers in Plant Science 10
warmings for the middle and upper canopies. The estimated

incidence rate for each canopy level per trial fluctuated from one

DAP to another (e.g., 58%, 29%, 65%, and 90% for lower canopy

of Tar 3 in 2020), which was different from the increasing actual

incidence rate. Such fluctuation of estimated incidence rate may

be due to very low disease severity and minor symptoms in most

micro-plots. However, as tar spot intensity increased, the

sensitivity of disease onset detection was over 50% in most

cases (range of 27% – 98%) at 14 or more days after the practical

level of visual detection. Nevertheless, detection of tar spot onset

through UAS-based imaging provides a desired level of efficiency

and accuracy of estimating incidence rate.
TABLE 5 Summary of detection of tar spot incidence through UAS-based multispectral imaging.

Year Trial DAP

Lower canopy Middle canopy Upper canopy

Max
sev. (%)

IR
(%)

Est. IR
(%)

Sen.
(%)

Max
sev. (%)

IR
(%)

Est. IR
(%)

Sen.
(%)

Max
sev. (%)

IR
(%)

Est. IR
(%)

Sen.
(%)

2020 Tar 4 60 0.30 93 35 35 0.02 20 53 50 0.01 3 55 100

71 0.50 100 53 53 0.20 90 58 56 0.01 45 33 28

74 0.70 100 90 90 0.20 95 80 79 0.05 85 35 41

95 10.00 100 73 73 7.00 100 73 73 4.00 100 83 83

Tar 3 59 0.10 3 58 100 0.10 6 42 50 0.10 1 51 0

70 3.00 93 29 31 1.00 94 26 26 0.20 82 32 34

78 3.00 100 65 65 1.00 100 79 79 0.30 88 68 70

94 20.00 100 90 90 15.00 100 71 71 6.00 92 69 71

Tar 1 59 0.30 100 65 65 0.10 33 33 23 0.00 0 38 NA

70 0.30 100 40 40 0.10 90 30 28 0.01 13 43 20

78 2.00 100 63 63 0.10 98 63 64 0.10 33 58 69

94 8.00 100 83 83 5.00 100 58 58 4.00 100 65 65

Tar 2 62 1.00 94 50 47 0.10 17 52 63 0.10 4 71 100

73 1.00 100 71 71 0.50 100 85 85 0.10 65 73 61

81 2.00 100 52 52 4.00 100 27 27 2.00 94 46 44

97 10.00 100 81 81 14.00 100 81 81 8.00 100 98 98

2021 Tar 2 70 0.60 100 56 56 0.00 0 58 NA 0.02 33 50 50

79 2.00 100 48 48 0.10 100 31 31 0.04 42 40 35

83 8.40 100 69 69 1.80 100 88 88 0.20 73 40 51

91 20.20 100 88 88 6.00 100 63 63 1.20 100 79 79

97 8.60 100 94 94 5.40 100 90 90 3.60 100 65 65

Tar 3 69 0.42 89 37 38 0.34 65 37 40 0.00 0 57 NA

82 1.80 96 63 62 1.10 88 79 81 1.00 64 47 48

96 6.80 99 60 61 4.00 96 64 64 3.20 93 69 70
frontie
DAP, day after planting; Max sev., maximum actual disease severity observed; IR, incidence rate; Est. IR, estimated incidence rate; Sen., sensitivity of detection; NA, not available (no disease
was observed); number in bold indicates false negative or false positive cases.
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Significant correlations between treatment rankings assessed

by digital phenotyping and visual assessment were observed as

early as 71 DAP (Figure 4; Table 6). However, non-significant

correlations were observed between 71 and 100/104 DAP in

some trials and canopy levels. One reason for such variation may

be because fungicide treatments were applied until about 100

DAP, and the combined effects of fungicides and other factors

(e.g., tillage and resistance) may be delayed. However, after 100/

104 DAP, significant correlations (rs = 0.54 – 0.97) between

treatment rankings were found in most cases until the end of the

growing season (when senescent leaves were not visually

evaluated). In other words, treatment efficacy can be evaluated

by UAS-based multispectral imaging near the end of the

growing season.
4 Discussion

Tar spot often develops from the lower canopy in fields with

an infection history, which poses a challenge for UAS-based

disease monitoring due to occlusion. The results from this study

illustrated that it is possible to monitor tar spot epidemics even if

they started from the lower canopy and characterize the vertical

(different canopy levels) and temporal development of the

disease using UAS-based remote sensing and machine

learning. Such information is vital for decision-making in

fields where corn is grown in micro-plots for research

purposes (i.e., hybrid performance and fungicide efficacy

trials). This is the unique contribution of our study to UAS-

based disease monitoring. The novel methods developed in this

study pave the road for UAS-based scouting of tar spot and

cereal diseases with similar epidemiological characteristics, such

as gray leaf spot, northern corn leaf blight (Stromberg, 2009; Shi
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et al., 2017) and wheat blast (Gongora-Canul et al., 2020). More

importantly, digital phenotyping technologies can generate

useful epidemiological information, at the vertical and

temporal levels. For instance, derived epidemiological

parameters such as disease onset, apparent infection rate, and

AUDPC, could potentially be extracted to study disease

management tactics and prepare plans to manage tar spot.

The y0 or AUDPC derived from actual and estimated disease

severity were similar, but significant differences between Kmax or rL
from actual and estimated disease severity were found. Major

differences between Kmax derived from the actual and estimated

disease severity were associated with smaller visual values of

maximum disease severities. The modeled disease progress curves

had a tendency to result in incorrect values of Kmax, when the

maximum disease severity of actual or estimated values were in the

range of 20 – 30% than when they were in the range of 80-90%. For

example, the percentages of micro-plots where themaximum values

of actual disease severity did not exceed 50% were 46%, 78%, and

84% of the total number of micro-plots from the lower, middle, and

upper canopy levels during 2020. This may be one probable

explanation for significant differences between Kmax during 2020.

In general, it was possible to model the temporal development of

disease with disease onset or AUDPC data derived from

multispectral imaging within the range of available data; however,

the modeling of Kmax and rL requires further improvement.

Although UAS-based multispectral imaging can complement

visual assessment when acquiring disease severity information

with a large aerial coverage, further research is required to

improve performance of detection and quantification of tar spot

intensity and enhance the scalability, transferability, and cost

effectiveness of UAS-based plant disease survey. Although it is

possible to detect tar spot onset through UAS-based imaging,

sensitivity of detection of onset was low until 14 or more days after
FIGURE 4

Spearman’s rank correlations between treatment rankings assessed by digital phenotyping and visual assessment for the Tar 2 and Tar 3 trials of
2021. *Indicates significant correlation at a significance level (a) of 0.05.
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the practical level of visual detection. This may result in false

warning (e.g., false positive of tar spot onset) when the disease was

in the incubation period showing no symptoms. To increase the

accuracy of onset detection through UAS-based imaging,

validation of disease onset with a consecutive imaging (e.g.,

within 3 – 5 days) or integrating visual and/or environmental

data with UAS-based data (or data fusion that will be discussed

later) are a few recommended options. Hyperspectral or thermal

imaging may also be tested for such purposes, as these imagers

provide information from different spectra.

Removal of corn tassels from acquired images is a potential

way to improve the performance and transferability of the

proposed models. The spectral reflectance of corn tassels is
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different from that of corn leaves (Viña et al., 2004; Shao et al.,

2022). Shao et al. reported that tassels lowered the canopy

reflectance of the green region, and the impact of tassel

reflectance on different vegetation indices varied between

growth stages and corn varieties (Shao et al., 2022). The

influence of tassel reflectance on canopy reflectance may mask

the influence of tar spot on the canopy reflectance. This may make

the detection of tar spot more challenging, especially at the early

stage of infection when the influence of the disease may be minor.

The fact that models from the Tar 3 trial (with only 1 hybrid)

showed better performance than those from the Tar 2 trial (with 3

hybrids) in 2021 agrees with this hypothesis. In addition, variation

of tassel reflectance introduced by corn varieties may also reduce
TABLE 6 Spearman’s rank correlations between treatment rankings assessed by digital phenotyping and visual assessment for trials of 2020.

Trial Canopy level Parameter
DAPa

59–62 70–73 78–81 94–97 99–102 106–109 113–116 120–123

Tar 4 Lower rs -0.24 0.23 0.13 0.70 0.01 0.78 NA NA

P value 0.51 0.52 0.73 0.03 0.97 0.01 NA NA

Middle rs -0.48 0.09 0.04 0.60 0.35 0.96 0.84 0.87

P value 0.16 0.81 0.92 0.07 0.33 0.00 0.00 0.00

Upper rs 0.29 0.00 0.30 0.32 0.21 0.94 0.78 0.93

P value 0.42 1.00 0.39 0.37 0.57 0.00 0.01 0.00

Tar 3 Lower rs 0.03 0.40 0.19 0.36 0.81 0.95 NA NA

P value 0.89 0.10 0.46 0.14 0.00 0.00 NA NA

Middle rs -0.08 0.56 0.37 0.43 0.82 0.92 0.97 0.95

P value 0.76 0.02 0.13 0.07 0.00 0.00 0.00 0.00

Upper rs -0.26 0.21 0.54 0.48 0.71 0.94 0.96 0.94

P value 0.30 0.40 0.02 0.04 0.00 0.00 0.00 0.00

Tar 1 Lower rs -0.18 -0.78 0.06 0.54 0.21 0.48 NA NA

P value 0.61 0.01 0.87 0.11 0.56 0.16 NA NA

Middle rs 0.47 0.07 0.47 0.59 0.50 0.79 0.77 0.94

P value 0.17 0.85 0.17 0.08 0.14 0.01 0.01 0.00

Upper rs NA 0.18 0.17 0.55 0.43 0.71 0.71 0.86

P value NA 0.62 0.64 0.10 0.22 0.03 0.02 0.00

Tar 2 Lower rs -0.29 0.27 0.35 0.85 0.94 0.91 0.81 NA

P value 0.37 0.41 0.26 0.00 0.00 0.00 0.00 NA

Middle rs 0.04 0.17 0.63 0.40 0.94 0.93 0.81 0.80

P value 0.90 0.60 0.03 0.19 0.00 0.00 0.00 0.00

Upper rs -0.34 -0.40 0.43 0.61 0.87 0.81 0.73 0.65

P value 0.27 0.20 0.16 0.03 0.00 0.00 0.01 0.02
fro
aDAP, day after planting that varied among trials; rs, Spearman’s rank correlation coefficient; NA, not available as no disease symptom was observed (upper canopy) or leaves senesced
(lower canopy).
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the transferability of disease severity estimation models derived

from different trials. This may be the reason for the lower

performance of transferred models compared with those using

original data (3 hybrids in the Tar 2 trial while 1 hybrid in the Tar

3 trial in 2021). Previous studies have successfully detected tassels

in high-resolution RGB images that were collected by proximal

and UAS-based aerial images at relatively low altitudes (<= 20 m)

(Lu et al., 2017; Liu et al., 2020; Zan et al., 2020). However, it is

challenging to detect and remove tassels in low-resolution

multispectral images collected at higher altitudes (e.g., ground

sampling distance of 1.5 and 3.5 cm for images collected at 30 and

50 m, respectively, in this study). Future research on removing

tassels from acquired images and their impact on canopy

reflectance in disease monitoring is desired.

Data fusion is another potential way to improve the performance

and scalability of disease estimation models in monitoring tar spot,

where environmental data and UAS-based multispectral images are

integrated and used as inputs during model development. Data

fusion has been used to monitor diseases, and better performance

has been reported for methods using fused data (Zhang et al., 2014;

Yun et al., 2015; Yuan et al., 2017; Zheng et al., 2021). For example,

Zheng et al. monitored the occurrence of wheat yellow rust disease

using meteorological data and multispectral images collected by

Sentinel-2 satellite (2021). Models using fused data (accuracy of

68.4% – 84.2%) increased the classification accuracy by 5.2% to

10.5%, compared with those using only multispectral images.

Currently, the performance of our tar spot detection and

quantification methods was susceptible to degradation under

abiotic stresses (e.g., nutrient deficiency) and other biotic stresses

(e.g., diseases such as gray leaf spot and northern corn leaf blight).

Integrating data from two primary components of the disease

triangle, i.e., environment (e.g., air temperature, humidity, and leaf

wetness) and host (multispectral reflectance of plants), may reduce

the uncertainty introduced by other biotic or abiotic stresses. For

example, environmental conditions favorable for the occurrence of

tar spot (17 – 22°C, relative humidity (RH) > 75%, and more than

seven hours of leaf wetness per night) are different from these for

northern corn leaf blight (18 – 27°C and six to 18 hours of leaf

wetness) and gray leaf spot (22 – 30°C and nightly RH > 90%) (Hock

et al., 1995; Paul, 2003; Wise, 2011). The integration of

environmental data in our disease monitoring models may reduce

the uncertainty or false warnings.
5 Conclusion

Tar spot, a threat to corn production, is a disease that regularly

appears at the lower canopy of plants in fields with a history of tar

spot infections. This study evaluated digital phenotyping

technologies and machine learning approaches for monitoring

tar spot epidemics at the different canopy and temporal levels. The

results showed that models developed with UAS-based

multispectral imaging and machine learning could estimate
Frontiers in Plant Science 13
disease severity for the upper, middle and lower canopy levels

exhibiting encouraging performance. The estimated precision or

R2 of models ranged from 0.75 to 0.93 in most cases, while the

concordance estimated using Lin’s CCC varied between 0.75 and

0.97, showing moderate to high agreements between estimated

and actual disease severity. In addition, the developed disease

estimation models were effectively transferred between disease

management trials. The temporal development of tar spot disease

was modeled using data derived from multispectral images,

showing no significant difference between y0 or AUDPC derived

from actual and estimated disease severity. Successful results were

obtained when applying information derived from digital

phenotyping technologies to disease monitoring, for example,

detection of tar spot onset and evaluation of the efficacy of

disease management tactics. Epidemiological information

derived, such as disease severity from different canopy and

temporal levels, disease onset, and efficacy of disease

management tactics need to be explored in larger field areas and

evaluated for their value in supporting decision-making. In

addition, methods developed in this study might be applied to

other diseases with similar epidemiological characteristics, but

additional research is needed. Further studies are required to

improve the performance in detection and quantification of tar

spot intensity and enhance the scalability and transferability of our

methods to different regions and corn varieties. Removal of corn

tassels from acquired images and fusion of aerial multispectral

images with environmental data are future work that may lead to

better performance of our methods.
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