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Editorial on the Research Topic

Convolutional neural networks and deep learning for crop improve-
ment and production
With the development of high-throughput phenotyping (HTP) technology, the large

amount of phenotypic data has provided the breeders with new opportunities of accurate

and repeatable phenotyping or phenomics (Ghamkhar et al., 2019; Roitsch et al., 2019;

Yang et al., 2020). There is also the question of what to do with the increasingly

substantial amounts of generated data using these technologies. Traditionally, we have

used manual/visual methods to estimate or measure plant phenotype. These traditional

methods are time-consuming and labour intensive hence the need to technological

innovation in phenotypic technologies (Furbank and Tester, 2011; Ubbens and Stavness,

2017). Nowadays, with the advent of image processing enabling software handling large

amount of data is more manageable. For phenotyping platforms of industrial scale in

controlled environments, a simple background, a controlled environment, and a

streamlined image processing method make it possible to fully automate high-

throughput phenotypic data acquisition and analysis. However, for complex working

conditions, such as field and phenotyping platforms with complex backgrounds, the

challenges of image processing increase dramatically. Further, the robustness of the

program will also decline due to the challenges of repeatability, which inadvertently will

increase the costs of programming and the labour cost for manual intervention. In more

complex cases, such as segmentation of specific parts of a plant, image processing

methods are more challenging to achieve congruent results due to the complexity of

features. Recent advances in deep learning technologies will ease overcoming

this bottleneck.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1079148/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1079148/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1079148/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1079148/full
https://orcid.org/0000-0003-3986-2460
https://orcid.org/0000-0001-6285-0981
https://orcid.org/0000-0002-2633-1911
https://www.frontiersin.org/research-topics/35481#articles
https://www.frontiersin.org/research-topics/35481#articles
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1079148&domain=pdf&date_stamp=2022-11-18
mailto:ywn@mail.hzau.edu.cn
mailto:gegea@us.es
mailto:kioumars.ghamkhar@agresearch.co.nz
https://doi.org/10.3389/fpls.2022.1079148
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1079148
https://www.frontiersin.org/journals/plant-science


Yang et al. 10.3389/fpls.2022.1079148
The purpose of object detection is to find out the location of

an object in the image and classify it. This is a combination of

object localization and image classification. Compared with

image classification, where the classification can only get an

image of the subject, the object detection task is used to detect

the image of a number of different categories of individuals,

often used to count or target tasks, and is widely used in

automated tasks, so as to realize the recognition of pedestrians,

vehicles and traffic light detection (Xiao et al., 2020).
Species identification
and discrimination

The application of deep learning technology in phenotyping

is mostly in image processing. The core process of image

classification task is to assign labels to the images of interest

(Bateman et al., 2020; Chen et al., 2021). The use of deep

learning network can classify images end-to-end, without the

need to extract the features of the target and quantify them into

data as in traditional image processing methods. Large-scale data

acquisition using UAVs are examples for using deep learning in

order to decimate the data processing time. Zhang et al.

demonstrate the use of UAV and CNN to identify and map

weeds in various areas of the field, which can effectively help the

more efficient control and removal of weeds. Application

programming interface (API) implementation of the PyTorch

deep learning library has been used in this study with a range of

precision depending on the weed species and type. Not

surprisingly, the authors suggest that more than one model

would be needed to improve the weed mapping involving more

than one species. Fujiwara et al. applied convolutional neural

network on UAV data and quickly classified and segmented

grasses in UAV images, thereby quantifying the coverage

legumes in the area of interest, effectively achieving the

appropriate management of a grass and legume mixture. Yue

et al. have applied deep learning as well as partial two pattern

recognition models (least squares discriminant analysis (PLS-

DA) and support vector machine (SVM)) to identify the

medicinal plant Paris polyphylla var. yunnanensis using

spectroscopy data. Their results show that the deep learning

model had clear advantage in the identification of this plant. The

direct use of two-dimensional correlation spectroscopy

(2DCOS) shows the strength of deep learning for multi-class

image data.
Crop disease recognition

Convolutional neural network (CNN) can effectively identify

plant disease categories that would have only been possible by

the experts in the past. Wang et al. use a deep learning model
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called Coordinated Attention EfficientNet (CA-ENet) to identify

different apple diseases. Their method’s accuracy reached

98.92%, and the average F1-score reached 0.988, which is

superior to many mainstream models and has a certain

robustness. Their model learnt both the channel and spatial

location information of important features. The targeted design

network can better realize the purpose of agricultural

application. For example, the proposed deployment based on a

dilated convolution capsule network (DCCapsNet), proposed by

Xu et al., can quickly capture and define diseased apple leaves,

and potentially enable early prevention of apple diseases. Deep

learning object detection has obvious advantages in counting,

positioning, and judgment, which is a milestone that is difficult

to achieve by traditional image processing methods. Zhou et al.

used deep learning image classification technology to identify

rice diseases. When different diseases cause similar or the same

symptoms, simultaneous training is better than separate

training. When the symptoms are significantly different, any

method can achieve high accuracy.
Reproductive yield measurement

The detection model to identify grains in the rice panicle and

whether the grain is full or bare is used by Guo et al., in order to

define rice seed setting rate (RSSR) more accurately and measure

reproductive yield in a high-throughput manner. In the study of

plant phenotype, object detection task has also been very widely

used. In general, the object detection task in plant phenotype is

to find and define the regions of great significance in the plant,

specifically for breeding purposes. Zang et al. use the improved

classic YOLOv5s detection model, by introducing an efficient

channel attention module (ECA), to identify wheat spikes with a

detection accuracy of 71.61%, allowing for rapid and accurate

wheat reproductive yield estimation. This method is specifically

useful in complex field environments. New methods and new

ideas beyond deep learning are also emerging. Ensemble

learning, for example (Shahhosseini et al.), predicts grain yield

directly from images and some environmental data. Different

from mature deep learning application schemes such as network

application and modification network, how to mine new

applications of deep learning in phenotyping is an important

part of the future developments.
Identification of different
stages of growth

The use of data collected by UAVs helped effective

identification of the growth stages of rice seedlings (Tan et al.),

thereby providing valuable time-sensitive advice for cultivation

management. This is an alternative high-throughput method to
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the current labor intensive and subjective manual measurement

practice. Histograms of oriented gradients (HOGs) were

combined with the support vector machine (SVM) classifier to

recognize and classify three growth stages.
Segmentation for morphometrics of
micro and macro organs

Compared with the image segmentation based on the

traditional image processing technology, image segmentation

based on deep learning techniques can handle different scales in

the target segmentation task and has the ability to solve the

problem of complicated background, therefore it has great

application prospect in agriculture (Ghosh et al., 2019). The

use of RGB, near-infrared images or a combination of both has

been shown to be accurate in seed quality assessment (Hansen

et al., 2016). In this issue, Wang et al. combine these two imaging

modalities and the watershed algorithm to segment corn seeds

and then use deep learning to identify seed defect. The authors

report an accuracy of >95%. Frommacro to micro, deep learning

image segmentation technology can also be applied to the

segmentation of microscopic images such as stomata (Gibbs

et al.), which can realize fully automatic morphological

measurement of stomata and maximal conductance estimation

of stomata. As this study shows, deep learning image

segmentation technology can extract specific targets at the

pixel level, and the information obtained is larger, but the

drawback is that the difficulty of data labeling is also

greatly increased.

Segmentation of wheat leaves under outdoor conditions is a

challenging task, but it is also a prerequisite for high-throughput

field phenotype. The classical semantic segmentation model

DeepLab V3 can effectively segment wheat leaves under

complex field background with a mIOU of 0.77, which lays a

foundation for quantifying canopy cover and deriving traits in

the field (Zenkl et al.). Similarly, by deploying an improved fully

convolutional network with channel and spatial attention on an

intelligent harvesting robot, the branches and fruits of guava

trees have been segmented in real time to plan collision-free

paths for fruit picking (Lin et al.).

In pixel-level image segmentation, extracting the image from

the area of interest is an important and difficult challenge in

automatic image processing. Nowadays, in the application of

deep learning in plant phenotyping, data are generally collected

by researchers themselves, and the difficulty of data acquisition

and data labeling is self-evident. Apart from the industry’s data,

there are a large number of public data sets, and transfer

applications in industry only need to conduct small transfer

learning on pre-trained models to obtain reasonable results.

Unfortunately, few phenotype-related data are available in
Frontiers in Plant Science 03
publicly available datasets, which makes it more important to

develop large-scale phenotype-specific datasets and pre-trained

models, which can greatly reduce the input of data acquisition

for researchers, such as AgriNet’s pioneering work (Al Sahili and

Awad). Consistent with the computer industry, actively adopting

new technologies, adapting measures to local conditions, and

expanding innovation may make deep learning technology play

even more a more significant role in future phenotyping.
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