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OsGLP participates in the
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Copper (Cu) and cadmium (Cd) are common heavy metal pollutants. When Cd

and excessive Cu accumulate in plants, plant growth is reduced. Our previous

study showed that Germin-like proteins (GLPs), which exist in tandem on

chromosomes, are a class of soluble glycoproteins that respond to Cu stress.

In this study, hydroponic cultures were carried out to investigate the effect of

GLP on Cd and Cu tolerance and accumulation in rice. The results showed that

knockout of a single OsGLP8-2 gene or ten OsGLP genes (OsGLP8-2 to

OsGLP8-11) resulted in a similar sensitivity to Cd and Cu toxicity. When

subjected to Cu and Cd stress, the glp8-2 and glp8-(2-11) mutants displayed

a more sensitive phenotype based on the plant height, root length, and dry

biomass of the rice seedlings. Correspondingly, Cu and Cd concentrations in

the glp8-2 and glp8-(2-11) mutants were significantly higher than those in the

wild-type (WT) and OsGLP8-2-overexpressing line. However, Cu and Cd

accumulation in the cell wall was the opposite. Furthermore, we determined

lignin accumulation. The overexpressing-OsGLP8-2 line had a higher lignin

accumulation in the shoot and root cell walls than those of the WT, glp8-2, and

glp8-(2-11). The expression of lignin synthesis genes in the OsGLP8-2-

overexpressing line was significantly higher than that in the WT, glp8-2, and

glp8-(2-11). The SOD activity of OsGLP8-2, Diaminobe-nzidine (DAB),

propidium iodide (PI) staining, and Malondialdehyde (MDA) content

determination suggested that OsGLP8-2 is involved in heavy metal-induced

antioxidant defense in rice. Our findings clearly suggest that OsGLPs participate

in responses to heavy metal stress by lignin deposition and antioxidant defense

capacity in rice, and OsGLP8-2 may play a major role in the tandem repeat

gene clusters of chromosome 8 under heavy metal stress conditions.
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Highlights
Fron
• OsGLPs involved in Cd and Cu detoxification and

tolerance in rice.

• OsGLPs regulate lignin deposition in cell wall by altering

expression of lignin synthesis genes.

• OsGLP8-2 may play a major role in the tandem repeat

gene clusters of rice chromosome 8 when Cd and Cu

exposure.
Introduction

Copper (Cu) is an essential micronutrient element for the

normal growth and development of plants (Nazir et al., 2019).

However, excessive copper exhibits high toxicity, causing

oxidative stress, increasing the reactive oxygen species (ROS)

content in plant cells, and destroying the integrity and function

of cell membranes (Chrysargyris et al., 2019; Rather et al., 2020).

Cadmium (Cd) is a common heavy metal pollutant that is

absorbed by plant roots and enters the food chain,

endangering human and animal health (Chen et al., 2019a;

Zhang et al., 2020). In agriculture, excessive Cu and Cd have

many adverse effects on crops, including reducing the

germination rate of seeds, changing the growth and

morphology of crops, and hindering the absorption of mineral

nutrients (Zare et al., 2018; Napoli et al., 2019; Yue et al., 2021;

Wang et al., 2021). These adverse effects lead to reduced crop

yields and lower quality. The absorption of metal elements by

plants is based on plant type and heavy metal. The absorption

mechanisms include absorption, transport, accumulation,

distribution, rejection, and osmotic adjustment (Ma et

al., 2016a).

The cell wall is an important barrier that prevents the

transfer of heavy metals into cells (Park and Chon, 2016;

Fernández-Fuego et al., 2017; Liu et al., 2019). Previous studies

have shown that heavy metals can affect the thickness of plant

cell walls, pectin cross-linking, and enzyme activity (Douchiche

et al., 2010), thereby affecting cell walls (Zhu et al., 2012; Jia et al.,

2021). When subjected to biotic and abiotic stress, lignin

metabolism can play a role in stress resistance (Do et al., 2007;

Moura et al., 2010; Liu et al., 2018; Wang et al., 2022).

Aluminium (Al) can induce lignin synthesis in rice roots, as

well as the synthesis of other cell wall components (Mao et al.,

2004), and the gene expression of 4-coumarate CoA ligase (4CL),

cinnamon alcohol de oxidase (CAD), caffeoyl-CoA-O-

methyltransferase (CCR), and other enzymes related to lignin

synthesis increase (Mao et al., 2004; Mir Derikvand et al., 2008).

Cd has a similar effect on soybean growth (Bhuiyan et al., 2007).

Germin-like proteins (GLPs) are a class of soluble

glycoproteins that are highly homologous to the germin
tiers in Plant Science 02
sequence of wheat (Majeed et al., 2018; Zhang et al., 2018).

GLP genes have been identified in various plant species (Ilyas

et al., 2016). GLPs, most of which are stable oligomers, exist in

the extracellular matrix through ionic bonding (Bernier and

Berna, 2001; Dunwell et al., 2008). GLPs showed enzymatic

activities of oxalate oxidase (OXO), superoxide dismutase

(SOD), and polyphenol oxidase (PPO) (Cheng et al., 2014; He

et al., 2021). These proteins usually participate in the

physiological activities of plants in the form of enzymes,

receptors, and structural proteins (Lou and Baldwin, 2006;

Dunwell et al., 2008). Earlier studies have shown that GLPs are

an important class of genes involved in both biotic and abiotic

stress responses (Bruno et al., 2014; Zhang et al., 2017; Liao et al.,

2021; Zaynab et al., 2022). It has been reported that

downregulation of OsGLP1 sensitised rice to the pathogens of

rice blast and sheath blight (Banerjee and Maiti, 2010).

Transgenic tobacco plants overexpressing the soybean

GmGLP10 gene displayed enhanced resistance to Sclerotinia

sclerotiorum infection (Zhang et al., 2017). In addition, these

proteins have shown high resistance to salt stress (Hurkman

et al., 1991; Barman and Banerjee, 2015; Takeuchi et al., 2016;

Banerjee et al., 2017), drought stress (Ke et al., 2009), UV-B

radiation (He et al., 2021), and various biological stressors.

When exposed to Cu stress, several genes in rice GLP family

showed higher transcription levels (Li et al., 2016). Similarly, rice

treated with Cd also showed higher GLPs abundance (Wei et al.,

2021). Zhou et al. (2009) found the GLP protein level of tomato

was down-regulated under aluminum stress. However, there are

still few studies on the relationship between GLPs and heavy

metal tolerance in plants.

A previous study on rice proteomics by immobilised metal

ion affinity chromatography-mass spectrometry (IMAC-MS)

showed that heavy metal treatment significantly upregulated

the abundance of OsGLP proteins (Song et al., 2013) and the

transcriptional expression of some members of the GLP family

(Li et al., 2016). Our current knowledge of the corresponding

physiological functions and mechanisms of OsGLPs is still

elusive. Here, we hypothesised that OsGLP genes are involved

in Cd and Cu detoxification in rice. Crispr/Cas-9 technology,

which has developed rapidly in recent years, can precisely edit

plant genomes and obtain heritable plant material, providing an

efficient technical tool for crop genetics (Ma et al., 2016b; Chen

et al., 2019b). In this study, OsGLP transgenic rice lines,

including knockout mutants of the single OsGLP8-2 gene or

ten genes (OsGLP8-2 to OsGLP8-11) and overexpressing

OsGLP8-2 transgenic rice, were constructed using Crispr/Cas-9

technology and the method of homologous recombination

(Court et al . , 2002). Furthermore, we functionally

characterised OsGLPs responding to Cu and Cd stress in rice

through detailed analysis, such as rice phenotype, heavy metal

accumulation, lignin deposition in the cell wall, antioxidant

defence capacity, and expression of lignin synthesis genes and

members of the OsGLP family. This study aims to reveal the
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relationship between rice OsGLPs and plant heavy metal

tolerance, and further explains the mechanisms of plant

response to heavy metal stress.
Materials and methods

Plant materials

Rice seeds were soaked in 10% sodium hypochlorite for

5 min under dark conditions. The seeds were then washed

thoroughly, soaked in deionised water, and placed in an

incubator at 37°C for germination. Uniformly emerging rice

seedlings were evenly placed on a floating net and cultured in

0.5 mol L−1 CaCl2 nutrient solution in the dark for two days to

induce rooting. After CaCl2 culture, rice seedlings were cultured

with kimura B nutrient solution containing 0.18 mmoL−1

KH2PO4, 0 .36 mmoL−1 (NH4)2SO4 , 0 .54 mmoL−1

MgSO4·7H2O, 0.18 mmoL−1 KNO3, 0.36 mmoL−1 Ca(NO3)

2·4H2O, 46.25 mmoL−1 H3BO3, 0.32 mmoL−1 CuSO4·5H2O,

0.76 mmoL−1 ZnSO4·7H2O, 9.15 mmoL−1 MnCl2·4H2O,

0.11mmoL−1 H2MoO4·H2O, 20 mmoL−1 EDTA−FeSO4 (pH,

5.6).The nutrient solution was replaced every 2 days.

Two-week-old rice plants were cultured for 5 days under

normal conditions, 10 mmol L−1 CuSO4 treatment, or 25 mmol

L−1 CdCl2 treatment. A normal kimura B nutrient solution was

used as the control. Four replicates were set, and each replicate

was comprised of 5 rice seedlings. All rice seedlings were grown

in a greenhouse under long-day conditions (14 h light/10 h dark)

at 28°C/24°C.Oryza sativa cv ‘Dongjin’ was used as the wild type

(WT) in this study.
Generation of transgenic plants

The CRISPR/Cas9 system was used to construct the rice

mutants. Two sequences of 20 bp in exons of GLP8-2 were

selected as gRNAs. Primers were designed based on these

sequences, and the annealed product was fused with the

pRGEB31 vector. The coding sequences of OsGLP8-2 were

amplified from the cDNA of the WT (Dongjin, DJ). Two

specific primers (CriOsGLP8-2F and CriOsGLP8-11R) were

used to identify mutants, with 10 genes (OsGLP8-2 to

OsGLP8-11) knocked out. If a clear band was observed after

1% agarose gel electrophoresis (Supplementary Figure S1), this

indicated that the multi-gene knockout mutant was

successfully constructed. The coding region sequence of

OsGLP8-2 was fused with the pOx vector to form a

recombinant plasmid (GLP8-2OE) driven by the 35S

promoter. The primers used for vector construction are

listed in Supplementary Table S1.

The recombinant plasmids were sequenced and introduced

into Agrobacterium tumefaciens EHA105. The A. tumefaciens-
Frontiers in Plant Science 03
mediated genetic transformation system was used to construct

transgenic rice.
RNA-seq analysis of OsGLP Genes

Four-day-old WT rice seedlings were treated with 3 mmol

L−1 CuSO4 for 12 h. About 50 mg of root tips were collected and

snap-frozen in liquid nitrogen to extract total RNA for

transcriptome sequencing (GENE DENOVO Biotechnology

Co., Ltd, Guangzhou, China). Bioinformatic analysis of the

data was performed using the Omicsmart online real-time

interactive platform. Each material was repeated three times.

Fold change ≥ 2, and FDR ≤ 0.05.
Determination of Cu and Cd
concentrations

The roots of the rice were washed with 20 mmol L−1

Na2EDTA for 30 min to remove heavy metal ions attached to

the surface of the roots. They were then placed in an oven at 80°

C until a constant weight, and the dry weight was recorded. Dry

plant samples or cell wall materials (0.2 g) were digested with 5.0

mL of guaranteed HNO3:HClO4 = 87:13 (v:v) mixed acid. Cd and

Cu concentrations were determined using an inductively

coupled plasma optical emission spectrometer (ICP-OES,

PerkinElmer, Optima 8000, America). A plant standard

[GBW10043 (GSB-21)] was purchased from the National

Research Centre for Standards of China and used to ensure

reliable results during the digestion and analysis processes.
Extraction of crude cell walls of
rice seedlings

Extraction of crude cell walls was according to the methods of

Yang et al. (2011) and Zhu et al. (2020). About 0.5 g of fresh samples

of rice shoots and roots were ground with 10 times the volume of

95% ethanol to homogenise them. The mixture was centrifuged at

8,000×g for 5 min, and the supernatant was discarded. The pellet

was washed 3 times with 95% ethanol. Finally, the pellet was washed

twice with ethanol-hexane solution (v:v=1:2) and dried at room

temperature to obtain the crude cell wall. The determination of

heavy metals in the cell wall was performed as previously described

in Determination of Cu and Cd concentrations section.
Histochemical and content
determination of lignin

The stems of the rice plants were stained with Safranin O-

Fast Green staining and paraffin sectioned by embedding
frontiersin.org
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technology to determine lignin deposition in the cell walls

(Wang et al., 2016; Han et al., 2021). The roots were placed on

a Petri dish, and a few drops of 1% phloroglucinol ethanol

solution were added. A drop of 35% HCl was added, and the

roots were covered with cover glass. After volatilisation and

colour development, the roots were placed on a type microscope

and magnified four times for observation, and photos

were taken.

Six milligrams of cell wall residue were transferred to a glass

test tube, and 2.5 mL of 25% bromoacetyl-acetic acid solution (v/

v=1:3) and 0.1 mL of 70% perchloric acid were added. The tube

was covered, sealed, and placed in a water bath at 70°C for

30 min. The test tube was shaken every 10 min. After cooling, 10

mL of 2 mol L−1 NaOH solution was added, and the reaction

mixture was diluted to 25 mL with glacial acetic acid. The

mixture was centrifuged at 1000×g for 5 min. The absorbance

of the supernatant was measured at 280 nm, with the reaction

solution containing no sample as a blank control.
qRT-PCR

Total RNA from rice seedlings was extracted using an RNA

Extraction Kit (TaKaRa, 9697, China). The cDNA was then

obtained after inversion was used as a template, and the SYBR

Green fluorescence quantitative kit (TaKaRa, RR420A, China)

was used for fluorescence quantitative PCR amplification. The

expression of the target gene was calculated using the 2-DDCt

method (Gaonkar et al., 2018). The housekeeping gene ACTIN1

(LOC_Os03g50885) was used as the internal control. Three

biological replicates were used for qRT-PCR, and three

technical replicates were set for each biological replicate. The

primers used are listed in Supplementary Table S2.
Histochemical localisation of H2O2

The Diaminobenzidine (DAB) staining method was used for

the quantitative detection of H2O2. DAB powder was dissolved

in 50 mmol L−1 Tris-HCl (pH 6.0) to prepare a 1 mg mL−1 dye

solution. Rice leaves (3–4 cm) were immersed in DAB dye

solution, vacuumed for 2 hours until the leaves sank to the

bottom of the tube, and placed in the dark for 12 hours. The

dyed rice leaves were boiled in 95% ethanol for decolourisation.

After bleaching was complete, the leaves were immersed in 70%

ethanol, and pictures were taken using a stereo microscope

(Nikon, SMZ1000, Japan).
Determination of MDA content

Leaf samples (0.1 g) were ground with 1.5 mL of

trichloroacetic acid (TCA) on ice and centrifuged at 12,000×g
Frontiers in Plant Science 04
for 15 min at 4°C. Then, 500 mL of the supernatant was

transferred to a clean 2 mL centrifuge tube, and 1.5 mL of

0.5% thiobarbituric acid (TBA) was added and mixed well. The

tubes were placed in a water bath at 90°C for 20 min. After

cooling, the mixture was centrifuged at 10,000 rpm for 5 min.

The absorbance of the supernatant was determined at 450, 532,

and 600 nm. C (mmol L-1)=6.45×(A532-A600)-0.56×A450
Determination of the integrity of the root
cell plasma membrane

Rice root tips (1 cm) were placed in 3 mg L−1 propidium

iodide (PI) solution and soaked in the dark for 15 min. The root

tips were removed from the dye solution and rinsed repeatedly

with deionised water. Staining was observed with a fluorescence

microscope (Zeiss, Axio Imager A1, Germany).
Statistical analysis

The data were analysed using Excel and SPSS25.0 for

analysis of variance and LSD multiple comparison testing

(P ≤ 0.05). GraphPad Prism 6 was used to graph the data

after processing. The values in the graph are the mean ± SD

(n = 3). Different letters indicate the differences between several

rice lines.
Results

Expression of OsGLP genes was induced
by Cu stress

Thirty-two members of the OsGLP family were tandem repeat

genes and were divided into 8 gene clusters located on

chromosomes 1, 2, 3, 8, 9, and 12. Among them, the tandem

repeat gene cluster on chromosome 8 was the largest, containing 11

OsGLP genes (OsGLP8-1 toOsGLP8-11) (Li et al., 2016). Four-day-

old WT seedlings were treated with 3 mmol L−1 CuSO4 for 12 h.

Total RNA was isolated from rice roots and used for transcriptome

sequencing. The heat map showed that the expression of multiple

OsGLP family genes, such as OsGLP8-2, OsGLP8-5, OsGLP8-6,

OsGLP8-7, OsGLP8-9, OsGLP8-10, and OsGLP8-11, increased

significantly after Cu treatment (Figure 1). It was inferred that

some OsGLPs are Cu-responsive proteins.
Knockout of single OsGLP8-2 or 10
OsGLP genes exhibits repressed growth

To understand the contribution of OsGLPs to heavy metal

tolerance, we designed the primers for OsGLP8-2 and OsGLP8-
frontiersin.org
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11 to knock out multiple genes at the same time, and obtained

the glp8-2 and glp8-(2-11) mutants, respectively (Figure 2A;

Supplementary Figure S2). Furthermore, we identified 6

overexpression lines and selected GLP8-2OE1 (hereinafter

referred to as GLP8-2OE) with the highest expression of

OsGLP8-2 for subsequent experiments (Figure 2B).

The WT, two mutants glp8-2 and glp8-(2-11), and GLP8-2OE

seedlings were treated with 10 mmol L−1 CuSO4 or 25 mmol L−1

CdCl2 for 5 days. Both the glp8-2 and glp8-(2-11)mutants showed

hypersensitivity to Cu and Cd toxicity compared with the WT

seedlings (Figure 2C; Supplementary Figure S3). Excess Cu and

Cd had a significant inhibitory effect on the shoot height and root

elongation of glp8-2 and glp8-(2-11) mutants, while OsGLP8-2

overexpression increased heavy metal tolerance in rice

(Figures 2D, E). Quantitative analysis further confirmed that the

dry weights of glp8-2 and glp8-(2-11) seedlings were significantly

lower than those of WT and GLP8-2OE seedlings (Figures 2F, G).

Overall, OsGLP knockout led to a decrease in chlorophyll content

(Supplementary Figure S2). These results suggest that OsGLPs

play an important role in regulating heavy metal tolerance in rice.
OsGLPs affect Cu and Cd accumulation
in rice

To further investigate the mechanism of OsGLPs regulating

heavy metal tolerance in rice, we measured the Cd and Cu

concentrations in the shoots and roots, and in those of their cell

walls. As shown in Figure 3, the Cd and Cu concentrations in both

shoots and roots increased significantly with elevated heavy metal

levels. At 3 and 10 mmol L−1, glp8-2 and glp8-(2-11) seedlings had

higher Cu concentrations than the WT, while that in GLP8-2OE

was lower. This was especially obvious when the rice seedlings

were treated with 10 mmol L−1 CuSO4 (Figures 3A, B). Cd

accumulation in different rice seedlings at high levels of Cd (25

mmol L−1) displayed a trend similar to Cu toxicity (Figures 3C, D).

Cd and Cu concentrations in the roots were higher than those in

the shoots of the different rice seedlings at the same level of

heavy metals.

Cell walls are the main compartments that accumulate heavy

metals (Krzeslowska, 2011; Wang et al., 2020; Yan et al., 2022).

We determined Cd and Cd concentrations in the cell walls of

different rice seedlings to investigate whether OsGLP changes

the distribution of heavy metals. In contrast to the results of Cu

concentrations in the shoots and roots, the glp8-2 and glp8-(2-

11) mutants accumulated less Cu in the cell wall than those of

the WT and GLP8-2OE when exposed to 3 and 10 mmol L−1

CuSO4 (Figures 4A, B). Similar to Cu concentration in the cell

wall, the loss of OsGLP8-2 resulted in lower Cd retention in the

cell wall than the WT and overexpressing rice seedlings at high

levels of CdCl2 (25 mmol L−1) (Figures 4C, D). However, there

was no obvious difference in heavy metal concentrations of the

cell wall between the glp8-2 and glp8-(2-11) rice seedlings.
Frontiers in Plant Science 05
OsGLPs affect lignin accumulation in rice

Our previous studies reported that lignin may play a vital role

in Cu and Cd stress (Liu et al., 2015; Xia et al., 2018; Su et al., 2020).

To investigate the relationships among loss of OsGLPs, lignin

synthesis, and heavy metal accumulation, we comparatively

analysed lignin synthesis in different rice seedlings treated with

elevated Cd and Cu levels. The Safranin O-Fast Green staining and
FIGURE 1

Cu toxicity induces the expression of OsGLP8-2 in rice.
Transcription levels of OsGLPs increased under heavy metal
treatment. Total RNA was isolated from the roots of 4-day-old
WT (wild type) rice seedlings treated with 3 mmol L−1 CuSO4 for
12 h and used for transcriptome sequencing. Values are the
mean ± SD; n = 3. Fold change ≥ 2 and FDR ≤ 0.05.
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phloroglucinol-HCl staining in stems and roots showed that the

lignin content in the glp8-2 and glp8-(2-11) mutants was lower

than that of the WT and GLP8-2OE rice (Figures 5A, B). To

further confirm this, we quantitatively determined the lignin

content in different rice seedlings treated with Cu and Cd using

the acetyl bromide-soluble method (Van Acker et al., 2013; Jang

and Lee, 2020). As expected, there was a decrease in the lignin

content of the shoots and roots from the two glp8-2 and glp8-(2-11)

mutants under Cu and Cd stress, and the lignin content was about

4.6% lower than the WT (Figures 5C, D). The lignin content in the

roots of OsGLP8-2OE induced by Cu and Cd was higher than that

of the WT. A significant negative correlation between the heavy
Frontiers in Plant Science 06
metal concentrations and lignin content was observed in rice roots

(p< 0.0001 for Cu; p = 0.0024 for Cd) (Figures 5E, F).
OsGLPs positively regulate the expression
of lignin synthesis-related genes

To determine whether the alteration of OsGLPs expression

levels affects the lignin synthesis pathway, we tested the changes in

the expression levels of lignin-related genes, including

phenylalanine ammonia-lyase (PAL), 4-coumarate CoA ligase

(4CL), caffeoyl-CoA-O-methyltransferase (CCoAoMT),
D

E

A B

F

G

C

FIGURE 2

Knockout of OsGLPs results in the growth inhibition of rice seedlings. (A) Construction and identification of mutants. Two gRNAs were designed
based on the exons of OsGLP8-2 and OsGLP8-11 near the ATG. Light blue and dark blue indicate successful sequence matching. Wavy lines
are sequencing peaks. (B) Identification of OsGLP8-2-overexpressing lines. (C) Phenotypes of two-week-old WT (wild type) and transgenic
seedlings grown for 5 days under normal conditions, 10 mmol L−1 CuSO4 treatment, or 25 mmol L−1 CdCl2 treatment. Scale bar = 3 cm.
(D, E) Root elongation of WT and transgenic plants. (F, G) Dry weight of WT and transgenic plants. Values are the mean ± SD; n = 3. Different
letters indicate a difference of p ≤ 0.05 by the LSD test.
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cinnamate-4-hydroxylase (C4H), and cinnamoyl-CoA reductase

(CCR). Cu and Cd treatments significantly induced the expression

of five lignin biosynthetic enzyme genes (PAL, 4CL, CCoAOMT,

C4H, and CCR) (Figure 6). When treated with Cu and Cd, the

expression levels of these five genes were reduced in the glp8-2 and

glp8-(2-11)mutants, especially in the OsGLP8-(2-11)mutants, but

elevated significantly in the OsGLP8-2OE seedlings. The

expression pattern of five lignin-related genes under Cu and Cd

toxicity showed the same trend as lignin content in the roots and

heavy metal accumulation in the cell wall.
OsGLPs participate in heavy metal-
induced oxidative damage

To explore the role of OsGLPs in oxidative stress caused by

heavy metal stress, we compared DAB staining in WT and

transgenic rice lines. There was no significant difference in the

leaf colour of the four lines in the absence of excess Cu and Cd.

When exposed to Cu and Cd, the leaf colour was darker than that

of the control and GLP8-2OE. Compared with the WT, the glp8-2

and glp8-(2-11) mutants were darker, especially the OsGLP8-(2-

11)mutant (Figure 7A). This indicates that OsGLPs participate in

the elimination of active oxygen in rice cells and can reduce the

accumulation of active oxygen caused by heavy metal stress,

thereby alleviating the oxidative damage of rice.

Malondialdehyde (MDA) content indicates the degree of

peroxidation of the cell membrane and is an important indicator
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of plant stress resistance (Yang et al., 2019). As shown in

Figure 7B, Cu and Cd stress aggravated the peroxidation of

membrane lipids and increased the MDA content. Loss of the

function of OsGLPs led to increased MDA content, which was

the opposite of the GLP8-2OE rice seedlings.

Propidium iodide (PI) is a nuclear fluorescent dye that

indicates the integrity of the plasma membrane (Li et al., 2021).

When the root tip cells are damaged, the permeability of the

plasma membrane increases, PI can enter the cell and bind to

DNA, and red fluorescence can be observed with a fluorescence

microscope. In this study, PI was used to determine the integrity of

the plasma membrane in the root tip. Cu and Cd treatments

damaged the integrity of the plasma membrane in rice roots. By

comparing the intensity of red fluorescence in different rice, the red

fluorescence intensity of the glp8-2 and glp8-(2-11) mutants were

higher than that of the WT and OsGLP8-2OE (Figure 7C) when

subjected to Cu and Cd stress, which was consistent with the H2O2

histochemical localisation and MDA content. This indicates that

OsGLP genes play a certain role in maintaining the integrity of the

plasma membrane.
OsGLP expression increases under Cu
and Cd stress

The knockout mutant of 10 genes (glp8-(2-11)) and the

mutant of OsGLP8-2 (glp8-2) showed the same phenotypes, such

as heavy metal tolerance and accumulation, lignin deposition
D

A B

C

FIGURE 3

Knockout of OsGLPs affects heavy metal accumulation in rice. (A, B) Cu concentrations in the roots and shoots of two-week-old seedlings
treated with 3 or 10 mmol L −1 CuSO4 for 5 days. (C, D) Cd concentrations in the roots and shoots of two-week-old seedlings treated with 5 or
25 mmol L−1 CdCl2 for 5 days. Values are the mean ± SD; n = 3. Different letters indicate a difference of p ≤ 0.05 by the LSD test.
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and gene expression levels, and antioxidant defence abilities. We

speculated that OsGLP8-2 may display the main contribution in

the tandem repeat gene clusters on chromosome 8 in responding

to heavy metal stress. The time course for expression levels of

OsGLP8-2, OsGLP8-3, OsGLP8-5, OsGLP8-7, and OsGLP8-11

genes on chromosome 8 were detected under Cu and Cd

treatment. The expression of these five genes was significantly

upregulated and reached a peak under Cu exposure for 3 h and

Cd exposure for 12 h. Among these genes, Cd and Cu treatments

upregulated the expression of OsGLP8-2, with the highest fold

change. Its highest level was 71 times higher than that of the

control under Cu stress and 11.3 times higher under Cd stress

(Figure 8). These data demonstrate that OsGLP8-2 is more

sensitive to Cu and Cd and is upregulated more than other

tandem genes.
Discussion

Most GLPs have been reported to play three functions in

plants, namely as enzymes, structural proteins, and signalling

receptors (Bernier and Berna, 2001; Lou and Baldwin, 2006; Pei

et al., 2019; Yuan et al., 2021; Zaynab et al., 2022). In this study,

transcriptome analysis of rice under Cu stress was performed, in

which the transcript levels of multiple genes of the OsGLP family

showed significant differences compared with the control
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seedlings (Figure 1). Similarly, one member (OsGLP8-7) of the

OsGLP family was identified, and its protein level was

significantly upregulated under Cu stress (Chen et al., 2015).

We speculated that the increased expression of OsGLPsmay be a

way for plants to cope with heavy metal toxicity.

Based on the unique distribution of the OsGLP genes on rice

chromosome 8 (Li et al., 2016), gRNAs were designed for

OsGLP8-2 and OsGLP8-11 genes to knock out the target

genes, and two mutants, glp8-2 and glp8-(2-11), which were

the mutants of the OsGLP8-2 gene and ten genes (OsGLP8-2 to

OsGLP8-11), respectively, were obtained. When treated with

heavy metals, the loss of function of OsGLPs aggravated growth

inhibition in rice (Figure 2) and led to higher heavy metal

accumulation (Figure 3). This suggests that OsGLPs are

important in response to heavy metal stress. In fact, studies

have reported that two AtGLP genes in Arabidopsis thaliana L.

were induced in large quantities when treated with Cd,

indicating that AtGLPs play a role in Cd stress (van de Mortel

et al., 2006).

The cell wall is the first barrier for metal ions to enter the

plant cytoplasm across the membrane and has a strong ability to

fix metal ions (Sun et al., 2013; Gao et al., 2021; Yan et al., 2022).

In this study, when subjected to heavy metal stress, the heavy

metal concentrations in the cell walls of theOsGLPmutants were

significantly higher than those of the WT and overexpression

line (Figure 4). However, the situation was reversed in the whole
D
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FIGURE 4

Knockout of OsGLPs affects heavy metal accumulation in the cell walls of rice. (A, B) Cu concentrations in the cell walls of roots and shoots of
two-week-old seedlings treated with 3 or 10 mmol L −1 CuSO4 for 5 days. (C, D) Cd concentrations in the cell walls of roots and shoots of two-
week-old seedlings treated with 5 or 25 mmol L−1 CdCl2 for 5 days. Values are the mean ± SD; n = 3. Different letters indicate a difference of
p ≤ 0.05 by the LSD test.
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rice seedlings (Figure 3). The loss of OsGLPs led to a higher

accumulation of heavy metals in rice; additionally, the ability of

the cell wall to retain heavy metals was reduced, and the inward

transport of heavy metals was increased. As a result, more heavy

metals were enriched in the cytoplasm of the glp8-2 and glp8-(2-

11) seedlings, causing more serious toxicity and ultimately

leading to a sensitive phenotype. The main components of the

cell wall include cellulose, hemicellulose, lignin, and cell wall

proteins (Zhao et al., 2019; Roig-Oliver et al., 2020). The

abundance of lignin in the cell wall was second only to

cellulose. It is a natural macromolecule polymerised by three
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monolignols: p-hydroxyphenyl (H), guaiacyl (G), and syringyl

(S) units. Lignin is essential for maintaining the structural

integrity of cell walls and the strength of roots and stems

(Slabaugh et al., 2014; Zhao et al., 2020; Zhang et al., 2021).

Lignin accumulation increases when plants are exposed to heavy

metals, which causes the cell wall to thicken to fix and retard

heavy metals, reducing their entry into the cell and causing toxic

damage (Moura et al., 2010; Gao et al., 2012; Su et al., 2020; Pan

et al., 2021). Therefore, lignin synthesis is a typical defence

response of plants to environmental stress. Lignin deposition in

the glp8-2 and glp8-(2-11) seedlings was lower than that of the
D

E
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F

C

FIGURE 5

OsGLPs involved in lignin accumulation in rice. (A) Effects of Cu or Cd stress on lignin deposition in WT (wild type) and transgenic rice. Seedlings
grew for 5 days under normal conditions, 10 mmol L−1 CuSO4 treatment, or 25 mmol L−1 CdCl2 treatment. The stems of the rice plants were
stained with Safranin O-Fast Green, paraffin embedded, and sectioned. The magnification was 400×. Red indicates that the lignin was
successfully dyed. (B) Histochemical localisation of lignin in primary roots of two-week-old seedlings grown for 5 days under normal conditions,
10 mmol L−1 CuSO4 treatment, or 25 mmol L−1 CdCl2 treatment. The roots were stained with phloroglucinol solution, sliced, and placed on a
stereo microscope to take pictures. Scale bar = 1 cm. (C, D) The lignin content in the root and shoot cell walls of two-week-old seedlings
grown for 5 days under normal conditions, 10 mmol L−1 CuSO4 treatment, or 25 mmol L−1 CdCl2 treatment. (E, F) Correlation between root Cu/
Cd content in rice and lignin content in the root cell walls of rice. These seedlings were treated with 10 mmol L−1 CuSO4 or 25 mmol L−1 CdCl2
for 5 days. Values are the mean ± SD; n = 3. Different letters indicate a difference of p ≤ 0.05 using the LSD test.
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WT and OsGLP8-2OE lines (Figure 5). It is generally believed

that lignin enhances cell wall rigidification, inhibits root

elongation (Xiong et al., 2015). When rice is subjected to

heavy metal stress, GLPs can on the one hand increase lignin

deposition, thereby inhibiting root growth; on the other hand, it

can alleviate heavy metal toxicity, thus promoting root growth.

In this study, there was a positive correlation between lignin

content and root length, and a negative correlation between

lignin content and heavy metal content. When GLPs was

knocked down, the expression of lignin synthesis-related genes

decreased (Figure 6). As functional proteins, GLPs may

indirectly regulate the expression of these genes by regulating

some transcription factors. Therefore, it was inferred that

OsGLPs may participate in lignin synthesis.

GLPs mainly have the activities of three enzymes: SOD,

OXO, and PPO (Cheng et al., 2014; Ilyas et al., 2020). The

function of SOD is to disproportionate O2
·- into H2O2 (Smirnoff

and Arnaud, 2019). Researchers have shown that OsGLPs are
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localised to the cell wall. When OsGLPs perform the function of

SOD, they cause an increase in the H2O2 content in the cell wall.

The polymerisation of monolignols is the final step in lignin

synthesis in the cell wall (Perkins et al., 2022; Zhang et al., 2022).

We speculated that OsGLPs could affect lignin biosynthesis

through the generated H2O2. Studies have shown that lignin

polymerization is mediated by ROS (Poudel et al., 2019).

Removal of H2O2 with KI (H2O2 scavenger) resulted in a

sharp decrease in extracellular lignin content in Picea abies

suspension cells (Karkonen et al., 2002). Diaminobenzidine

(DAB) is a commonly used chromogenic substrate that reacts

with H2O2 to form a brown precipitate in plant tissue. H2O2

accumulation can be determined by the shade of the brown

substance (Graham and Karnovsky, 1966). However, DAB

staining showed that OsGLP8-2 overexpression reduced the

H2O2 content (Figure 7A). On the one hand, the measurement

of H2O2 deposition in the cell wall would explain the results

better. On the other hand, when excessive H2O2 disrupts the
D
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FIGURE 6

OsGLPs upregulate the expression of lignin synthesis-related genes using RT-qPCR. The expression of PAL (A), CCR (B), C4H (C), 4CL (D), and
CCoAoMT (E) in 2-week-old WT (wild type) and transgenic seedlings grown for 5 days under normal conditions, 10 mmol L−1 CuSO4 treatment,
or 25 mmol L−1 CdCl2 treatment. ACTIN1 (LOC_Os03g50885) was used as the internal control. The relative expression level was obtained by
normalisation to the expression level in WT plants without heavy metal treatment. Values are the mean ± SD; n = 3. Different letters indicate a
difference of p ≤ 0.05 by the LSD test.
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ROS balance, cells initiate a series of antioxidant enzymes to

ensure oxidat ive homeostas is (Ding et a l . , 2020) .

Malondialdehyde (MDA) content indicates the degree of

peroxidation of the cell membrane and is an important

indicator of plant stress resistance (Yang et al., 2019).

Propidium iodide (PI) is a nuclear fluorescent dye that

indicates the integrity of the plasma membrane (Li et al.,

2021). When the root tip cells are damaged, the permeability

of the plasma membrane increases, PI can enter the cell and bind

to DNA, and red fluorescence can be observed with a

fluorescence microscope. In this study, H2O2 content, MDA

content, and integrity of the plasma membrane in several

materials indicate overexpressed GLP8-2 can alleviate the

oxidative damage to rice caused by Cu and Cd (Figure 7). In

addition, StGLP overexpression significantly increased the

activity of related antioxidant enzymes in potato under heat

stress (Solanum tuberosum L.) (Gangadhar et al., 2021). These

findings imply that overexpression of GLP makes antioxidant

related physiological activities more active in rice under Cu and

Cd stress. Existing studies have shown that oxidation systems in

the cell wall, such as peroxidase/H2O2 and laccase/O2
·-, are not

only important components of the antioxidant protection

system but also activate the polymerisation of monolignols to

generate lignin polymers (Tobimatsu and Schuetz, 2019). When

OsGLP8-2 was overexpressed, the cell-wall-localised oxidation
A B

C

FIGURE 7

OsGLPs protect against heavy metal-induced oxidative stress. (A) Histochemical localisation of H2O2 in leaves of two-week-old WT (wild type)
and transgenic seedlings grown for 5 days under normal conditions, 10 mmol L−1 CuSO4 treatment, or 25 mmol L−1 CdCl2 treatment. The shade
of brown represents the amount of H2O2. Scale bar = 2 mm. (B) MDA content of leaves of two-week-old WT and transgenic seedlings grown
for 5 days under normal conditions, 10 mmol L−1 CuSO4 treatment, or 25 mmol L−1 CdCl2 treatment. Values are the mean ± SD; n = 3. Different
letters indicate a difference of p ≤ 0.05 by the LSD test. (C) The integrity of the cell plasma membrane of rice roots of two-week-old WT and
transgenic seedlings grown for 5 days under normal conditions, 10 mmol L−1 CuSO4 treatment, or 25 mmol L−1 CdCl2 treatment. Red represents
the damage to the plasma membrane. The darker the red, the worse the integrity of the plasma membrane. Scale bar = 200 mm.
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FIGURE 8

Expression levels of OsGLPs induced by heavy metal stress. The
expression of OsGLP8-2, OsGLP8-3, OsGLP8-5, OsGLP8-7, and
OsGLP8-11 in two-week-old wild-type seedlings treated with 10
mmol L−1 CuSO4 (A) or 25 mmol L−1 CdCl2 (B) for 0, 6, 12, and 24
hours. Values are the mean ± SD; n = 3. Different letters indicate
a difference of p ≤ 0.05 by the LSD test.
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system became active, thus enhancing lignin polymerisation.

Further studies are needed to confirm the link between heavy

metal-induced H2O2 production and lignin synthesis by

H2O2 scavengers.

In addition, the glp8-2 and glp8-(2-11)mutants did not show

significant differences. qRT-PCR of 5 randomly selected genes

on chromosome 8 showed that OsGLP8-2 was more easily

induced by Cu and Cd, and its upregulation was much greater

than other tandem genes (Figure 8). This may explain why there

was no obvious difference between the glp8-2 and glp8-(2-11)

mutants under heavy metal stress conditions.
Conclusion

Our findings suggest that OsGLPs play a critical role in

heavy metal resistance for rice via lignin deposition in the cell

wall and antioxidant defence capacity. OsGLP8-2 may play a

main role in tandem repeat gene clusters on chromosome 8 in

rice under heavy metal stress. Further studies on the

physiological role of other OsGLP members, except for

OsGLP8-2, in this tandem repeat gene cluster should be

investigated to explain the diversity of GLP functions.
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