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Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in

the world that affects tomato growth and production. Six regular antagonistic

genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild

germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as

an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed

substantial levels of opposition in a few strains. It has been possible to clone

three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three

antiviral safety mechanisms. However, it significantly impacts obtaining

permanent resistance to TYLCV, trying to maintain opposition whenever

possible, and spreading opposition globally. Utilizing novel methods, such as

using resistance genes and identifying new resistance resources, protects

against TYLCV in tomato production. To facilitate the breeders make an

informed decision and testing methods for TYLCV blockage, this study

highlights the portrayal of typical obstruction genes, common opposition

sources, and subatomic indicators. The main goal is to provide a fictitious

starting point for the identification and application of resistance genes as well

as the maturation of tomato varieties that are TYLCV-resistant.
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1 Introduction

Tomato (Solanum lycopersicum L.) is one of the ubiquitous

and vital crops grown worldwide (Howladar, 2016; El-Sappah

et al., 2021a; Abbas et al., 2022). The fruit’s appealingness (sizes,

colors, flavors, and forms), widespread use, and synthesis of the

medicinal chemicals contribute to an annual increase in

consumption (Cheng et al., 2020). Tomato fruits are

significant because they provide dietary fiber, antioxidants,

vitamins, minerals, proteins, carbohydrates, and other

nutrients needed for a healthy human diet (Liu et al., 2020;

Alluqmani and Alabdallah, 2022). On the other hand, tomato

plants are vulnerable to several ailments, and approximately

there are 136 viral species known to be harmful (Qi et al., 2021;

Islam et al., 2022).

One of the most severe viral diseases to plague tomato plants

is tomato yellow leaf curl virus (TYLCV), brought by a group of

phylogenetically related Begomovirusspp, and spread by the

whitefly Bemisiatabac (Piedra-Aguilera et al., 2019). TYLCV

symptoms in tomato plants are hindered development,

chlorosis, leaf curl, and powerless natural product yield

(Lapidot and Polston, 2006). In 1932, the TYLCV virus was

discovered for the first time in Sudan and the Middle East (Idris

and Brown, 2005; Van Brunschot et al., 2010). It has since spread

throughout the world’s tropical and subtropical regions,

including the Mediterranean Basin, the Far East (Asia), the

Caribbean, Australia, North, South, and Central America, and

many others (Figure 1) (Czosnek and Laterrot, 1997; Navas-

Castillo et al., 1997; Zhang et al., 2009; Péréfarres et al., 2010;

Ning et al., 2015; Kil et al., 2016). Recently, it was discovered that

TYLCV was seed-distributed (Kil et al., 2016; Kil et al., 2017; Kil

et al., 2018). However, the vector Bemisiatabaci (Gennadius)

(Hemiptera: Aleyrodidae), notably biotypes B and Q, are
Abbreviations: TYLCV, Tomato yellow leaf curl virus; AAP, Acquisition

access period; IAP, Inoculation access period; REX-1, Reduced expression 1;

RDR, RNA–dependent RNA polymerase; TGS, Transcriptional gene

silencing; PTGS, Post-transcriptional gene silencing; SNPs, Single

nucleotide polymorphisms; SCAR, Sequence characterised amplified region;

QTL, Quantitative trait loci; MAS, Marker-assisted selection; CAPS, Cleaved

amplified polymorphic sequence; RGM, Resistance-gene based markers;

dCAPS, Derived Cleaved Amplified Polymorphic Sequences; VSRs, viral

suppressors of RNA silencing; PAMPs, pathogen-associated molecular

patterns; PRRs, Pattern recognition receptors; PTI, PAMP-triggered

immunity; ETS, Effector-induced susceptibility; RLKs, Receptor-like

kinases; DAMPs, Damage-associated molecular patterns; AVR, Avirulence;

HR, Hypersensitive responses; ETI, Effector-induced immunity; SAR,

Systemic acquired resistance; ROS, Reactive oxygen species; SA, Salicylic

acid; RdDM, RNA-directed DNA methylation device; CP, Capsid protein;

sgRNA, Single guide RNA; GMOs, Genetically modified organisms; Rep,

Replication-associated protein; InDel, Insertion-deletion; SSR, Simple

Sequence Repeat; TYLCSV, Tomato yellow leaf curl Sardinia virus.
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responsible for the majority of diseases during transportation

(Pan et al., 2012) by the whitefly in its adult stage, Bemisiatabaci,

possibly the most bothersome pest of vegetables and other

produce (Ning et al., 2015; Pakkianathan et al., 2015).

Diverse methodologies have been utilized to hinder the

spread of TYLCV, including strict quarantine guidelines,

traditional rearing, and hereditary designing (Lapidot and

Polston, 2006; Polston and Lapidot, 2007). Till today,

cultivated tomato varieties have included the Ty-1 to Ty-6

resistance genes from their related species, which has resulted

in the development of virus resistance, but it’s crucial to

emphasize that this resistance has never been entirely effective

(Prasad et al., 2020; Yan et al., 2021; Mori et al., 2022). Ty-1, Ty-

2, Ty-3, and ty-5 have all been cloned in recent years (Ren et al.,

2022). Ty-1, Ty-3, Ty-4, and Ty-6 genes were all introduced from

S. chilenseaccessions and are located on chromosomes 6, 6, 3,

and 10, respectively (Zamir et al., 1994; Ji et al., 2007a; Ji et al.,

2009b; Kadirvel et al., 2013; Tabein et al., 2017; Gill et al., 2019).

The ty-5 and Ty-2 were introgressed from S. peruvianum and S.

habrochaites, respectively (Hanson et al., 2006; Hutton et al.,

2012). Ty-1 is an allelic variant of Ty-3 that codes for an RNA-

dependent RNA polymerase; it is the first resistance locus

discovered in S. chilense (LA1969) (Verlaan et al., 2013). The

Ty-1 can make geminiviruses more resistant by boosting the

viral genome’s cytosine methylation (Butterbach et al., 2014).

The Ty-2, a dominant resistant gene on chromosome 11, can

confer resistance to some monopartite begomoviruses, including

TYLCV, but not to any other monopartite or bipartite

begomoviruses like Tomato yellow leaf curl Sardinia virus

(TYLCSV) (Barbieri et al., 2010; Prasanna et al., 2015). Ty-4

confers resistance to TYLCV less effectively than Ty-3, which

was delivered by introgression from the long arm of

chromosome 3 of S. chilense (LA1969) (Ji et al., 2009b). The

tomato homolog of the messenger RNA surveillance factor Pelo,

implicated in the ribosome recycling phase of protein synthesis,

has recently been linked to the ty-5 gene (Anbinder et al., 2009),

located on chromosome 4 of S. peruvianum (Lapidot et al.,

2015). The Ty-6 gene confers resistance against monopartite and

bipartite begomoviruses, completing the protection provided by

the known Ty-3 and ty-5 genes (Gill et al., 2019).

The resistance breakthrough fueled the TYLCV dispersion,

prompting plant breeders to continually search the wild tomato

gene pool for potent new sources of resistance. Immunization

schedules, screening and validation of resistance sources, gene

discovery and genetic mapping, field evaluation of resistance

gene transfer to cultivars and inbred lines, global dissemination,

TYLCV symptoms, and immunization techniques are all part of

TYLCV resistance breeding programs. The presentation will

focus on innate immunity to TYLCV, organized resistance

genetic defense, marker-assisted resistance breeding selectable

markers, and natural resistance resources. The main objective is

to lay the background for future studies into the genes

responsible for TYLCV disease resistance.
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2 TYLCV symptoms in tomato plants

Earlier study shows that the whole tomato plants were

weakened by TYLCV infection, and there was a significant

decrease in the yield. After inoculation, the first TYLCV

symptoms on tomato plants appear 2-4 weeks later and may

take up to two months to fully manifest (Ioannou, 1985). The

virus isolates, host genetic background, ambient conditions,

development stage, and physiological state of the tomato plant

at the time of infection influence the kind and intensity of

symptoms (Mauck, 2016). The leaflets of newly emerged leaves

curl downward and inward in a hook-like pattern early after

infection (Salati, 2001) (Figure 2). Afterward, leaves are distorted

and narrower with chlorosis in the center and edges and leaflet

margins curling upward (Vallad et al., 2018). The underside of

leaflets may also be stained purple (Gorovits et al., 2013; Ibne-

Siam-Joy, 2020).

Temperatures exceeding 25°C can aggravate leaf symptoms

(Polston and Lapidot, 2007; Anfoka et al., 2016). Infectious

plants showed severe symptoms such as yellowing, curling,

and a significant loss in apical leaf size (Lapidot et al., 2001).

The leaves curl between the veins, and the midrib may become

arched And thepetioles twisting can be seen in elder leaves

(Shankar et al., 2014). The leaf surface was found to have pale

yellow dots that grew larger with time (Gorovits et al., 2013)

which is, however, a less prevalent symptom. Tomato plants

contaminated with TYLCV were significantly stunted, with

numerous branchlets and reduced internodes (Davino et al.,

2006; Shankar et al., 2014). Due to increased flower shedding,

young, early-affected plants are frequently infertile. Since most
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blooms (>90%) droop after infection, there is almost no fruit. As

a result, yield reductions are more significant when plants are

infected prematurely. Late-stage infections can drastically

diminish the yield of new fruit. Infected plants produce fewer

and smaller fruits that come off easily. Fruit ripens appropriately

and is likely to bear before infection (Dam et al., 2005).
3 Methods for identifying resistance
to TYLCV in tomato

In vivo and in vitro approaches are used to test the rate of

TYLCV infection and understand the processes of plant

resistance to TYLCV as shown in Figure 3.
3.1 In vivo infection

3.1.1 Natural whitefly field infection
It is a method for the testing of TYLCV resistance and

essential to recognize hotspots and favorable seasons for effective

screening under natural disease conditions (Dhaliwal et al.,

2020). The two types of field infection are controlled

greenhouse inoculations and spontaneous field inoculations

(Lapidot, 2007). Even under intense inoculation pressure,

many plants resist infection, proving that spontaneous field

infection is frequently ineffectual (Vidavsky et al., 1998). Only

50% of susceptible tomato plants with whiteflies and TYLCV

infections became infected within the first month of germination

in whitefly and TYLCV-infested areas. Only 10% of sensitive
FIGURE 1

The distribution of Tomato yellow leaf curl virus (TYLCV) globally. The global distribution of TYLCV disease is updated by the EPPO Global
Database (19 November 2021). The yellow marks indicate present infection, the orange marks indicate reported condition, and the green marks
indicate non-reported infection.
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FIGURE 3

Methods for Identifying Resistance to TYLCV in Tomato; (A) Inoculation types, followed by (B) PCR screening method. This figure was made
using BioRender.
FIGURE 2

Typical symptoms of TYLCV, (A) Normal plant showed no infection, (B) Infection at a very early stage between 2 to 4 weeks post-infection, (C)
tomato plant after five weeks infection, (D–F) Infection at a late stage where the plants show severe symptoms consisting of marked yellowing,
puckering, and severe size reduction in the top leaves.
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plants survived the infection 90 days after transplantation

despite rising whitefly numbers and easily accessible viral

inoculums (Vidavsky et al., 1998). Another study by Cohen

et al. (1988) discovered that the percentage of virus-carrying

whiteflies in the general whitefly populace in the field was

deficient. Only 3-6 percent of whiteflies obtained in the wild

can spread the virus based on the TYLCV-sensitive host from

which they were taken.

It should be emphasized that a sensitive plant evading

inoculations may be employed as a resistant parent in

subsequent crosses if it is (inadvertently) checked for

resistance. A deluge of supposedly resistant yet sensitive plants

can quickly jam breeding operations. Therefore, choosing

tomato plants only based on an infected field’s lack of

symptoms may be deceiving (Vidavsky et al., 1998). In

addition to facilitating inoculate outbreaks, spontaneous field

inoculations have other drawbacks. Due to late and

asynchronous infection, inoculations may result in less severe

disease symptoms than controlled inoculations. (Picó et al.,

1998). Compared to plants infected at a younger age, plants

inoculation at a mature age may have milder symptoms. Milder

symptoms could be misconstrued as signs of genetic resistance

instead of just late infection. Several TYLCV-resistant cultivars

respond sensitively to controlled greenhouse inoculations,

whereas field inoculations result in resistance levels

comparable to other, more resistant cultivars (Picó et al.,

1998). The response of resistance sources to TYLCV may

differ depending on the inoculation technique used, with

controlled greenhouse inoculations corresponding to high

inoculum concentrations and spontaneous field inoculations

corresponding to low inoculum concentrations. The most

sensitive genotypes might be excluded by field testing, despite

the low and delayed incidence of illness following spontaneous

field inoculations (Picó et al., 1998; Picó et al., 2000; Lapidot,

2007). Another issue with spontaneous field inoculations is that

TYLCV-resistant plants could incorrectly be labeled sensitive

after contracting unrelated viruses or other diseases. Whitefly

stress, inoculation intensity, viral inoculum size, and plant age

were unknown variables in field the inoculations. Also unknown

is the interval between getting the whitefly and the virus’s

propagation. Like all begomoviruses, TYLCV is spread via a

sustained, cyclical process from its whitefly vector. Although

transmission can continue for the duration of the vector’s

existence, transmission efficiency degrades over time, as

demonstrated in TYLCV (Cohen and Harpaz, 1964; Picó et al.,

1998; Lapidot et al., 2001).

Consequently, it is unknown and impossible to replicate the

effectiveness of field inoculations. Several metrics can be used to

compare inoculation effectiveness in controlled greenhouse

inoculations to spontaneous field inoculations. The researchers

administering the inoculations during controlled greenhouse
Frontiers in Plant Science 05
can change the whitefly age, feeding time, transfer nutrition

time, number of whiteflies per infected plant, and so on. It

should be remembered that when used as viral vectors, whiteflies

can cause significant damage to plants as well as transmit

viruses. Whiteflies devour plants by over-juicing, secreting

honeydew (which encourages the formation of black mold),

and creating systemic illness (Schuster et al., 1990; Byrne and

Bellows, 1991). Whitefly inoculations feed on target plants,

therefore, need long enough to include successful inoculations

but short enough to limit direct whitefly harm. After exposing

young tomato seedlings to a large number of virus-carrying

whiteflies (about 30-50 whiteflies per plant, which transmit the

virus to plants by feeding with almost 100% efficiency) for 48

hours (commercially acquired feeding), all sensitive controls

were infected with TYLCV (Lapidot et al., 1997).

3.1.2 Whitefly inoculation in cages
For TYLCV screening, whitefly-mediated mass inoculation

or individual plant inoculation is commonly used. Non-

preference issues could arise even with carefully regulated

greenhouse inoculations. Whiteflies prefer to feed on other

tomato plants when inoculating various plants in the same

spot (Legarrea et al., 2020). They are inefficient at inoculating

one specific type or variety and dislike most physical obstacles in

tomatoes, including waxy or thick cuticles or specific trichomes,

which hinder whiteflies from colonizing and feeding on those

leaves (Bellotti and Arias, 2001). When inoculating wild tomato

cultivars, this issue is most apparent. Adding some wild species

seems to help prevent infection when looking for new sources of

resistance because they are not preferred by whiteflies (Picó

et al., 1998). One inoculation of many wild tomato cultivars in

cages can solve the non-preference issue. In this instance, a plant

is put in a cage with virus-carrying whiteflies, forcing them to

feed on the target plant because it is the only plant they will

consume (thus spreading the virus). Precision work, or the lack

thereof, is another issue that has emerged since the widespread

administration of the whitefly vaccine. It is practically impossible

to determine the proper number of whiteflies per plant and

which leaves to target for inoculation when vast numbers of

plants are infected on a big scale. Whiteflies can be precisely

controlled using clip cages or leaf cages. Managing the number

of whiteflies used per plant, their age and gender, the precise

length of the acquisition access period (AAP) and the

inoculation access period (IAP), and the TYLCV inoculation

location are all advantages of clip cage inoculation (Lapidot,

2007). Because cages allow all test plants to employ the same

whitefly-mediated inoculation circumstances, they also make it

possible to compare how various plants react to TYLCV

infection, for instance, when comparing plants with varying

degrees of viral resistance. The clip cage is a tiny cylinder of clear

plastic with both sides clipped off. One side of the cage has a thin
frontiersin.org
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mesh cover that may be opened to suck whiteflies into the cage.

A clip may quickly fasten to the opposite side’s bottom of the

preferred wing. The AAP claims that physical barriers like gills,

waxy or thick cuticles, or the presence of certain trichomes that

prohibit whiteflies from colonizing and feeding on such leaves

are to blame for a known number of whitefly-by-whitefly

epidemics (Bellotti and Arias, 2001).

3.1.3 Non-whitefly-mediated inoculation
Other non-whitefly-mediated inoculation techniques are

required because whiteflies must be bred to improve a time-

consuming and laborious TYLCV-controlled inoculation

protocol (Kil et al., 2016; Dhaliwal et al., 2020). Mechanical

TYLCV transfer has been attempted using various sources and

test plants (Lapidot, 2007). When using datura (Datura

stramonium) plants as parent plants, the highest mechanical

TYLCV transmission rates only reached less than 17%. Only

12% of tested plants, such as the datura, were successful

(Dhaliwal et al., 2020). The transmission was not achieved

during mechanical inoculation utilizing tomato plants as the

parent and test plants (Makkouk et al., 1979). As a result, even

though TYLCV can be mechanically transmitted, the success

rate is too low to support the creation of a successful inoculation

regimen using this technique. To immunize against TYLCV,

inlay inoculations are used. In this technique, the test plants are

either grafted onto scions infected with TYLCV or laterally with

the infected plants’ leaves or tips (Pereira-Carvalho et al., 2015;

Koeda et al., 2020). Graft inoculation has been used to identify

plants resistant to TYLCV with increasing transportation

effectiveness (Pico et al., 2001; Leibman et al., 2015). The

characteristic of graft inoculation is the ongoing exposure of

test plants to the highest concentrations of viral inoculums.

Grafting is a method that can be used to test resistance. When

resistant plants were grafted with TYLCV-symptomatic leaves,

the plants remained symptom-free (Friedmann et al., 1998).

(Kegler, 1994; Friedmann et al., 1998). Graft inoculation is

ineffective as a mass inoculation technique because it is labor-

intensive and time-consuming (Sastry and Zitter, 2014).
3.2 In vitro infection/agroinoculation

Agroinoculation inoculation is yet another TYLCV

inoculation test (Czosnek et al., 1993; Kheyr-Pour et al., 1994;

Lucioli et al., 2003; Mori et al., 2021). A. tumefaciens is employed

for agroinoculation to introduce cloned viral DNA into host cells

(Grimsley et al., 1986; Lu et al., 2003; Delbianco et al., 2013).

Tandem repeats (or 1.5–1.8 -mers) of the viral genome are

cloned into the T-DNA of the Ti plasmid of A. tumefaciens in the

case of TYLCV and another geminivirus before being injected

into plants. Replicates are widespread systemically in plants due

to genome-sized viral DNA forms, which also cause disease
Frontiers in Plant Science 06
symptoms (Stenger et al., 1991). Agroinoculation is a popular

technique used to inoculate plants or leaf discs with

geminiviruses. It has been suggested that agroinoculation be

utilized as a test technique for TYLCV inoculation and screening

of resistant plants because it has been used successfully to

introduce the virus into leaf discs and entire plants (Czosnek

et al., 1993; Kheyr-Pour et al., 1994). However, it has been

demonstrated that cloned TYLCV DNA delivered through

agroinoculation inoculation can surpass the virus’s natural

resistance in wild tomato species (Abhary et al., 2006;

Maliano, 2021).

The effectiveness of agricultural immunization for testing of

TYLCV resistance was shown to be dubious (Kheyr-Pour et al.,

1994). The usefulness of agricultural immunization as a

technique to test various wild and farmed tomato genotypes

for TYLCV resistance was recently examined (Pico et al., 2001).

Rub agroinoculation (rubbing emery-dusted leaves with an

Agrobacterium tumefaciens suspension) led to irregular, weak

infections and failed to distinguish between genotypes with

various levels of resistance (Pico et al., 2001; Lapidot, 2007).

Although the inoculation rate of susceptible controls was 100%,

the inoculation efficiency of resistant genotypes was lower.

Agrobacterium inoculation of the strain (injection of A.

tumefaciens suspension into the strain) was more successful

(Lapidot, 2007). It was determined that agricultural

immunization might be employed in breeding programs but

only as an adjunct to immunization against whiteflies (Pico

et al., 2001).

Plants have also been vaccinated with Bergomo virus DNA

using particle bombardment (gene gun inoculation) (Garzón-

Tiznado et al., 1993). Biolistic Inoculation of cloned Bergomo

virus DNA per unit-length (monomer) or tandem repeats

(dimer) results in high inoculation efficiency by removing

time-consuming DNA manipulation and enabling the

inheritance of bergomovirus analysis (Bonilla-Ramıŕez et al.,

1997). Although biolistic inoculation of viral DNA monomers

still presents in the cloned plasmid has been proven to be

possible, it has only been accomplished after the viral clones

removed from the plasmid increased vaccination rates (Liu,

2011; Ceniceros-Ojeda et al., 2016).

However, biolistic inoculation has only been observed in

begomoviruses: only the tomato leaf roll Karnataka virus has

undergone biolistic inoculation using fractional DNA dimers

cloned from monopartite begomoviruses. It served as the initial

evidence in 2002 (Chatchawankanphanich and Maxwell, 2002).

Tomato yellow leaf curl Sardinia virus (TYLCSV) and TYLCV-

[Cu] (a TYLCV strain from Cuba) were used in the first

documented biolistic inoculation of TYLCV in 2003 (Ramos

et al., 2003). TYLCSV clones were contagious following biolistic

vaccination (for unclear reasons), but neither virus was

contagious following agroinoculation vaccination (Ramos

et al., 2003). Finally, plants with DNA in dimer form were
frontiersin.org
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cloned from the TYLCV-[Alm] (Almeria isolate), TYLCV-Mld

(mild strain), and TYLCV (Morilla et al., 2005).

Examination of transgenic plants for TYLCV resistance

involving in vivo vaccination methods under open climate or

non-proficient nursery conditions is troublesome because of

stringent guidelines on the genetically modified organisms

(Ben Tamarzizt et al., 2009). Subsequently, a controlled

immunization convention should be laid out to forestall the

unwanted spread of the virus into the climate, mainly while

testing new virus strains or recombinants. Two past reports

portrayed the improvement of a virus vaccination framework

reasonable for in vitro plants (Russo and Slack, 1998; Mazier

et al., 2004; Al Abdallat et al., 2010). Utilizing the described

system, in vitro-developed plants can be effectively inoculated

utilizing mechanical procedures. The rule of the new vaccination

technique is to submerge the foundation of the plant in an

answer containing agrobacterium with an irresistible TYLCV

clone. Al Abdallat et al. (2010) fostered a novel and proficient

technique for in vitro immunization of tomato plants with

TYLCV. This technique has been successfully used to uncover

TYLCV opposition in wild tomatoes and permit stockpiling and

spread of contaminated tomato plants under appropriately

controlled conditions. Starting screening of transgenic plants

with further developed protection from TYLCV utilizing the

portrayed in vitro method is suggested
4 Natural resources resistant to the
TYLCV in tomato

Natural TYLCV-resistant germplasm resources have been

studied and characterized in numerous tomato lines, genotypes,

and cultivars over the last few decades, most of which are

addressed in Table 1. S. pimpinellifolium, S. peruvianum, S.

chilense, S. habrochaites, and S. cheesmaniae are wild tomato

that have been the focus of plant breeders’ efforts to uncover

natural sources of virus resistance (Yan et al., 2018). Ty-1’s initial

source was LA1969, (Verlaan et al., 2011; Verlaan et al., 2013)

and Ty-2 from S. habrochaites f. glabratum accession “B6013”

(Yang et al., 2014). The self-incompatible and heterogeneous S.

chilense wild tomato variety produces numerous alleles of the

same gene in a single accession (Bai et al., 2004). LA1932

demonstrates that resistance allele 35 exists for Ty-1/Ty-3 and

Ty-4 (Ji et al., 2009b). In LA2779, Ty-3 and Ty-6 were also

discovered (Hutton and Scott, 2013). The potential that previous

S. chilense-derived lines carry various resistance genes for

TYLCV resistance in accordance with the selection process

and heterogeneity of S. chilense (Caro et al., 2015). Finally,

several tomato varieties and cultivars have recently been

introduced around the world through various breeding

programs, such as Yarkiy (Rumyanets), Malinovyi (Slon), and
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Nicola in Kazakhstan (Pozharskiy et al., 2022). Quamruzzaman

et al. (2021) evaluated 75 tomato entries in Bangladesh for

resistance to TYLCV infection, and 47 showed zero percent

infection. Furthermore, in Egypt, two new tomato lines (TYG-1-

3 and KIS-N-2-1) were resistant to TYLCV infection (Elmorsy

et al., 2021). Hussain et al. (2022) screened 24 lines in Pakistan

for TYLCV using disease scoring and TAS-ELISA; seven

accessions, Acc-17890, AVR-261, CLN-312, AVR-321, EUR-

333, CLN-352, and CLN-362, expressed resistance to TYLCV.
5 Natural genes resistant to TYLCV
in tomato

Six distinct genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) are

located on different tomato chromosomes (Figure 4) and provide

varying levels of resistance in wild germplasm when transfected

into commercial cultivars (Anbinder et al., 2009; Hutton and

Scott, 2013; Prabhandakavi et al., 2021). Except for ty-5, which has

recessive inheritance, all of these genes are dominant resistance

(Ren et al., 2022). Ty-1, Ty-3, Ty-4, and Ty-6 are derived from S.

chilense (Hutton and Scott, 2013), whereas Ty-2 and ty-5 may be

derived from S. habrochaites and S. peruvianum, respectively

(Anbinder et al., 2009; Wolters et al., 2015). It is now possible

to introduce resistance genes without causing cross-resistance or

to pyramid numerous resistance genes in marker-assisted

breeding thanks to the development of molecular biotechnology.
5.1 Ty-1

Ty-1 was included in LA1969 from S. chilense (Verlaan et al.,

2011; Verlaan et al., 2013). The first was identified and located

on tomato chromosome 6’s short arm by Zamir et al. (1994). Ty-

1 is related to the Mi-1 gene cluster at the REX-1 locus,

indicating that Ty-1 is derived from the short arm of

chromosome 6 (Milo, 2001). Ty-1 was discovered on the long

arm of chromosome 6 and linked to the Ty-3 locus (Pérez de

Castro et al., 2013). de Castro et al. (2007) found that Ty-1 is

associated with the CT21 marker, which is situated below the

long arm’s centromere, in a different investigation. Also, Ty-1

has recently been fine-mapped and cloned, and it has been

shown to contain an allele of a gene coding for an RNA-

dependent RNA polymerase (RDR) (Verlaan et al., 2011;

Verlaan et al., 2013). The Ty-1 gene thus represents a distinct

family of genes that increase the transcriptional silence of viral

genes to confer disease resistance or tolerance. Recent research

has demonstrated that in genetically modified N. benthamiana

plants, the Ty-1 gene can also confer resistance to the beet curly

top virus (a genus Curtovirus) (de Nazaré Almeida dos Reis

et al., 2020; Voorburg et al., 2020). More research is needed to
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TABLE 1 Tomato resources resistance to TYLCV.

Genotype/Lines/Cultivars Material Source Resistance
Gene

Notes References

LA1969 S. chilense Ty-1 Source of resistance (Zakay et al., 1991; Laterrot,
1993; Zamir et al. 1994)

LA1932, LA1938, LA1960, and LA1971 S. chilense Ty-1/Ty-3 Resistance (Yan et al., 2018)

LA1961 S. chilense Ty-1or Ty-4
or Ty-6

Resistance (Scott and Schuster, 1991)

LA 1968 S. chilense - Resistance (Scott and Schuster, 1991)

TY52 S. lycopersicum Ty-1 Resistance (Wang et al., 2018b)

LA3473 S. chilense Ty-1 Resistance (Prasanna et al., 2015)

LA1932 S. chilense Ty-1 Resistance (Ji et al., 2007a)

CLN2513, CLN2514, and CLN2515 S. lycopersicum Ty-1 Contain combined resistance derived from
Ty-1 and Ty-2.

(Yan et al., 2018)

BL982 Ty-1 Resistance AVRDC (2002)
(Yan et al., 2018)

B6013 S. habrochaites Ty-2 Resistance (Hanson et al., 2000; Hanson
et al., 2006)

CLN2777A S. lycopersicum Ty-2 Resistance (Wang et al., 2018b)

CLN2585D S. habrochaites Ty-2 Resistance (Prasanna et al., 2015)

CLN2513, CLN2514, and CLN2515 Ty-2 Resistance (Yan et al., 2018)

CLN2116 S. lycopersicum Ty-2 Resistance AVRDC (2002)
(Yan et al., 2018)

LN2460G, CLN2460H, CLN2460I, CLN2460J,
CLN2463O, and CLN2463P

S. lycopersicum Ty-2 Resistance (Yan et al., 2018)

LA2779/LA1938
LA4440

S. chilense Ty-3 Resistance (Ji et al., 2007a)

LA1932 S. chilense Ty-3a Resistance (Ji et al., 2007a)

CA4 and GC171 S. chilense Ty-3 Resistance (Prasanna et al., 2015)

LA1969 S. chilense Ty-3b Resistance (Ji et al., 2007a)

LA1932 S. chilense Ty-4 -less efective against TYLCV.
-Increase resistance levels in combination
with Ty-3

(Ji et al., 2009b; Kadirvel et al.,
2013)

GC171
LA4440

S. chilense Ty-4 Resistance (Prasanna et al., 2015; Lee et al.,
2020)

Tyking S. lycopersicum ty-5 Recessive resistance (Lapidot et al., 2015)

LA1938 S. peruvianum ty-5 Recessive resistance (Anbinder et al., 2009; Hutton
et al., 2012)

TY172 S. peruvianum ty-5 Recessive resistance (Friedmann et al., 1998;
Anbinder et al., 2009)

AVTO1227 S. lycopersicum ty-5 Recessive resistance (Wang et al., 2018b)

Fla.8753, Fla. 344 and Fla.8062 S. chilense ty-5 high level of resistance due to the presence
of ty-5 and Ty-6.

(Hutton et al., 2012; Scott et al.,
2015)

Fla.8624 and Fla.8638B S. chilense Ty-6 moderate level of resistance (Scott et al., 2015)

LA2779 S. chilense Ty-6 Resistance (Scott et al., 2015)

Fla.8753, Fla.344 and Fla.8062 S. chilense Ty-6 Introduce high level of resistance due to the
presence of ty-5 and Ty-6.

(Hutton et al., 2012; Scott et al.,
2015)

Fla.456 S. chilense Ty-6 Resistant (Bian et al., 2007; Gill et al.,
2019)

UPV-16910 L. hirsutum – partially tolerant (Picó et al., 2002)

PI-126944b Lycopersicon hirsutum
(L. hirsutum)

– Resistant (Picó et al., 1998; Roselló and
Nuez, 1999)

PI-211840 S. pimpinellifolium – Resistant (Scott and Schuster, 1991)

LA386 L. hirsutum – Resistant (Scott and Schuster, 1991)

(Continued)
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determine the effect of the Ty-1 gene on ssDNA viral and

subviral diseases associated with tomatoes in the Neotropics.

More viruses (14 versus 6 species) were found in tomatoes

lacking the Ty-1 gene, including a gemycircularvirus

(Genomoviridae), a new alpha-satellite, and two novel

Begomovirus species (de Nazaré Almeida dos Reis et al., 2020;

Nehra et al., 2022). A novel Begomovirus was found only in the

Ty-1 pool in the de Nazaré Almeida dos Reis et al. (2020) survey,

and it was the only species associated with severe symptoms in

Ty-1 plants. Three ORFs were predicted to be T-y1/Ty-3, and the

Ty-1 gene has been identified as genomic alleles for genes Ty-3,

Ty-3a, and Ty-3b (Jensen et al., 2007; Ji et al., 2007a; Verlaan

et al., 2011; Verlaan et al., 2013). Though since plants with this

factor allow for a minor onset of symptoms, primarily in the

apical meristem region, and then gradually recover as the plant

grows/develops, phenotypic expression of the Ty-1 gene is more

accurately described as a tolerance response (Cooper and Jones,

1983; de Nazaré Almeida dos Reis et al., 2020). Finally, Ty-1 is

the most common resistance gene used in tomato breeding.

TYLCV, on the other hand, undermines Ty-1 resistance when

co-infected with a betasatellite. This suggests that the TYLCV/

betasatellite complex can bypass the commonly used Ty-1

resistance gene (Ren et al., 2022).
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5.2 Ty-2

Hanson et al. (2000) were the first to report the presence of a

resistance introgression (Ty-2) derived from S. habrochaites

accession B6013 in the tomato-resistant line H24, which was

developed from S. habrochiates f. glabratum accession ‘B6013’

(Kalloo and Banerjee, 1990) and contains an introgression

spanning at least 19 cM from TG36 (map position 84 cM) to

TG393 (103 cM) (Ji et al., 2009a). According to Ji et al., the Ty-2

gene was restricted in a 500kb introgressed region between

markers C2 At2g28250 (physical location 51.307Mb) and T0302

(51.878 Mb) (2009). Later, Yang et al. (2014) reduced the Ty-2

region to a 300 kb distance between markers UP8 (51.344 Mb)

and M1 (51.645 Mb) at the end of chromosome 11’s long arm

(Barbieri et al., 2010). Ty-2 is one of the essential TYLCV

resistance genes used in tomato breeding, but it is ineffective

against many TYLCV strains worldwide (Shen et al., 2020).

Numerous tomato breeding projects have attempted to identify

recombinants containing Ty-2 and I-2, but have so far been

unsuccessful. Ty-2 is intimately associated with susceptibility to

Fusarium wilt race 2, and efforts to date have been ineffective (Ji

et al., 2007a). There have been numerous attempts to define the

gene structure and produce a perfect map of the Ty-2 locus.
TABLE 1 Continued

Genotype/Lines/Cultivars Material Source Resistance
Gene

Notes References

PI 212408, LA373, LA1582, LA1478 and
Hirsute

S. pimpinellifolium – Resistant (Scott and Schuster, 1991)

TY-20, LA 121and EC 104395 L. esculentum – Resistant (Scott and Schuster, 1991)

LA 1401 L. cheesmanii – Resistant (Scott and Schuster, 1991)
FIGURE 4

Mapping of TYLCV resistance genes on tomato chromosomes. (A) The site of Ty-4 on chromosome 3 of S. chilense cv., (B) the site of ty-5 on
chromosome 4 of S. peruvianum cv., (C) the site of Ty-1, Ty-3 and Ty-3a on chromosome 6 of S. chilense cv. (LA1969, LA2279 and LA1932
respectively), (D) the site of Ty-6 region on chromosome 10 of S. chilense (LA2279) and (E) the Ty-2 region on chromosome 11 of S.
habrochaites cv.
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However, there is no concrete proof that a particular gene is

responsible for Ty-2-mediated resistance (Yamaguchi et al., 2018).
5.3 Ty-3

Ty-3 was identified in S. chilense accessions such as LA1932,

LA1938, and LA2779, and it was first located on the long arm of

chromosome 6 in these accessions (Ji et al., 2007a). Resistance to

the TYLCV and begomovirus tomato mottle virus (ToMoV) is

possible (Ji et al., 2007a). Ty-3 and Ty-1 areas overlap, indicating

the potential for alleles (Verlaan et al., 2013). Ty-1 and Ty-3 have

been focused breeding efforts that have been joined to create

trade hybrids around the globe. The Ty-1/Ty-3 gene from

chilense (LA1969) encodes an RNA-dependent RNA

polymerase that participates in antiviral RNA silencing and

was the first and only TYLCV dominant resistance gene to be

cloned. Ty-1 and Ty-3 are RDR type homologs of A. thaliana

RDR3, RDR4, and RDR5 genes, which have yet to be assigned

functions (Verlaan et al., 2013).

Increased amounts of TYLCV-specific siRNA targeting the

V1 promoter area were seen in plants with Ty-1/Ty-3, along with

cytosine methylation in the region’s promoter, which suggested

an increased transcriptional gene silencing (TGS) resistance

mechanism (Butterbach et al., 2014). In Solanum species, the

catalytic region of the Ty-1/Ty-3 gene is conserved S. chilense,

and six other wild species of Solanum have a 12-base pair

introduction in Ty-1/Ty-3, albeit it is not entirely linked to

TYLCV resistance. SNPs targeting resistant Ty-1/Ty-3 alleles can

improve allele-specific markers (Caro et al., 2015). However, the

co-dominant SCAR marker P6-25 was utilized to identify the

Ty-3, Ty-3a, and Ty3b alleles in three Chinese accessions,

LA2779, LA1932, and LA1969, at a distance of 25 cM. Tomato

with begamovirus resistance (Ji et al., 2007a; Ji et al., 2007b).
5.4 Ty-4

Ty-4 originated from S. chilense accession LA1932; it has

been located on the third chromosome’s long arm (Ji et al.,

2009b; Dhaliwal et al., 2020). Only 15.7% of the entire variation

was accounted for by Ty-4, which had no impact on TYLCV

resistance; in contrast, 59.6% of the variation was accounted for

by Ty-3, which originated from S. chilense (Ji et al., 2009b).

Although we did not test for bipartite begomovirus, Ty-4 is

efficient against TYLCV. However, in Guatemala, inbred lines

carrying both Ty-3 and Ty-4 were more resistant than lines

carrying just Ty-3 (D.P. Maxwell, unpublished data), showing

that Ty-4 is resistant to a number of (up to 7) bipartite

begomoviruses that are active, and these viruses are likely

prevalent there (Nakhla et al., 2005). Compared to other Ty

genes, Ty-4 is less efficient against TYLCV (Kadirvel et al., 2013).
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5.5 ty-5

The ty-5 has been identified in the tomato reproducing line

TY172, which is descended from four different elevations of S.

peruvianum (PI126926, PI126930, PI390681, and LA0441)

(Friedmann et al., 1998; Hutton et al., 2012; Lapidot et al.,

2015). The genetic analysis has shown that ty-5-mediated

blockage on chromosome 4 is constrained by a substantial

quantitative trait loci (QTL) (Anbinder et al., 2009). The ty-5

co-isolates with the marker SlNAC1 and is acquired latently

(Anbinder et al., 2009; Hutton et al., 2012). It should be merged

into the two guardians of a crossover, according to ty-5 features.

However, the ability to apply related markers will consider a

skillful fusion of this allele into cutting-edge material by marker-

assisted selection. The ty-5 confers broad-spectrum resistance to

geminiviruses and was effective against two representative

begomoviruses in China, TYLCCNV/TYLCCNB and

TbLCYnV. ty-5 also provided partial resistance to BCTV, a

virus in the Curtovirus genus. Subsequently, ty-5 was resistant

to TYLCV co-infected with a betasatellite (Ren et al.,

2022).According to Levin et al. (2013) cloning study, the ty-5

gene codes for a pelota homolog related to protein translation.

TYLCV opposition is linked to a T-to-G transversion in the

pelota allele’s coding region. The ty-5 gene demonstrates that the

Pelota gene is a TYLCV host susceptibility factor by addressing

the functionality of the Pelota gene’s allele (Lapidot et al., 2015).

Loss-of-work mutations have demonstrated resistance to various

Gemini viruses at the Pelo homologous locus (Yan et al., 2021).
5.6 Ty-6

The Ty-6 is generated from S. chilense accession LA2779 and

is a newly discovered TYLCV resistance locus (Hutton and Scott,

2014; Scott et al., 2015; Gill et al., 2019). According to

preliminary mapping data, it is located in a region of about 3

Mb on the long arm of chromosome 10 (Gill et al., 2019). A

notable discovery was the identification of Ty-6, which expands

breeders’ toolkit of Ty genes and confers resistance to bipartite

and begomoviruses monopartite (Prasad et al., 2020; Gupta

et al., 2021). Contrary to popular belief, Ty-6 is primarily

responsible for ToMoV resistance in lines such as Fla. 8680,

not Ty-3 (Scott et al., 2015; Gill et al., 2019).

Similarly, even though ty-5 and Ty-6 work together to cause

TYLCV in lines like Fla. 8638B and Fla. 8472, Gill et al. (2019)

discovered that ty-5 is ineffective against ToMoV and that the

existence of Ty-6 in such lines is what causes the bipartite

resistance. Given that S. chilense is in the pedigree of all Ty-6-

containing UF/IFAS lines evaluated thus far, Scott et al. (2015)‘s

claim that this species was the source of Ty-6 in Fla. 8624 and

Fla. 8638B is probably accurate. Ty-6 will probably be very

helpful for many tomato breeding efforts worldwide due to its
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wide efficacy against mono- and bipartite begomoviruses and the

complementing resistance it provides when combined with

other genes (Gill et al., 2019). Despite discovering numerous

SNPs associated with Ty-6 that can be used for breeding, none

were consistently polymorphic between Ty-6 and Ty-6 breeding

lines (Gill et al., 2019).
6 Molecular markers for resistance
to TYLCV in tomato

Indirect selection of desirable plant phenotypes employing

linked molecular DNA markers as a binding mechanism is

known as marker-assisted selection (MAS) (El-Sappah et al.,

2019; El-Sappah and Rather, 2022). According to the MAS

theory, a gene of interest is present when a closely connected

marker is found (Jiang, 2013). The development of novel

resistant crops has numerous advantages. The two main

benefits of molecular breeding are that it takes less time (Xu

and Crouch, 2008) and is less expensive than field screening

(Morris et al., 2003). Additionally, it is less damaging to the

environment than pesticides (Afify et al., 2022). The tomato is

one of the most remarkable plants for commercial breeding with
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molecular markers (Hanson et al., 2016). Molecular markers for

MAS in CAPS and SCAR markers have been used to develop the

Ty-1/Ty-3 resistance gene (Ji et al., 2009a; Nevame et al., 2018;

Kim et al., 2020). Although, concerns have been voiced over

their physical proximity to the resistance genes in the genome,

posing the possibility of false-positive or false-negative outcomes

in breeding programs (Antignus, 2007; Yang et al., 2014;

Nevame et al., 2018). Gene-specific marker technology was

developed to create gene-specific molecular markers to get

around the issues mentioned earlier (Ramkumar et al., 2010;

Ramkumar et al., 2011). As a result, functional markers,

resistance gene-based markers (RGM), gene-targeted markers,

and RNA-based markers have all been developed (Sorri et al.,

1999; Kasai et al., 2000; Valkonen et al., 2008). Functional

markers are polymorphic DNA sequences that play a role in

phenotypic trait variation, according to Andersen and

Lübberstedt (2003), whereas gene-targeted markers are gene-

specific and can mark untranslated regions (Arnholdt-Schmitt,

2005; Varshney et al., 2007). RGM can make it possible to detect

resistance genes in fresh germplasm and isolate populations to

support plant gene pyramids (Poczai et al., 2013). The DNA

markers for these TYLCV resistance genes are presented in

Table 2. Since Ty-1 and Ty-3 were discovered separately from
TABLE 2 Genetic markers assisted breeding to TYLCV resistance.

Marker Gene Marker Type
(restriction Enzyme)

Forward/Reverse of Marker
sequences

Product Size (bp) References

SCAR1 Ty-1 SCAR 5'-CAATTTATAGGTGTTTTTGGGACATC-3'
5'-GTTCAACACTTGGCCAATGCTTACG-3'

R:350
S:610

(Nevame et al., 2018)

JB1 Ty-1 SCAR 5'-AACCATTATCCGGTTCACTC-3'
5'-TTTCCATTCCTTGTTTCTCTG-3'

R: 450
S: 400

(de Castro et al., 2007)

TG178 Ty-1 SCAR 5'-GAGTCCCTAACGAATGGTCCTACT-3'
5'-GCAGACAAATGCTCAAAGGTCACACC-3'

Multiple bands (Barbieri et al., 2010)

Ty1-TaqI Ty-1 CAPS (TaqI) 5'-ATGAAGACAAAAACTGCTTC-3'
5'-TCAGGGTTTCACTTCTATGAAT-3'

(Jung et al., 2015)

Ty1-SspIHJ Ty-1 SNP 5'-GGTTGGTCTCCTTGATAGTCATGT-3'
5'-TCCACTTGAAGCTTAATAGTCTTTGA-3'

R:118 (Jung et al., 2015)

Ty1-3 Ty-1,Ty-3 InDel 5'-GGGTGATCCGTTGATTGAAG-3'
5'-TCTTCTTGATAGGACGACGTGA-3'

(Hu et al., 2014)

14IY218 Ty-1/3 CAPS (SspI) 5'-ATGAAGACAAAAACT GCT TC-3'
5'-TCAGGG TTTCACTTCTATGAA T-3'

R: 383, 226
S: 609

(Jung et al., 2015)

M2 Ty-1/3 SCAR 5'-GATCCGTTGATTGAAGAAAT-3'
5'-AGGAAGAGGAGAGACAATCC-3'

R: 264
S: 252

(Jung et al., 2015)

TY-1/3_K Ty-1/3 SCAR 5'-ACAGGAAAAATGGGTGATCC-3'
5'-CCTGCTCCTTGCAGATTCTA-3'

R: 114
S: 102

(Chen et al., 2015)

Ty1-SspI Ty1/3 CAPS (SspI) 5'-ATGAAGACAAAAACTGCTTC-3'
5' -TCAGGGTTTCACTTCTATGAAT-3'

R: 608 (Jung et al., 2015)

Ty1-BglII Ty1/3 CAPS (BglII) 5' -ATGAAGACAAAAACTGCTTC-3'
5' -TCAGGGTTTCACTTCTATGAAT-3'

(Jung et al., 2015)

ACY Ty-1,Ty-3,
Ty-3a

Indel 5' -GAAGCACAGATTGAAGAAAACC-3'
5' -CCTTATGATGTCTCGTGAAAGG-3'

R: 132
S:123

(Nevame et al., 2018)

(Continued)
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various tomato germplasms, various DNA markers closely

related to Ty-1 or Ty-3 have been applied in tomato breeding

projects. However, new research has revealed that these two are

allelic-related at a single locus (Verlaan et al., 2013; Caro et al.,
Frontiers in Plant Science 12
2015). Research is being done on the resistance levels and spectra

that Ty-1 and Ty-3 bestow. Ty-2 resistance was successfully

selected using the SCAR marker T0302 on chromosome 11, but

it has recently been reported in a 300 kb region, and efforts are
frontiersin.or
TABLE 2 Continued

Marker Gene Marker Type
(restriction Enzyme)

Forward/Reverse of Marker
sequences

Product Size (bp) References

P1-16 Ty-2 SCAR 5' -CACACATATCCTCTATCCTATTAGCTG-3'
5'-CGGAGCTGAATTGTATAAACACG-3'

(Yang et al., 2014)

SCAR2
(T0302)

Ty-2 SCAR 5'-TGGCTCATCCTGAAGCTGATAGCGC-3'
5'-AGTGTACATCCTTGCCATTGACT-3'

R:900
S:800 or 791

(Garcia et al., 2007;
Nevame et al., 2018)

20IY10 Ty-2 InDel 5'-GTTCTATCACAAGACTTGCCA-3'
5'-TGCATTCACCATTGATGTATAAGA-3'

R: 738
S: 600

(Lee et al., 2020)

TES0344 Ty-2 SSR 5'-GCCTTTTCCCACTTATATTCCTCTC-3'
5'-ACACATACGACGTTCCGTCA-3'

R: 190
S: 205

(Yang et al., 2012)

Ty2-UpInDe Ty-2 InDel 5'-ACCCCAAAAACATTTCTGAAATCCT-3'
5'-TGGCTATTTTGTGAAAATTCTCACT-3'

R:120
S:213

(Kim et al., 2020)

Ty3-InDel4 Ty-3 CAPS
(BstZ17I)

5'-CCTATCCTCAGTGTTTCGGTCA-3'
5'-GGCGAAAGACTTTGTGTACACA-3'

R: 353/325 (678)
S: 669 (669)

(Kim et al., 2020)

Ty3- SNP9 Ty-3 CAPS
(MfeI)

5'-CCTATCCTCAGTGTTTCGGTCA-3'
5'-GGCGAAAGACTTTGTGTACACA-3'

R:678 (678)
S: 555/114 (669)

(Kim et al., 2020)

Ty3-SNP17 Ty-3 CAPS
(RsaI)

5'-TCTCAGGTGATGCTGAGCAC-3'
5'-AGAGAACGAAAACGAAATTTCAAACA-3'

R:497/148/65/52/51 (813)
S:562/148/52/51 (813)

(Kim et al., 2020)

P6-25 Ty-3
Ty-3a
Ty-3b

SCAR 5'-GGTAGTGGAAATGATGCTGCTC-3'
5'-GCTCTGCCTATTGTCCCATATATAACC-3'

R: 623bp for Ty-3a
453bp for Ty-3 and 660 bp
for Ty-3b
S: 320bp for ty-3

(Ji et al., 2007a; Salus
et al., 2007; Nevame
et al., 2018)

Cauty4 Ty-4 InDel 5'-GGGCAACTCAATGGTGAAAC-3'
5'-TCTGAATGTAGGGCCAAAGG-3'

(Hu et al., 2014)

18IY23 Ty-4 dCAPS (StuI) 5'-AGAAGAAATCCAAGAAAAGCAATA AGA
ATGAGG CC-3 '
5'-CTT GTAATCACG TCCACAACG-3'

R: 304
S: 269, 35

(Lee et al., 2020)

18IY13 Ty-4 InDel 5'-CTTCTGTTCTATGCAGGTGTG-3'
5'-GGATACAACTGTCAACGCAC-3'

R: 228
S: 200

(Lee et al., 2020)

ty-5 ty-5 SSR 5'-GACTGCATTGGATTTGGCTT-3'
5'-CAATCGATGCACAAAACACC-3'

Yang et al. (2016)

14IY5 ty-5 dCAPS (RsaI) 5'-TTCAAGTCCTTCTTCAACATAGATTTA
AACAACAATTATAGA-3'
5'-GATAAAAAAGTTACCTGT-3'

R: 300
S: 260, 40

(Lee et al., 2020)

AVRDC-
TM719

ty-5 SSR 5'-TCGATTTGGAATGAGTTTTC-3'
5'-TGAAATAGATTTGTCAGGTGTT-3'

S: 237 (Chen et al., 2015)

SLM4-34 ty-5 SSR 5'-GACCATTAACCTCGATCA-3'
5'-GAAAGTCATGTGAATAGCAG-3'

Multiple bands (Kadirvel et al., 2013)

SINAC1
(TAQ I)

ty-5 SSR 5'-TGCCTGGTTTCTGCTGTCA-3'
5'-TAAAGCTGAAGAAGGACTTACCCT-3'

Multiple bands (Anbinder et al., 2009)

AVRDC-
TM273

ty-5 SSR 5'-GGTGCTCATGGATAGCTTAC-3'
5'-CTATATAGGCGATAGCACCAC-3'

R: ~180
S: 173

(Chen et al., 2015)

AVRDC-
TM81

ty-5 SSR 5'-GTATGGAGAGTCGAGTCCTG-3'
5'-CCATGATAAGTAGCGAGAGG-3'

S: 153 (Chen et al., 2015)

AVRDC-
TM70

ty-5 SSR 5'-TTTCTTTGTTTCCTTTCAGTG-3'
5'-GCCTTGGACAAGGTACAATA-3'

Multiple bands (Chen et al., 2015)

AVRDC-
TM947

ty-5 SSR 5'-TGCGTCTAGTTTTCTTTGTTT-3'
5'-CAAGCTGAAAGGAATTCAAC-3'

Multiple bands (Chen et al., 2015)
R and S at product size mean Resistance and Susceptible, respectively.
g
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being made to identify its genes in order to create gene-based

markers (Wolters et al., 2015). Based on the information

provided by Lapidot et al. (2015), a gene-based dCAPS marker

for ty-5 was developed.
7 Mechanism of natural resistance
to the TYLCV in tomato

The tomato plant’s molecular and cellular responses to

TYLCV infection are depicted in Figure 5. Six partially

overlapping open reading frames are present in the single-

stranded, circular, bidirectionally structured DNA genome of

TYLCV (Gronenborn, 2007). Due to their restricted coding

capability, like most viruses, they depend on the host cell’s

machinery and their proteins for the infection cycle (Hanley-

Bowdoin et al., 2004). Viral ssDNA exits the capsid and moves

into the cytoplasm and nucleus of infected cells, where it engages
Frontiers in Plant Science 13
in a rolling cycle and recombination-dependent replication

(Gutierrez, 1999). The freshly replicated viral ssDNA can be

transformed into dsDNA, which can be used as a template for

further replication or transcription. It can also be encapsulated

by viral activity proteins for transport via plasmodesmata from

infected cells to nearby cells or packaged in a contagious kind to

allow for long-distance viral transmission (Gutierrez, 1999;

Hanley-Bowdoin et al., 2013). In addition, geminiviruses rely

extensively on host proteins to complete their infection cycle

because they have little capacity for coding. To control cell

division and the cell cycle, coordinate with multiple cellular

mechanisms, and affect host components at various cellular

levels, their replication, and transcriptional processes depend

on host enzymes (Hanley-Bowdoin et al., 2013). Additionally,

they produce short RNAs and block numerous TGS and post-

transcriptional gene silencing (PTGS) components by encoding

a variety of proteins that disrupt PTGS pathways (Raja et al.,

2010; Hanley-Bowdoin et al., 2013; Gnanasekaran et al., 2019).
FIGURE 5

Molecular response of tomato during TYLCV infection; (A) the whitefly carries the virus and transfer it to the tomato during its feeding, (B) the
tomato’s first line of defense is recognition of pathogen-associated molecular patterns (PAMP) by host pattern recognition receptors (PRRs),
resulting in activation of PAMP triggered immunity (PTI), (C) the tomato second line of defense, plants have evolved cytoplasmic R proteins
(nucleotide binding–leucine-rich repeat proteins, NB-LRR) (NLRs) i.e., Ty-2 gene that recognizes the presence or activity of specific virus
effectors like avirulence AVR, resulting in effector triggered immunity (ETI), (D) Once the viral ssDNA is released from the capsid, it enters the
cytoplasm of the infected cell and subsequently enters the cell nucleus, where it undergoes rolling-circle and recombination dependent
replication and plant immunity begin by inducing both TGS and PTGS, with the help of Ty-1/Ty-3 genes, (E) Tomato autophagy, where Rep
protein of TLCYnV, CLCuMuB bC1 protein interacts with autophagy related protein NbATG8 through its ATG8 interacting motif (LVSTKSPSLIK)
and directs it for degradation. This figure was made using BioRender.
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In order to reduce symptoms in different crops and viruses, these

proteins also utilize viral suppressors of the RNA silencing

mechanism (VSRs) (Ceniceros-Ojeda et al., 2016; Basu et al.,

2018). Geminivirus VSRs are versatile proteins that support the

viral life cycle and weaken host defense (Teixeira et al., 2021).

They can abolish PTGS and TGS in any of the three stages of the

operation, and they can also directly or indirectly impact DNA

methylation through events that happen after TGS (Loriato

et al., 2020). Mechanically, RNA silencing machinery

components are either actively inhibited or prevented from

accumula t ing (expres s ion) by gemin iv i rus VSRs .

Representatives of the viral repertoire known as C4/AC4

interact with and sequester dsRNA precursors from DCL

cleavage and siRNAs from RISC loading in order to prevent

antiviral RNA silencing. AC1 (bipartite geminiviruses) and C1

(monopartite geminiviruses) have been shown to function as

powerful VSRs in both PTGS and TGS (Amin et al., 2011;

Sunitha et al., 2013). Additionally, during the amplification

phase, a subsequent event of TGS, AV2 and V2 impair host

methylation activity and block antiviral RNA silencing (Luna

et al., 2017; Wang et al., 2018a; Luna et al., 2020). Through a

number of methods, the C1 protein encoded by the -satellite

genome functions as an effective VSRs, preventing the

methylation of viral genomes in plants and PTGS that have

been infected (Yang et al., 2011; Saeed et al., 2015). To identify

and trigger defense reactions against pathogens, the plant

immune system has created a multi-layered receptor system.

The initial line of defense, according to the traditional zig-zag

model of plant immunity, is the recognition of pathogen-

associated molecular patterns (PAMPs) by host pattern

recognition receptors (PRRs), which activate PAMP-triggered

immunity (PTI) (Jones and Dangl, 2006). Successful pathogens

release effectors in response, suppressing the PTI response and

causing effector-induced susceptibility (ETS). Receptor-like

kinases (RLKs) and receptor-like proteins, two transmembrane

receptors, are responsible for the appearance of PRRs. These

PRRs realize damage-associated molecular patterns (DAMPs),

which are exclusively expressed by endogenous danger signals

supplied by pathogens or host plants during infection (Macho

and Zipfel, 2015). To create an active immunological complex,

RLKs and RLPs typically need a co-receptor (Ma et al., 2016).

PAMPs and DAMPs function as bonds to enhance the

dimerization and oligomerization of PRRs, one-way

transmembrane receptors interacting with RLK co-receptors to

initiate signaling and activate immune complexes (Macho and

Zipfel, 2015). Following PTI activation, the MAP kinase cascade

is activated, PTI-related defense genes are induced, ethylene and

salicylic acid are synthesized, and callose is deposited (Teixeira

et al., 2021; Raza et al., 2022). PTIs appear to be a component of

the host’s arsenal of defense against geminivirus infection,

despite the fact that geminivirus PAMPs and their associated

PRRs have not been described. The TYLCCNB-C1 protein

interacts with and is phosphorylated by tomato sucrose non-
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fermentation 1-associated kinase (SlSnRK1), which may cause

proteasomal destruction (Shen et al., 2011). It has been

demonstrated that the TYLCCNB-C1 protein inhibits

methylation-mediated RNA silencing and its function in

lowering PTI in tomato plants. Another line of defense is

available. Where plants produce cytoplasmic R proteins, also

known as NB-LRRs (nucleotide-binding leucine-rich repeat

proteins), which can detect the presence or absence of specific

viral impacts, such as avirulent (AVR) activity and result in

effector-induced immunity (ETI) (Jones and Dangl, 2006).

According to their N-terminal structures, plant NLRs are

divided into two groups: CC-NLRs (CNLs) and Toll/

Interleukin-1 (TIR)-NLRs (TNLs) (Selth et al., 2004). Ty-2 is a

CC-NBS-LRR (CNL) type gene member of the CNL genes with

an I-2-like subclass (Shen et al., 2020). When Ty-2 is co-

expressed and activated with the TYLCV Rep/C1 protein, a

hypersensitive responses (HR) response is produced.

ETIs frequently cause HR and systemic acquired resistance

(SAR) (Saile et al., 2020). Recent research suggests that there

may not be a very distinct difference between PAMPs and

effectors or between PAMP receptors and resistance-causing

proteins (Thomma et al., 2011). As a result, PTI and ETI are not

always different defensive reactions; instead, both defensive

reactions can be strong or weak depending on the contact

circumstances. Thus, detecting danger signals, whether they

come directly from microorganisms (PAMPs and effectors) or

through damage to or change of eukaryotic host structures, can

recapitulate the activation of innate plant defense. The

geminivirus AC2/C2 protein, a viral effector required for

productive infection and can occasionally cause HR, seems to

fit these criteria (Roy, 2016).

In general, plant defense responses triggered by direct or

indirect effector sensing by NLR genes involve a variety of

downstream signaling pathways, including phytohormones

involved in defense, MAPK signaling cascades, and a set of

defense-related genes (e.g., WRKY transcription factors)

(Elmore et al., 2011; de Ronde et al., 2014; Boualem et al.,

2016; Rasheed et al., 2022). After TYLCV inoculation, the

SlMAPK1 , SlMAPK2 , and SlMAPK3 were differently

upregulated and activated (Li et al., 2017; Guo et al., 2021).

Rapid reactive oxygen species (ROS) burst and activation of

MPK3/MPK6 are two distinct early signaling events in the plant

immune system (Xu et al., 2014; Edris et al., 2021; Elebeedy et al.,

2022; Sattar et al., 2022). The SA synthesis can result from H2O2

buildup (León et al., 1995); however, TYLCV also promotes SA

accumulation early in infection (Morinaka et al., 2006). High SA

and H2O2 can activate the PR genes expression locally (Peleg-

Grossman et al., 2010).

In order to silence the expression of viral genes,

geminiviruses must contend with plants on two major

defenses. PTGS damages viral mRNA, while methylation-

mediated TGS targets viral minichromosomes (Gupta et al.,

2021). Geminivirus DNA enters the nucleus after combining
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with coat proteins and then attaching to the host’s histone

proteins; ssDNA is replicated in the nucleus in double-

stranded form and exists as minichromosomes (Abouzid et al.,

1988; Gupta et al., 2021). The RNA-directed DNA methylation

device (RdDM) employs transcriptional gene silencing to silence

viral gene expression and reduce viral minichromosomes by

taking advantage of the plant’s response to the invasion (TGS)

(Vanitharani et al., 2005; Zarreen and Chakraborty, 2020).Virus-

produced Plant cytoplasmic siRNA-mediated silencing

pathways specifically target RNA transcripts (Gupta et al.,

2021). The PTGS pathway is essential for host genes’

expression, development, and defense (Chen et al., 2004).

RDR2 participates in tomatoes’ TGS pathway and antiviral

defense (Mourrain et al., 2000; Xie et al., 2001; Qi et al., 2009).

Element members of the Ty-3/Gypsy-like superfamily of

retrotransposons, which are transcriptionally repressed

through the RdDM pathway, are upregulated due to the loss of

RDR2 function (Jia et al., 2009). The TYLCV virus has two wild-

type tomato resistance alleles, Ty-1 and Ty-3. These alleles are

members of the RDR lineage and encode the DFDGD motif

(Verlaan et al., 2013; Caro et al., 2015). Other research has

demonstrated that Ty-1 increases antiviral RNAi responses,

which is implied by elevated vsiRNA levels and elevated

cytosine methylation in the viral DNA genome in tomatoes

treated with Ty-1 (Butterbach et al., 2014). The viral genome’s

cytosine methylation and RNA silencing are hypothesized to be

regulated by several Ty genes (Verlaan et al., 2013; Butterbach

et al., 2014; Caro et al., 2015).

Finally, autophagy, a conserved evolutionary process that

recycles damaged or unneeded cellular components within cells,

is another method of plant defense against TYLCV (Haxim et al.,

2017; Yang et al., 2019a). According to studies on plant DNA and

RNA viruses, autophagy has a potential antiviral role in host innate

and adaptive immunity (Hafrén et al., 2017; Haxim et al., 2017;

Gupta et al., 2021). The TLCYnV Rep protein CLCuMuB C1

interacts with the autophagy-related protein NbATG8 and

regulates its degradation via the ATG8 interaction motif

(LVSTKSPSLIK) (Gupta et al., 2021). More research, particularly

in tomatoes, is needed to understand how autophagy is regulated

during viral infection and determine whether blocking the proviral

autophagy pathway could prevent diseases.
8 Challenge and prospects

The TYLCV may have originated from seeds because viral

particles can stay in the seed after infection and pass on to the

following generation (Albrechtsen, 2006; Baldodiya et al., 2020).

Strict quarantine laws, integrated pest management, and

traditional breeding are only a few methods to stop the spread

of TYLCV (Prasad et al., 2020). TYLCV transmission is one of

several recent transgenic strategies and traditional methods used

to combat virus transmission (Pramanik et al., 2021; Asseri et al.,
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2022). Tomato plants that express TYLCV gene segments, such

as replication-associated protein (Rep) (Antignus et al., 2004) or

capsid protein (CP) provide resistance to the virus (Yang et al.,

2004). Another study found that the model plant N.

benthamiana overexpressed recombinant antibodies directed

against the Rep protein and displayed decreased TYLCV

symptoms (Safarnejad et al., 2009; Reyes et al., 2013).

Immunization against TYLCV was successfully developed

using viral gene silencing via RNAi-mediated techniques

(Ammara et al., 2015; Leibman et al., 2015; Fuentes et al.,

2016); for example, viral resistance was demonstrated by

silencing the tomato SlPelo gene (Lapidot et al., 2015).

Meanwhile, the overexpression of plant immunity-related

genes immunity is a reasonable strategy for increasing

pathogen tolerance in plants. For instance, SlMAPK3 or SlLNR

overexpression reduces TYLCV pathogenicity in tomato plants

(Li et al., 2017; Yang et al., 2019b). Furthermore, SlGRXC6

overexpression promoted plant growth, inhibited viral infection,

and delayed TYLCV symptom development (Zhao et al., 2021).

Traditional breeding and transgenic approaches to TYLCV

infection control are generally promising, but they have several

drawbacks. Besides, they have been around for a long time and

faces the risk of losing essential characteristics due to traditional

breeding domestication (Jansson et al., 2017; Migicovsky and

Myles, 2017). The main disadvantage of transgenic techniques is

that the transgene must be expressed steadily to achieve a

pathogen-tolerant phenotype. Thus the organisms must be

classified as genetically modified (GMOs) (Shelake et al., 2019).

Plant viruses have also been reported to develop a protection

system by developing RNA-silencing viral suppressors (Incarbone

and Dunoyer, 2013), even though RNAi does not result in

complete gene silencing and requires the components of RNAi

to be expressed consistently (Shuey et al., 2002; Rehman et al.,

2022). As a result, novel approaches to developing TYLCV-

resistant tomato crop varieties are incredibly crucial. CRISPR/

Cas technology has proven to be a promising tool for creating

designer crop varieties, including pathogen-resistant crops

(Shelake et al., 2019; El-Sappah et al., 2021b; Pramanik et al.,

2021). The two main components of CRISPR/Cas-based genome

editing tools are single guide RNA (sgRNA) and Cas9

endonuclease (Binyameen et al., 2021). The sgRNA-Cas9

complex searches the genome for its target site and uses an

adjacent protospacer motif to generate efficient DNA double-

strand breaks. During the error-prone DNA repair process,

mutations can occur (Pramanik et al., 2021). CRISPR/Cas has

recently been used to target either the pathogen genome or the

genes of the host plant to achieve a disease-resistant phenotype. By

targeting the viral genome, CRISPR/Cas technology is effective in

providing TYLCV resistance in N. benthamiana (Ali et al., 2015;

Zaidi et al., 2016; Tashkandi et al., 2018). Similarly, sgRNAs

targeting the CP or Rep gene decreased TYLCV accumulation in

tomato plants (Tashkandi et al., 2018). According to a study

published by Pramanik et al. (2021) the commercial tomato BN-
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86 line was CRISPR/Cas9-interceded to produce TYLCV-resistant

tomato plants. Finally, in order to gain viral immunity, targeting

the viral genome necessitates the stable expression of the CRISPR/

Cas system, and is thus classified as GMO.
9 Conclusions

The most destructive viral disease that affects tomatoes is

likely TYLCV disease. Traditional strategies, such as

reproduction and transgenic techniques, have had limited

success in controlling the disease. The QTL for TYLCV

resistance, including Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6 in

wild tomato varieties, were only recently discovered. Several

methods, including stringent quarantine laws, genetic

engineering, conventional breeding, and integrated pest

management, have been used to stop the spread of TYLCV.

Typically, tomato uses a few defense mechanisms, such as PTI,

ETI, Gene silencing, and autophagy, to reduce the dangerous

effects of TYLCV infections. This study compiles the

characteristics of specific opposition genes, typical opposition

resources, subatomic markers for aided choice, and methods for

determining TYLCV protection. The main objective is to set the

theoretical groundwork for identifying, utilizing, and developing

tomato varieties resistant to TYLCV.
Author contributions

Conceptualization: AE-S, JiaL, KY, MA, AS, MASA, XZ and

RM. Draw the figures: AE-S and SQ. Collected the data: AE-S.

Contributed to writing the original manuscript draft: AE-S.

Review and editing of the manuscript: AE-S, QH, G-TC, JinL,

LW, JiaL, MI, XZ, MASA, AS and MA. Writing final copy: AE-S,

SS, and ZN. All authors contributed to the article and approved

the submitted version.
Frontiers in Plant Science 16
Funding

This research was supported by Yibin University's High-

level Talent Project (No. 2018RC07) and the Scientific Research

Program Funded by Education Department of Shaanxi

Provincial Government Program (No. 22JC061-177). Also, this

work was supported by the Deanship of Scientific Research at

Umm Al-Qura University for supporting this work by grant

code (23UQU4290565DSR122).
Acknowledgments

We are very grateful to the kind administration of Yibin

University, Yibin, China for providing us such a prestigious and

well-equipped platform for research and development. The

authors would like to thank the Deanship of Scientific

Research at Umm Al-Qura University for supporting this

work by grant code (23UQU4290565DSR122).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Abbas, M., Li, Y., Elbaiomy, R. G., Yan, K., Ragauskas, A. J., Yadav, V., et al.
(2022). Genome-wide analysis and expression profiling of SlHsp70 gene family in
solanum lycopersicum revealed higher expression of SlHsp70-11 in roots under Cd
(2+) stress. Front. Biosci. (Landmark Ed) 27, 186. doi: 10.31083/j.fbl2706186

Abhary, M., Anfoka, G., Nakhla, M., and Maxwell, D. (2006). Post-
transcriptional gene silencing in controlling viruses of the tomato yellow leaf
curl virus complex. Arch. Virol. 151, 2349–2363. doi: 10.1007/s00705-006-0819-7

Abouzid, A. M., Frischmuth, T., and Jeske, H. (1988). A putative replicative form
of the abutilon mosaic virus (gemini group) in a chromatin-like structure. Mol.
Gen. Genet. MGG 212, 252–258. doi: 10.1007/BF00334693

Afify, A. S., Abdallah, M., Ismail, S. A., Ataalla, M., Abourehab, M. A. S., Al-
Rashood, S. T., et al. (2022). Development of GC–MS/MS method for
environmental monitoring of 49 pesticide residues in food commodities in Al-
rass, Al-qassim region, Saudi Arabia. Arabian J. Chem. 15, 104199. doi: 10.1016/
j.arabjc.2022.104199

Al Abdallat, A. M., Al Debei, H. S., Asmar, H., Misbeh, S., Quraan, A., and
Kvarnheden, A. (2010). An efficient in vitro-inoculation method for tomato yellow
leaf curl virus. Virol. J. 7, 84. doi: 10.1186/1743-422X-7-84

Albrechtsen, S. E. (2006). Testing methods for seed-transmitted viruses: Principles
and protocols. UK: CABI Publishing, Oxfordshire), p. 47–81. doi: 10.1079/
9780851990163.0001

Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., and Mahfouz, M. M.
(2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 1–11.
doi: 10.1186/s13059-015-0799-6
frontiersin.org

https://doi.org/10.31083/j.fbl2706186
https://doi.org/10.1007/s00705-006-0819-7
https://doi.org/10.1007/BF00334693
https://doi.org/10.1016/j.arabjc.2022.104199
https://doi.org/10.1016/j.arabjc.2022.104199
https://doi.org/10.1186/1743-422X-7-84
https://doi.org/10.1079/9780851990163.0001
https://doi.org/10.1079/9780851990163.0001
https://doi.org/10.1186/s13059-015-0799-6
https://doi.org/10.3389/fpls.2022.1081549
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


H. El-Sappah et al. 10.3389/fpls.2022.1081549
Alluqmani, S. M., and Alabdallah, N. M. (2022). The effect of thermally heated
carbon nanoparticles of oil fly ash on tomato (Solanum lycopersicum l.) under salt
stress. J. Soil Sci. Plant Nutr. 22, 5123–5132. doi: 1007/s42729-022-00988-5

Amin, I., Patil, B. L., Briddon, R. W., Mansoor, S., and Fauquet, C. M. (2011).
Comparison of phenotypes produced in response to transient expression of genes
encoded by four distinct begomoviruses in nicotiana benthamiana and their
correlation with the levels of developmental miRNAs. Virol. J. 8, 238. doi:
10.1186/1743-422X-8-238

Ammara, U., Mansoor, S., Saeed, M., Amin, I., Briddon, R. W., and Al-Sadi, A.
M. (2015). RNA Interference-based resistance in transgenic tomato plants against
tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite.
Virol. J. 12, 38. doi: 10.1186/s12985-015-0263-y

Anbinder, I., Reuveni, M., Azari, R., Paran, I., Nahon, S., Shlomo, H., et al.
(2009). Molecular dissection of tomato leaf curl virus resistance in tomato line
TY172 derived from solanum peruvianum. Theor. Appl. Genet. 119, 519–530. doi:
10.1007/s00122-009-1060-z

Andersen, J. R., and Lübberstedt, T. (2003). Functional markers in plants. Trends
Plant Sci. 8, 554–560. doi: 10.1016/j.tplants.2003.09.010

Anfoka, G., Moshe, A., Fridman, L., Amrani, L., Rotem, O., Kolot, M., et al.
(2016). Tomato yellow leaf curl virus infection mitigates the heat stress
response of plants grown at high temperatures. Sci. Rep. 6, 1–13. doi: 10.
1038/srep19715

Antignus, Y. (2007). “The management of tomato yellow leaf curl virus in
greenhouses and the open field, a strategy of manipulation,” in Czosnek, H (ed.)
Tomato yellow leaf curl virus disease. (Dordrecht: Springer) p. 263–278.

Antignus, Y., Vunsh, R., Lachman, O., Pearlsman, M., Maslenin, L., Hananya,
U., et al. (2004). Truncated rep gene originated from tomato yellow leaf curl virus-
Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann. Appl.
Biol. 144, 39–44. doi: 10.1111/j.1744-7348.2004.tb00314.x

Arnholdt-Schmitt, B. (2005). Functional markers and a ‘systemic strategy’:
convergency between plant breeding, plant nutrition and molecular biology.
Plant Physiol. Biochem. 43, 817–820. doi: 10.1016/j.plaphy.2005.08.011

Asseri, A. H., Alam, M. J., Alzahrani, F., Khames, A., Pathan, M. T., Abourehab,
M. A. S., et al. (2022). Toward the identification of natural antiviral drug candidates
against merkel cell polyomavirus: Computational drug design approaches.
Pharmaceuticals 15, 501. doi: 10.3390/ph15050501

AVRDC (2002). “Pyramiding tomato leaf curl virus resistance genes by marker-
assisted selection,” in AVRDC report 2001. Eds. T. Kalb and G. Kuo (Tainan: Asian
Vegetable Research and Development Center), 12–13.

Bai, Y., van der Hulst, R., Huang, C., Wei, L., Stam, P., and Lindhout, P. (2004).
Mapping ol-4, a gene conferring resistance to oidium neolycopersici and originating
from lycopersicon peruvianum LA2172, requires multi-allelic, single-locus markers.
Theor. Appl. Genet. 109, 1215–1223. doi: 10.1007/s00122-004-1698-5

Baldodiya, G. M., Baruah, G., Sen, P., Nath, P. D., and Borah, B. K. (2020).
“Host-parasite interaction during development of major seed-transmitted viral
diseases,” In Kumar, R., and Gupta, A. (eds). Seed-borne diseases of agricultural
crops: Detection, diagnosis & management. (Singapore: Springer) p. 265–289. doi:
10.1007/978-981-32-9046-4_11

Barbieri, M., Acciarri, N., Sabatini, E., Sardo, L., Accotto, G., and Pecchioni, N.
(2010). Introgression of resistance to two Mediterranean virus species causing
tomato yellow leaf curl into a valuable traditional tomato variety. J. Plant Pathol.
92, 485–493.

Basu, S., Kumar Kushwaha, N., Kumar Singh, A., Pankaj Sahu, P., Vinoth
Kumar, R., and Chakraborty, S. (2018). Dynamics of a geminivirus-encoded pre-
coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom
recovery in tobacco. J. Exp. Bot. 69, 2085–2102. doi: 10.1093/jxb/ery043

Bellotti, A. C., and Arias, B. (2001). Host plant resistance to whiteflies with
emphasis on cassava as a case study. Crop Prot. 20, 813–823. doi: 10.1016/S0261-
2194(01)00113-2

Ben Tamarzizt, H., Gharsallah Chouchane, S., Lengliz, R., Maxwell, D. P.,
Marrakchi, M., Fakhfakh, H., et al. (2009). Use of tomato leaf curl virus
(TYLCV) truncated rep gene sequence to engineer TYLCV resistance in tomato
plants. Acta Virol. 53, 99–104. doi: 10.4149/av_2009_02_99

Bian, X.-Y., Thomas, M. R., Rasheed, M. S., Saeed, M., Hanson, P., De Barro, P.
J., et al. (2007). A recessive allele (tgr-1) conditioning tomato resistance to
geminivirus infection is associated with impaired viral movement.
Phytopathology 97, 930–937. doi: 10.1094/PHYTO-97-8-0930

Binyameen, B., Khan, Z., Khan, S. H., Ahmad, A., Munawar, N., Mubarik, M. S.,
et al. (2021). Using multiplexed CRISPR/Cas9 for suppression of cotton leaf curl
virus. Int. J. Mol. Sci. 22, 12543. doi: 10.3390/ijms222212543
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