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and Hanguo Zhang1*

1State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China,
2Heilongjiang Academy of Forestry, Harbin, China
Korean pine is a native tree species in Northeast China. In order to meet the needs

of germplasm resource evaluation and molecular marker-assisted breeding of

Korean pine, we collected Korean pine clones from 7 populations in Northeast

China, analyzed the genetic diversity and genetic structure by SSR molecular

marker technology and clustered them to revealed the inter- and intrapopulation

differentiation characteristics of each clone. The fingerprint profiles of 161 Korean

pine clones were also constructed. 77 alleles were detected for 11 markers, and 18

genotypes were identified on average for each marker. The PIC of the different

markers ranged from 0.155-0.855, and the combination of PI and PIsibs for the 11

markers was 3.1 × 10-8 and 1.14 × 10-3, respectively. MANOVA showed that genetic

variation existed mainly within populations, accounting for 98% of the total

variation. The level of genetic differentiation among populations was low, with

an average Nm between populations of 11.036. Genetic diversity is lower in the

Lushuihe population and higher in the Tieli population. The 161 Korean pine clones

were divided into 4 or 7 populations, and the 7 populations were not clearly

distinguished from each other, with only the Lushuihe population showing partial

differentiation. There is no significant correlation between the genetic distance of

Korean pine populations and the geographical distance of their superior tree

sources. This result can provide recommendations for future Korean pine

breeding programs. The combination of 11 markers could completely distinguish

161 clones and establish the fingerprint. Genetic diversity of Korean pine clones

from the 7 populations was abundant, and the genetic distances of individuals and

populations were evenly dispersed. The fingerprint map can be used for the

identification of Korean pine clones.
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1 Introduction

Genetic diversity is the basis of evolution (Hughes et al., 2008)

and provides the raw material for evolution of natural selection

(Nevo, 1988; Zhang et al., 2022). Intraspecific genetic variation is

the basis and most basic level of biodiversity (Pauls et al., 2013), and it

is important for the evolution and conservation of species (Ellegren

and Galtier, 2016). The level of genetic diversity within a population

affects the productivity, growth and stability of that population

(Hughes et al., 2008). Genetic diversity may not necessarily enable a

population to persist, but reduced genetic diversity in a population

may have long-term effects on its future evolution, as well as on its

adaptive capacity in times of environmental change (Jump et al., 2009;

Markert et al., 2010). The assessment of genetic diversity within and

among populations is important for decision-making in genetic

conservation programs, because studying the relationship between

genetic diversity and fitness can predict the importance of genetic

diversity for a given population (Eding et al., 2002). The genetic basis

of a breeding population determines the genetic quality and long-

term potential of breeding programs and products (Ivetić et al., 2016).

The size of parental populations determines the level of genetic

diversity in new stands (Flint-Garcia, 2013), so it is in our best

interest to maintain diversity and promote systematic redundancy

and resilience (Ledig, 1992). To avoid population genetic bottlenecks

and maintain maximum effective population size, appropriate

sampling strategies can maximize increase genetic diversity in the

population of seed production (Ivetic et al., 2016). Regular

monitoring of trends in genetic diversity utilization in breeding

programs can provide breeders with options for developing new

varieties and hybrids (Govindaraj et al., 2015; Jin et al., 2016).

Korean pine (Pinus koraiensis), a genus of pine in the family

Pinaceae, National Key Conserved Wild Plants of Grade II in China, is

a native species in northeast China (Lim, 2012). Traditionally, Korean

pine is a good tree species capable of providing wood, pulp and oil. In

addition, the seed of Korean pine is the most popular pine nut due to its

nutritional value (Yoon et al., 1989; Wolff et al., 2000), high amounts of

crude protein, crude fat, polysaccharides and crude fiber as well as

vitamins, minerals and trace elements (Ca, P, Mn, Co, Cu and Zn)

(Nergiz and Donmez, 2004; Zadernowski et al., 2009). The market

demand for superior Korean pine seeds has promoted the development

of Korean pine clones seed orchard, which were established in China as

early as the early 1960s, and the technical system for the creation from

fringe picking to seedlings management was proposed in the 1970s.

Subsequently, Korean pine clones seed orchards were established in

many places in northeast China to improve the genetic quality of Korean

pine seeds that can be used for afforestation. At the same time, research

on productivity techniques, flowering and fruiting patterns in Korean

pine seed orchards is also being conducted (An et al., 1992). These

excellent Korean pine resources have become important conventional

breeding materials and are used in traditional breeding studies, including

analysis of fruiting traits, selection of superior clones, analysis of seed

traits, nutrient composition, variation studies of seed traits, genetic

diversity analysis and studies on phenotypic diversity of needles and

cones in Korean pine seed orchard (Zhang et al., 2015b; Tong et al., 2019;

Weihuai et al., 2019; Pingyu et al., 2020; Qianping, 2020; Longhai et al.,
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2021). In addition, studies on the reaction conditions of ISSR, SSR and

SRAP in Korean pine, laying the foundation for genetic differentiation of

Korean pine populations based on molecular markers (Feng et al., 2004;

Feng et al., 2010; Zhao et al., 2010).

Follow-up surveys conducted to confirm clones have generally

shown that mislabeling of seed orchard divisions is relatively common

(Wheeler and Jech, 1992). Plant varieties are often identified by

morphology, traditionally. However, it is difficult to identify different

clones morphologically, because there is little morphological variation

among clones, and some morphological appearances are susceptible to

environmental factors. The limitations of genetic markers for phenotype

have led to the development of more effective-directly DNA-based

markers called molecular markers, which is specific DNA fragments

representing genome-level differences (Agarwal et al., 2008).

Microsatellite is ideal for identifying individuals and studying genetic

diversity, due to their ubiquity, reproducibility, a high level of

polymorphism, co-dominant and high levels of transferability (Guan

et al., 2019; Lv et al., 2020; Nn et al., 2020; Carletti et al., 2021). Therefore,

SSR has been used for genetic diversity studies, genetic linkage, and

fingerprinting of many important economic tree species, such as Date

palm (Ziziphus jujuba Mill.), Poplar (Populus L.), and Pear (Pyrus spp)

(Liang et al., 2005; Gao et al., 2012; Ma et al., 2012), as well as pines such

as Masson pine (Pinus massoniana) (Afeng, 2005) and Camphor pine

(Pinus sylvestris var. mongolica) (Huili et al., 2022).

In this study, we collected 161 clones from 7 Korean pine seed

orchards in northeastern China. 11 SSR genotyping data of 161 clones

of Korean pine were obtained by capillary electrophoresis. The

fingerprint map of Korean pine clones was established, which

provides a strong guarantee of technology for resource sharing and

the distribution application of superior clones, and has important

value in property protection and promotion of superior seed. In

addition, the genetic diversity and genetic structure of Korean pine

clones seed orchard are evaluated and systematically described, which

can help improve the utilization efficiency of Korean pine resources,

guide the development of further breeding strategies, and provide a

basis for the scientific utilization of Korean pine germplasm resources.

2 Materials and methods

2.1 Plant materials and DNA extraction

In this study, a total of 161 clones were collected from 7 Korean

pine seed orchards in Heilongjiang and Jilin Province, whose superior

tree (refers to individuals with excellent growth, timber and resistance

adaptations in natural or planted forests with similar environmental

conditions, such as the same stand conditions, the same forest age and

the same forestry measures) originated from 6 sites in Changbai

Mountains and Xiaoxinganling, the main distribution areas of Korean

pine (Table 1). Total of 805 samples collected, with 5 ramets has

collected from each clone. Annual conifers of Korean pine were

collected and snap-frozen in liquid nitrogen for DNA extraction.

Total DNA of Korean pine samples was extracted using the DP-

320 Plant Genome Extraction Kit (Tiangen, Beijing, China). The

integrity of genomic DNA was examined using a 1% agarose gel, and

DNA concentration and quality were examined using Micro-
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Spectrophotometer (Bio-DL, Shanghai, China.) after extraction. The

concentration of each DNA sample was diluted to 10 ng/mL and

stored at -20°C.
2.2 SSR primer selection and genotyping

A total 142 primer pairs from the published SSR primers of 7

species of Pinaceae (Pinus taeda, Pinus albicaulis , Pinus

dabeshanensis, Pinus armandii, Pinus koraiensis and Pinus

massoniana) were selected and synthesized by Sangon Biotech

(Shanghai) Co., Ltd., Shanghai, China (Liewlaksaneeyanawin et al.,

2004; Echt et al., 2011; Yu et al., 2012; Dou et al., 2013; Xiang et al.,

2015; Zhouxian et al., 2015; Zhang et al., 2015a; Dong et al., 2016; Lea

et al., 2018; Li et al., 2020). Ten samples of DNA were randomly

selected for polymorphism screening of synthesized primers. A PCR

system was performed on DNA Engine thermal cycler (Biometra,

Ilmenau OT Langewiesen, Germany) in 20ml volumes containing 0.5

mM each of forward and reverse primers, 200 mM dNTP, 2.0 mL
10×buffer, 2 U Taq DNA polymerase (TransGen Biotech Co., Beijing,

China), and around 10 ng DNA. The PCR program was as follows:

3 min at 94°C, 35 cycles of 30 s at 94°C, 30 s at Tm (Table 2), and 15 s

at 72°; and a final extension at 72°C for 7 min.

The PCR products were then detected by 7% PAGE, and 11 SSR

markers with good reproducibility and significant polymorphism were

selected finally. Forward primer of each marker was labelled at the 5’ end

with fluorescent dye HEX, 6-FAM, ROX, or TAM. PCR was performed

under light-protected conditions with the same reaction system as above.

All PCR products were sent to Sangon Biotech (Shanghai) Co., Ltd.,

Shanghai, China for capillary electrophoresis genotyping by ABI 3730XL

(Applied Biosystems, Foster City, CA, USA) and the identification

genotype data were collected for subsequent analysis.
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2.3 Data analysis

2.3.1 Analysis of marker polymorphism and
identification power

The DNA polymorphism information was processed into a data

matrix, and the data matrix was converted into various formats by

DataFormater 2.7 for further analysis (Wenqiang et al., 2016). Genetic

parameters such as number of alleles (Na), number of effective alleles

(Ne), Shannon diversity index (I), observed heterozygosity (Ho) and

expected heterozygosity (He) of each primer was calculated using

Popgen 32 (Li et al., 2003), primer polymorphism information

content (PIC) was calculated using PowerMarker V3.25 (Liu and

Muse, 2005), and primer identity probabilities (PI) and random

identity probabilities (PIsibs) were calculated using GenAIEX

6.51b2 (Peakall and Smouse, 2006). Significant deviations from

both the Hardy-Weinberg equilibrium (HWE) and linkage

disequilibrium (LD) between all pairs of SSR loci were identified by

Genepop v4.2 (Raymond and Rousset, 1995).

2.3.2 Genetic structure and genetic
diversity analysis

GenAIEX 6.51b2 was used to calculate the number of alleles (Na),

Shannon diversity index (I), number of effective alleles (Ne), number

of more than 5% alleles (Na, F>5), observed heterozygosity (Ho),

expected heterozygosity (He), unbiased expected heterozygosity

(uHe), F-fixed index (F), and number of private loci (NPA) for each

population (Peakall and Smouse, 2006). MANOVA, principal

coordinates analysis (PCoA) and generation of interpopulation

genetic differentiation coefficient (Fst) and gene flow (Nm) matrices

were performed using GenAIEX 6.51b2 to delineate genetic variation

between and within populations (Peakall and Smouse, 2006). Genetic

distance matrix of clones clustering maps was generated by NtSys
TABLE 1 Summary of material source information.

Population
Source of
Superior
Tree

Location
(°)

Elevation
(m)

Number
of clones Clones

Bohai Xiaobeihu
N 44.21; E
128.56

743 18
BH1, BH6, BH8, BH16, BH26, BH38, BH45, BH51, BH61, BH63, BH66, BH67, BH69, BH70,
BH71, BH73, BH92, BH93

Hegang Wuying
N 48.24; E
129.25

547 26
HG3, HG4, HG7, HG8, HG9, HG10, HG11, HG12, HG14, HG15, HG17, HG21, HG24,
HG25, HG26, HG27, HG28, HG29, HG30, HG31, HG39, HG40, HG44, HG46, HG47, HG51

Lushuihe Lushuihe
N 42.47; E
127.78

775 21
LSH21, LSH22, LSH25, LSH38, LSH96, LSH99, LSH105, LSH106, LSH117, LSH127, LSH132,
LSH139, LSH161, LSH162, LSH165, LSH169, LSH179, LSH193, LSH194, LSH331, LSH428

Weihe Hebei
N 48.08; E
130.31

458 25
WH025, WH091, WH112, WH114, WH115, WH116, WH117, WH136, WH137, WH138,
WH139, WH140, WH141, WH142, WH145, WH146, WH147, WH148, WH187, WH188,
WH192, WH194, WH196, WH198, WH200

Linkou Wuying
N 48.24; E
129.25

547 25
LK6, LK10, LK11, LK12, LK13, LK14, LK15, LK16, LK17, LK18, LK19, LK24, LK25, LK26,
LK27, LK79-1, LK79-4, LK79-5, LK79-9, LK79-11, LK79-13, LK79-33, LK79-35, LK79-36,
LK79-37

Tieli Langxiang
N 46.95; E
128.87

332 22
TL1006, TL1018, TL1024, TL1054, TL1068, TL1080, TL1090, TL1091, TL1102, TL1105,
TL1112, TL1140, TL1149, TL1185, TL1194, TL1198, TL1204, TL1212, TL1270, TL1271,
TL1298, TL1357

Sanchazi Sanchazi
N 42.63; E
126.85

601 24
SCZ113, SCZ114, SCZ115, SCZ116, SCZ117, SCZ119, SCZ120, SCZ121, SCZ122, SCZ123,
SCZ124, SCZ125, SCZ126, SCZ127, SCZ129, SCZ130, SCZ131, SCZ132, SCZ133, SCZ134,
SCZ135, SCZ136, SCZ137, SCZ138
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2.10e and used for constructing a neighbor-joining dendrogram in

MEGA 11 (Tohme et al., 1996; Tamura et al., 2011). Neighbor-joining

dendrogram between populations was also constructed in MEGA 11

based on Nei genetic distance (Tamura et al., 2011).

Based on the latitude and longitude of the source location of

superior tree, the geographical distance between the source locations

of superior tree was calculated by the following formula:

d = R*
arcos cos Y1ð Þ*cos Y2ð Þ*cos X1 − X2ð Þ + sin Y1ð Þ*sin Y2ð Þ� �

R is the radii of the earth (6371.0 km);

X1, X2, Y1, Y2 are two location coordinates radians;

Radians= coordinates * P/180;

SPSS v19.0 software was used to detect the correlation between

geographic distance and genetic distance among the 6 superior

tree sources.

The genetic structure was investigated in software STRUCTURE

v2.3.4 using an admixed model with 100,000 burn-ins followed by

100,000 iterations (Ravelombola et al., 2018). Markov Chain Monte

Carlo iterations run 10 times of a number (K = 2-18) of genetically

homogeneous clusters. The operation results were imported into the

Structure Harvester website (https://taylor0.biology.ucla.edu/

structureHarvester/) (Earl and vonHoldt, 2012), and the optimal K
Frontiers in Plant Science 04
values were selected according to the method of Evanno et al. (Evanno

et al., 2005).

2.3.3 Fingerprint mapping construction
The fingerprint map of 161 clones was generated by combining

the 11 pairs of SSR primers obtained from screening, sorting them in

order from smallest to largest according to the size of the target

fragment. The clone genotypes were coded using letters and arranged

in a certain order to obtain the clone gene code. The name, scientific

name and location of the clone, the source of the superior tree and the

fingerprint code were organized into a separate Excel and uploaded to

the online platform (https://cli.im/) to obtain the corresponding QR

code for each clone (Li et al., 2022).
3 Result

3.1 Analysis of SSR marker polymorphism
and discriminatory ability

There were 55 combinations of loci in the whole population, of

which 4 pairs (7.27%) had LD between loci combinations at the
TABLE 2 SSR primer information of Korean pine.

Locus Primer Sequence Motif Tm (°C) Size (bp) Fluorescent dye Reference

p49
F:GAGATGAGCGAATCTGGG

(AAG)7 52 261 FAM

Zhang et al., 2015b

R:TACAAGTTCCACCTACGG

p70
F:CAACATCGCCAATGACTC

(CTCA)6 54 294 FAM
R:CCTACCTACGCTCTGCTC

p72
F:TGGGTTACCACCTTTAGC

(GCT)6 52 193 HEX
R:CAATCAGAGTCTGGAGCA

p79
F:CCACCGCCAAGTCCATTA

(CAA)7 55 190 HEX
R:GCTTTGTTAGCCGTCCAG

p82
F:GGAAGATGAATCGCAAACC

(GCG)6 54 280 ROX
R:ACACCCGCCTGAAGAGCA

EPD11
F:GTGGATGCAATGAAGAAAAACAT

(AGG)6 60 139 TAM Xiang et al., 2015
R:ACGAATTGCAAAACTGCATAACT

NFPK-34
F:AACCCACAGAAAGCTGAGGA

(TAA)6 60 221 TAM Li et al., 2020
R:CACCCCTGAACAGAGAGGAG

P6*
F:TCAAATTACCAGACAATAA

(TA)3(GT)15 55 125 FAM

Yu, 2012

R:GAATTCGCCAATGAAATCA

P45*
F:CTTACATTTTGCTGCTTTTC

(TG)16(AG)17 55 173 HEX
R:TTGTCAGTTTTAGGTTGGAT

P51*
F:CCTAAGAGCAATGTAAAATG

(AG)15 55 204 TAM
R:AGCTTGACAACGACTAACT

P52*
F:CCATCCTTCAAATTTTCCT

(AG)26 56 138 ROX
R:GCCATTCTTTCTACCACTT
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significance level of P<0.001. The results of primer genetic analysis

(Table 3) showed that a total of 75 alleles were detected at the 11 SSR

loci, of which 33.004 were effective alleles, with the mean value of

major allele frequency was 0.622. 186 genotypes were identified, with

an average of 16.909 genotypes per marker, and the observed

heterozygosity and expected heterozygosity on average were 0.451

and 0.514, respectively. The mean values of Shannon diversity index

and Nei diversity index were 1.094 and 0.512, respectively, indicating

the high genetic diversity among clones. The polymorphism

information content (PIC) of 11 markers ranged from 0.155 to

0.855, among which 10 markers showed moderate or high

polymorphism relatively. All markers can effectively analyze the

genetic structure and genetic diversity of Korean pine clones.

Two key statistical values, PI and PIsibs, were calculated to assess the

ability to identify 11markers for Korean pine clones (Table 3). PI for each

molecular marker ranged from 0.028-0.593 with a mean value of 0.393.

PIsibs is often defined as the upper PI limit, and the PIsibs of the 11 SSR

markers ranged from 0.320-0.773 with a mean value of 0.565. The

cumulative probability of identity of markers according to the obtained

data (Figure 1), PI tended to 0 when the number of marker combinations

is 7 and PIsibs tended to 0 when the number of marker combinations is

11. Assuming that all marker loci are independent of each other, the

probability of two random Korean pine clones having the exact same

multi-locus genotype combination among all 11 molecular markers is

estimated to be 3.1×10-8, and the combined PIsibs was 1.14×10-3. 161

Korean pine clones could be considered to be completely distinguished

by the 11 SSR markers. The above results prove that the combination of

these markers not only had high polymorphism but also showed a strong

potential for fingerprint recognition.
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3.2 Analysis of genetic structure and
genetic diversity

3.2.1 Analysis of genetic variation
among populations

MANOVA was performed to determine variate characteristics of

the 7 populations, and the results showed that (Table 4): population

genetic differentiation coefficient (Fst) was 0.044 (P< 0.001),

indicating a low level of genetic differentiation among populations.

Genetic variation existed mainly within populations, accounting for

98% of the total variation, and the incidence of genetic variation

among populations was only 2%. All of which indicated that there

were extensive exchanges of genetic resources within each population.

The level of genetic differentiation between populations was low,

while the genetic variation within populations was much higher than

that between populations. The inbreeding coefficient (Fis) was 0.078

(Fis > 0), indicating the presence of homozygous excess and the

presence of interpopulation inbreeding.

Fst and Nm between two populations were calculated for seven

populations to reveal genetic differences and gene flow among

different populations of Korean pine clones. The results showed

that (Figure 2): the Fst ranged from 0.012-0.047 with an average of

0.025, and the Nm ranged from 5.013-19.750 with an average of

11.036 among different populations, indicating that the genetic

differentiation range among populations was small and there was a

high frequency of genetic exchange. The highest Fst and the lowest

Nm were found between the Lushuihe and Weihe, which may be due

to the long geographical distance between Lushuihe and Hebei, the

superior tree source of these two populations (Figure 3).
TABLE 3 Genetic diversity parameters of 11 SSR marker.

Locus MAF Na Ne N Ho He Shannon Nei PIC HWE PI PIsibs

p49 0.665 4 1.831 6 0.503 0.455 0.698 0.454 0.362 NS 0.418 0.646

p70 0.693 4 1.901 7 0.391 0.476 0.845 0.474 0.428 NS 0.319 0.590

p72 0.845 3 1.374 4 0.273 0.273 0.524 0.272 0.251 NS 0.545 0.748

p79 0.736 5 1.680 6 0.404 0.406 0.705 0.405 0.347 *** 0.331 0.599

p82 0.832 4 1.400 5 0.186 0.287 0.530 0.286 0.256 *** 0.533 0.737

EPD11 0.627 4 2.036 8 0.528 0.510 0.860 0.509 0.431 NS 0.321 0.580

NFPK-34 0.907 2 1.203 3 0.124 0.170 0.310 0.169 0.155 NS 0.593 0.773

P6* 0.640 9 2.297 22 0.534 0.566 1.287 0.565 0.543 NS 0.203 0.513

P45* 0.245 16 7.362 48 0.708 0.867 2.256 0.864 0.851 *** 0.028 0.320

P51* 0.252 13 7.562 48 0.745 0.871 2.239 0.868 0.855 *** 0.029 0.322

P52* 0.401 11 4.358 29 0.559 0.773 1.781 0.771 0.745 *** 0.076 0.383

Mean 0.622 6.818 3.000 16.909 0.451 0.514 1.094 0.512 0.475 0.309 0.565

Total – 75 33.004 186 – – – – – 3.1×10-8 1.14×10-3

***Denotes Significant departure from Hardy-Weinberg equilibrium at P<0.001. NS denotes meet Hardy-Weinberg equilibtium.
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3.2.2 Analysis of genetic diversity
within populations

To assess genetic diversity and genetic differentiation of these 7

populations, genetic diversity analysis was performed and results

showed that (Table 5): the level of genetic differentiation within 7

populations did not vary significantly, with Tieli population having the

highest genetic diversity and the highest number of alleles, Shannon

diversity index, observed heterozygosity at 55, 1.087, 0.479 respectively.

the lowest Shannon diversity index and observed heterozygosity was in

Lushuihe population with 0.915, 0.473 respectively.

The fixation index (F) ranged from -0.115 (Weihe) to 0.128

(Tieli), with an average of 0.061. F>0 indicates heterozygote

deficiency, over-purity and inbreeding in Korean pine populations.

Overall, the Tieli population showed high genetic diversity, while the

Weihe population showed relatively lower genetic diversity, and no

inbreeding was detected in this population.

The results of principal coordinate analysis (PCoA) of Korean

pine clones from 7 populations showed that Coordinates 1 explained

9.93% of the variation and Coordinates 2 explained 7.45% of the

variation, indicating that each of the above molecular markers has a

high degree of independence. There is a high degree of distribution

overlap among populations in the figure, with the Lushuihe

population having an extensive distribution and some clones

showing relative independence, while the other populations are

relatively clustered, with the Linkou population being more

dispersed. There is some genetic divergence between the Weihe

population and the Tieli population, and the distribution range of

Weihe is the smallest, indicating that the genetic diversity of clones

within the Weihe population is low (Figure 4), which is similar to the

results of the Shannon diversity index in Table 5.
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3.2.3 Analysis of cluster and genetic structure
The results of cluster analysis among populations by the Nei

genetic distance matrix showed (Figure 5A): The genetic distance

among populations was small and the level of genetic differentiation

was low, which was consistent with the results of MANOVA. The

genetic distance between Bohai and Hegang, Lushuihe and Linkou

was similar respectively, but the genetic distance of Weihe was far

from Sanchazi. Lushuihe and Sanchazi were more independent,

which was similar to the results of PCoA. However, it is worth

noting that Hegang and Linkou have the same source location of

superior tree, but they do not have the closest genetic relationship

with each other. The correlation analysis between Nei genetic distance

and geographic distance revealed that the Person coefficient was 0.075

(P=0.704), indicating the insignificant correlation between genetic

distance and geographic distance of their superior tree sources.

The genetic distances of 161 clones were calculated by NTsys

2.10e software, and the results of clustering using MEGA showed that

(Figure 5B): the clones from different sources were not clearly

separated from each other, and the clones in each cluster did not

come from the same location or the same superior source. The clones

from different places were dispersed in each cluster. Clustering results

did not correlate significantly with the location of the clones. The

above results indicate that there is a high degree of gene exchange

among populations and little genetic differentiation among

populations. However, clones from Changbai Mountain are highly

distributed on the left side of the clustering map, while clones from

Xiaoxinganling are highly distributed on the right side and the lower

part of the clustering map in general. Similar to the results of the

principal coordinate analysis, although the populations were not

clearly divided, the clones of different populations had
TABLE 4 MANOVA for the population of Korean pine clones.

Source DF SS MS Variance component Variance component/% Fit Fis Fst

Among Pops 6 1244.936 207.489 2.767 2

Within Pops 154 22172.480 143.977 143.977 98

Total 160 23417.416 146.745 100 0.117 *** 0.078 *** 0.044 ***

***Denotes significant differences at P<0.001.
fron
FIGURE 1

Identification ability of SSR markers in Korean pine clones.
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corresponding distribution ranges. For example, clones from Weihe

had a small and relatively concentrated distribution range, which was

consistent with the results of analysis of population diversity and the

principal coordinate analysis, indicating that the genetic relationships

among populations were similar and reflecting the degree of genetic

differentiation within populations.
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Structure analysis was performed on all the reference materials.

DK had a maximum value when K=4 and 7 in K=2-18 (Figures 6A, B),

indicating that the 161 clones could be divided into 4 classes or 7

classes. The populations were not clearly differentiated and no

individuals had 100% population affiliation in both cases

(Figures 6C, D). However, the Lushuihe partial clones had a
FIGURE 3

Geographical distribution of superior tree source of Korean pine populations. (Light blue indicates Heilongjiang Province and light purple indicates Jilin
Province. The geographic conditions for each site can be found in Table 1).
FIGURE 2

Genetic differentiation coefficients (lower left) and gene flow (upper right) between populations. (BH, Bohai; HG, Hegang; LSH, Lushuihe; WH, Weihe; LK,
Linkou; TL, Tieli; SCZ, Sanchazi).
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significantly high probability of occurrence in a certain population,

indicating that the Lushuihe population partial clones had relative

genetic independence, which was similar to the results of PCoA.
3.3 Fingerprint mapping construction

Based on the genotyping data detected by 11 SSR markers,

multiple locus matching analysis was performed in GenAlex 6.51

for 161 Korean pine clones. There is no identical genotype detected in

two varieties, indicating that each of the 161 clones had its own

unique SSR multi-locus genotype combination. The molecular

markers were sorted according to the order of the target fragments

from smallest to largest, and each marker consisted of two alleles. The

molecular fingerprints of all 161 clones were generated according to

the blocks with different color marking the different genotypes under

each marker (Figure 7), with each color representing a variant locus

information and each clone having a unique color block combination.

The genotyping data of each marker are indicated by letters

respectively, and sorted in the order of amplified fragments from

smallest to largest, and each clone gets its corresponding 22-digit

letter code (Supplementary Table S1).

The name, location, source and genotyping data of each clone were

uploaded to the QR code generation platform (https://cli.im/batch) to

generate a unique QR code for each clone, which can be scanned to

obtain specific information of the clone (Supplementary Figure S1).
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4 Discussion
The genetic diversity of a population determines whether a

population can adapt to a complex environment, and the higher the

genetic diversity, the more adaptable the population is to different

environments and the more resistant it is to shocks arising from

environmental changes (Wachowiak et al., 2011). In order to develop

a reasonable and effective breeding strategy, accelerate the process of

genetic improvements of Korean pine, it is important to analyze the

genetic diversity of Korean pine clone resources and evaluate the

genetic structure of seed orchards by using SSR molecular marker.

SSR markers have the advantages of codominance, stable amplification

and good repeatability, which is a commonmethod for genetic diversity

analysis (Hao et al., 2017); at the same time, SSR molecular markers

have strong specificity, clear bands and accurate data, which is suitable

for the construction of fingerprint profile for a large number of

resources (Park et al., 2009). Initially, we screened 11 Korean pine

SSR loci, and the average values ofNa andHe for the 11 loci were 6.818,

0.514. PIC is an important parameter for expressing the degree of

genetic diversity among plants, and its evaluation is beneficial to the

establishment of plant gene pools and the acceleration of the breeding

process (Avval, 2017). The average PIC of the SSR loci screened in this

study was 0.475, showing moderate polymorphism (Botstein et al.,

1980). Therefore, it is suitable for the genetic diversity evaluation of

Korean pine breeding resources. The LD between 4 pairs of loci reached
FIGURE 4

Principal coordinates analysis (PCoA) of Korean pine clones. (BH, Bohai; HG, Hegang; LSH, Lushuihe; WH, Weihe; LK, Linkou; TL, Tieli; SCZ, Sanchazi).
TABLE 5 Genetic parameters of 7 Korean pine populations.

pop Na Ne Na(F≥5%) NPA Shannon Ho He uHe F

Bohai 52 26.996 38.000 1 0.941 0.444 0.460 0.473 0.035

Hegang 52 30.149 38.000 0 1.002 0.448 0.505 0.515 0.083

Lushuihe 52 29.745 34.000 2 1.009 0.455 0.518 0.531 0.106

Weihe 53 31.431 36.000 0 0.915 0.473 0.437 0.445 -0.115

Linkou 52 31.084 39.000 1 1.001 0.425 0.488 0.498 0.119

Tieli 55 33.212 39.000 3 1.087 0.479 0.536 0.548 0.128

Sanchazi 53 30.790 38.000 2 1.012 0.436 0.502 0.512 0.074

Mean 52.714 30.487 37.429 1.286 0.995 0.451 0.492 0.503 0.061
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A B

D

C

FIGURE 6

STRUCTURE analysis of Korean pine population. (A) Calculation of population structure using Mean LnP (K). (B) Relations between the optional number
of cluster K and Delta K(C) Genetic structure map of 7 populations of Korean pine based on STRUCTURE analysis (K = 4). (D) Genetic structure map of 7
populations of Korean pine based on STRUCTURE analysis (K = 7).
A B

FIGURE 5

Neighbor-joining tree of populations and clones. (A) Neighbor-joining tree of 7 populations. (B) Neighbor-joining tree of 161Korean pine clons. (BH,
Bohai; HG, Hegang; LSH, Lushuihe; WH, Weihe; LK, Linkou; TL, Tieli; SCZ, Sanchazi).
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a significant level of P<0.001, but was not concentrated at one locus,

and the results of PCoA showed that the molecular markers were highly

independent, indicating that the screened loci were evenly distributed

in the Korean pine genome and relatively independent in the process of

transmission from generation to generation.

In order to elucidate the genetic variation among Korean pine

populations, molecular variation analysis was conducted. The results

showed that the genetic variation of Korean pine mainly originated

from inter-individuals, accounting for 98%, and interpopulation

variation accounted for only 2%. This indicates that the genetic

differentiation within populations is much greater than between

populations, which is consistent with the results of Feng et al. (Feng

et al., 2006). The result is consistent with higher genetic diversity

within populations and higher gene flow between populations.

Therefore, we should pay attention to the selection of individuals

within the population when the Korean pine population with high

genetic diversity was constructed in the later stage, which is beneficial

to the genetic improvement of Korean pine. The genetic diversity

analysis of 7 populations revealed the differences in the level of genetic

diversity among different populations, Tieli has the highest level of

genetic diversity (I=1.087), the genetic diversity of Weihe population

was low (I=0.915). Nevertheless, Weihe population is the only one

with a fixed index (F) less than 0, indicating that the genetic diversity

of this population is low, but there is no heterozygosity deficiency or

inbreeding. Heterozygosity is often used to measure the degree of

genetic variation and can provide useful information for the

conservation of species (Schmidt et al., 2021). The results of this

study based on SSR molecular markers showed that the overall He

andHo of 7 populations were 0.514 and 0.451. From a biological point

of view, Korean pine is a monoecious, cross-pollinated plant that can

generate new genotypes through genetic recombination, which is

probably the main reason why Korean pine populations maintain a

high genetic diversity. The Ho is smaller than He among these

populations, except for the Weihe population, which indicating the
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presence of heterozygote deficiency, this may be due to inbreeding,

non-random mating or disruption of population structure (Liao et al.,

2019). Therefore, further analysis for the reason of heterozygote

deficiency is necessary in future studies.

Genetic structure reveals the distribution patterns of genetic

diversity between and within populations, reflects the adaptive

potential of various species to their environment (Melo et al., 2014).

Seven Korean pine populations in this study can be divided into 4 or 7

classes, and different populations are mismatched in classifications.

Lushuihe population shows partial independence relatively, and the

corresponding results were obtained by clustering results, which is

consistent with the results of the principal coordinate analysis

mentioned above. The results of interpopulation differentiation also

show that the Lushuihe population has higher genetic differentiation

and lower gene flow with other populations, which may be due to the

relatively isolated population structure caused by the relatively unique

geographical location of Lushuihe. Correlation analysis showed that

there was no significant correlation between genetic distance and

sources of superior tree’s geographical distance of Korean pine

populations, which was also previously reported in Feng et al. (2009).

Screening and identifying the core SSR primer combinations

suitable for variety identification is the key to constructing DNA

fingerprinting. It is required that the core SSR primer combinations

screened and identified have good marker polymorphism, and

secondly, it is required that as few markers as possible are used to

distinguish as many germplasms as possible. Construction of

fingerprint profiles of Korean pine clones provides an important

basis for the identification of resources from the 7 seed orchards. The

DNA fingerprint profile of Korean pine clones based on SSR primer

combinations can be directly used to identify the authenticity of

clones in the 7 seed orchards, solving the long-standing problem of

Korean pine clone identification. It is important for the selection and

breeding of Korean pine clone in these 7 seed orchards. The critical

point to ponder, the established fingerprint panel or Korean pine
FIGURE 7

Molecular fingerprinting of Korean pine clones. (The different color blocks represent the corresponding allele fragment sizes).
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clonal identification was based on 7 seed orchards in northeast China.

It does not cover the distribution range of the species which also can

be found in Korea, Russia, Mongolia & Japan. Hence, this clonal

identification tool developed will solely useful within China (limited

to the resources from the 7 seed orchards).

In this study, 11 SSR markers were screened out, which could be

used for the construction of fingerprints of Korean pine clones and the

evaluation of genetic structure of the population. Genetic analysis of 7

populations of Korean pine using 11 SSR primers revealed the level of

genetic diversity and genetic differentiation among and within

populations. According to the genetic characteristics of Korean pine

clone populations, the development of corresponding breeding

strategies can maximize the breeding potential of Korean pine seed

orchards and provide a scientific basis for the subsequent development

and utilization of Korean pine germplasm. The DNA fingerprints of

161 Korean pine clones were constructed, which is an effective strategy

for the identification of Korean pine clone, it will provide strong DNA

evidence for identification of variety and superior seed validation.
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