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Nitrogen is a key nutrient macroelement. Nitrate is the most abundant inorganic

form of N in soils for plant absorption, and works as a signaling molecule that regulates

multiple growth and developmental processes (Fredes et al., 2019; Vidal et al., 2020; Li

et al., 2021), such as root elongation (Zhang et al., 2019), leaf expansion (Yang et al.,

2022) and flowering (Yuan et al., 2016; Zhang et al., 2021). However, nitrate signaling in

plant cells remains largely unknown. Both a proton-coupled transporter NRT1.1 (CHL1;

Ho et al., 2009) and the NIN-like protein (NLP) transcription factor NLP7 (Liu et al.,

2022) have been suggested as nitrate sensors.

The nitrate transporter NRT1.1 is a dual-affinity nitrate transceptor controlling the

primary nitrate response (nitrate signaling), in which expressions of nitrate assimilation

genes and nitrate transporter genes are induced rapidly by nitrate treatments (Ho et al.,

2009). NRT1.1 facilitates not only nitrate uptake but also auxin transport. Nitrate

treatments repress NRT1.1-mediated auxin uptake, indicating that the nitrate signaling

via NRT1.1 is correlated with a regulation of auxin transport (Krouk et al., 2010). The

T101 residue of NRT1.1 could be phosphorylated by calcineurin B-like interacting

protein kinase 23 (CIPK23; Ho et al., 2009). The phosphorylation state of NRT1.1 plays

an important role in regulating lateral root development by modulating nitrate-mediated

basipetal auxin export and nitrate-dependent signal transduction (Zhang et al., 2019).

Thus, NRT1.1 is a master switch that integrates nitrate signaling/transport and auxin

signaling/transport. However, mutation of NRT1.1 promotes both lateral root growth

and auxin accumulation in these roots at low nitrate levels, but not at high levels (Krouk

et al., 2010) And the null chl1-5 mutant resembled wild-type plants when grown on

medium with nitrate as the sole nitrogen source (Liu et al., 2022). The activation of
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primary nitrate response genes were only partially repressed in

chl1-5 mutant (Liu et al., 2022). Thus, there should be NRT1.1-

independent nitrate signaling pathways.
NLP7 is insensitive to nitrate
changes, when the cytosol nitrate
concentrations are higher
than 1 mM

The NIN-like protein (NLP) transcription factor NLP7

functions as a master switch, which controls the expression of

a large number of genes in response to nitrate changes (Liu et al.,

2017). Recently, Liu et al. (2022) indicated that nitrate directly

binds to NLP7, and NLP7 is derepressed upon nitrate perception

via its N terminus. Transcriptome reprogramming in primary

nitrate responses triggered by nitrate was abolished in nlp7

mutant (Liu et al., 2022). However, none of the previously-

reported receptors have been identified as transcription factors

so far. For all known receptors (sensors), downstream of binding

with signaling molecules, there are usually multiple elements

involved in the signaling pathway, such as mitogen-activated

protein kinase (MAPK) cascade (Liu, 2012). If nitrate acts on

NLP7 directly, there will be no crosstalk with other signals and

no possibility of positive or negative feedback regulations, which

does not conform to the evolutionary law.

The dissociation constant Kd value of NLP7 binding to

nitrate was about 50 mM (Liu et al., 2022). However the Kd

values of phytohormone receptors range from 4 nM to 50 nM,

which are about 1000 times lower than that of NLP7 (Table 1).

Even for the nonspecific amino-acid receptors, glutamate

receptor-like (GLR) channels, their Kd value can be as low as

0.33–5.5 µM (Alfieri et al., 2020), which are still 9–150 times
Frontiers in Plant Science 02
lowers than that of NLP7 (Table 1). Therefore, NLP7 is not a

specific nitrate receptor.

A nitrate transporter in the cyanobacterium Synechococcus,

NrtA, was shown to bind nitrate and nitrite with a high affinity

(Kd = 0.3 mM;Maeda and Omata, 1997). Comparatively, another

nitrate transporter in Staphylococci, NreA, was shown to bind

nitrate with a low affinity (Kd = 22 mM; Niemann et al., 2014;

Table 1). Thus, NLP7 may have a function as a nonspecific

transporter with low micromolar affinity. Similarly, Ethylene

Insensitive2 (EIN2) contains the 12-transmembrane domain of

the NRAMP family of metal transporters, but has no capacity for

metal transport. Instead, EIN2 functions an essential ethylene

signaling component in higher plants (Alonso et al., 1999).

NLP7 shares some similarity with cyanobacterial nitrate

transporters (Liu et al., 2022), however, in higher plants, it has

developed a new function, serving as a transcription factor. This

suggests that the role of NLP7 as a nitrate transporter might have

been diminished largely from its ancient roots.

On the other hand, the contents of nitrate in plant cells are

very high, even under low N conditions (North et al., 2009). For

instance, when the N level in MS medium was reduced to 1/20,

the whole seedling nitrate content only reduced from 10 mM to

7 mM (Fu et al., 2020; Yang et al., 2022). Another study

demonstrated that, by the time the barley roots had been out

of nitrate for 24 h, the cytosol nitrate contents in root epidermal

cells only decreased from 4.6 mM to 4.0 mM, and the cytosol

nitrate contents in root cortical cells only decreased from 3.7

mM to 2.9 mM (van der Leij et al., 1998), when the nitrate-

starvation signal has been already triggered. Nitrate

concentration is 1 to 5 mM in the cytosol and 5 to 75 mM in

the vacuole under nitrogen sufficient conditions. Under nitrogen

deficient conditions, the nitrate concentration of cytosol was

maintained stable by export of nitrate from the vacuole.

However, the stored nitrate in vacuoles can only lasted for two
TABLE 1 Dissociation constant (Kd) values of phytohormone, amino-acid receptors (sensors) and nitrate transporters.

Signaling molecule Receptor (Sensor) Kd Reference

Auxin (Indole-3-acetic acid;
IAA)

Transport Inhibitor Response 1 (TIR1) 18 nM Calderón Villalobos et al.,
2012

Cytokinin (CTK) Histidine Kinases (HK) 4.0 nM to trans-zeatin Stolz et al., 2011

Gibberellin (GA) GA Insensitive Dwarf 1 (GID1) 30 nM to GA4 Nakajima et al., 2006

Abscisic acid (ABA) Protein Phosphatases Type 2C (PP2C) 38 nM Santiago et al., 2009

Ethylene (ET) Ethylene Receptor 1 (ETR1) 1.24 ml/liter McDaniel and Binder, 2012

Salicylic acid (SA) Non-expressor of Pathogenesis Related protein 4 (NPR4) 50 nM Wang et al., 2020

Jasmonic acid (JA) Coronatine-Insensitive 1 (COI1) 48 nM Sheard et al., 2010

Amino acid (AA) Glutamate receptor-like (GLR) channels (nonspecific receptors
in plants)

0.33 µM to Cys; 2.2 µM to Glu; 5.5 µM
to Gly

Alfieri et al., 2020

Synechococcus sp. Strain PCC
7942

Nitrate transporter A (nrtA) 0.3 mM Maeda and Omata, 1997

Staphylococcus carnosus Nitrate regulatory element A (NreA) 22 mM Niemann et al., 2014

Arabidopsis thaliana Nitrate transporter NRT1.1 1 mM Parker and Newstead, 2014
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days if there is no nitrogen was provided (Cookson et al., 2005;

Marschner and Rengel, 2012). Although the exact cytosol nitrate

concentration under N deficient condition has not been well-

documented, Arabidopsis root nitrate levels decreased from 10

mM to 1 mM, and its shoot nitrate levels decreased from 90 mM

to 4 mM after 7 days of N starvation (Bussell et al., 2013).

Nevertheless, for NLP7, the saturated binding can be achieved

when the nitrate level is higher than 1 mM (Liu et al., 2022). In

other words, even under low-N conditions, NLP7 remains in a

saturated binding state, so it is unlikely to respond to nitrate

changes, when the cytosol nitrate concentrations are higher than

1 mM.

NRT1.1 has also been suggested as a nitrate sensor (Ho et al.,

2009). Although the Kd value of NRT1.1 to nitrate was very high

(about 1 mM) (Parker and Newstead, 2014), in conditions of

high nitrate availability (> 1 mM), NRT1.1 behaves as a low-

affinity transporter (Km = 4 mM); when nitrate levels fall below 1

mM, NRT1.1 is switched into a high-affinity mode (Km = 40 mM;

Liu et al., 1999). Compared with NLP7, NRT1.1 is more likely to

be responsive to exogenous nitrate changes.
The binding domain and the
signaling domain are separated in
NRT1.1, but not in NLP7

It is necessary to prove that the binding of NLP7 with nitrate

is a prerequisite for its transcriptional activation function. Liu

et al. (2022) showed that 4xNRE(nitrate response cis-element)-

min(35S minimal promoter)-LUC(luciferase gene) was activated

by NLP7 only in the presence of nitrate in both nitrate-free

Arabidopsis leaf cells and 293T human cells. However, it could

not rule out a possibility that some nitrate-responsive factors

conserved in both plants and animals (humans) regulates NLP7

ac t i v i t y upon ni t ra t e t rea tment s . The adenos ine

monophosphate-activated protein kinase (AMPK) proteins

could be candidates for this process. Arabidopsis AMPKa1
homologs KIN10 and KIN11 (AT3G29160) proteins share

79.3% similarity with the human AMPKa1 (Yuan et al., 2016).

KIN10 phosphorylated NLP7, and promoted its cytoplasmic

localization and degradation (Wang et al., 2021a). Nitrate

depletion induced KIN10 accumulation, whereas nitrate

treatment promoted KIN10 degradation (Wang et al., 2021a).

In both plant cells and mammalian cells, nitrate availability

regulates AMPK activities positively (Yuan et al., 2016; Li

et al., 2022).

Generally, the binding domain and the signaling domain of

receptors are separated, and there will be a mutant receptor that

cannot bind to the signaling molecules but can activate

downstream factors (e.g. kinase activity), or there will be a

mutant receptor that can bind to the signaling molecules but

cannot conduct a downstream signal. Liu et al. (2022) did not
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construct such mutants. They did demonstrate that substitutions

of conserved residues in the ligand-binding pocket (the HLY/

AAAmutation) impaired the ability of nitrate-triggered NLP7 to

control transcription, transport and plant growth. However,

given that both the DNA binding domain and nitrate binding

sites are at the N-terminal (Liu et al., 2022), the NLP7 (HLY/

AAA) mutant protein may not be able to bind nitrate or have a

transcriptional activation activity.

Contrastingly, NRT1.1 works as a nitrate sensor

independent of its transporter activity. The chl1-9 mutant with

a point mutation of Pro492 to Leu, was found to have normal

levels of NRT1.1 transcript and protein (Liu et al., 1999). chl1-9

has been shown to be defective in both high- and low-affinity

nitrate uptake. Interestingly, despite the nitrate uptake defect,

chl1-9 still showed normal biphasic primary nitrate responses

and typical Km values in both high- and low-affinity ranges (Ho

et al., 2009). Consistently, when the CHL1-9 full-length cDNA

was introduced into the null mutant chl1-5, signaling defects but

not the uptake defect could be rescued (Ho et al., 2009). These

results showed that the transporter activity was not needed for

the sensing function of NRT1.1. As mentioned above, NRT1.1

also mediates auxin transport and signaling (Krouk et al., 2010;

Zhang et al., 2019), it would be very interesting to investigate

whether chl1-9mutant is defective in basipetal auxin export and/

or nitrate-dependent auxin signaling.
Nitrate signaling through AMPK
pathways may not require a
nitrate sensor

We speculate that either the nitrate binding capacity of

NLP7 is not related to its transcriptional activation activity, or

that, even if it is related, the change of nitrate at high

concentrations (> 1 mM, when NLP7 is saturated bound with

nitrate) may be mainly perceived through other proteins. Nitrate

represses ferredoxin-NADP+-oxidoreductase (FNR1)

expression, thereby contributing to declines in NADPH/

NADP+ and ATP/AMP ratios, which in turn activates AMPK

(KIN10 and KIN11) and modulates its nuclear abundance (Yuan

et al., 2016). KIN10 phosphorylates NLP7 to induce its

cytoplasmic retention and the subsequent degradation (Wang

et al., 2021a). Under the normal growth condition, nitrate

activates NRT1.1-CNGC15 (cyclic nucleotide-gated channel

protein 15) complex to produce NO−
3 specific Ca2+ signature

(Wang et al., 2021b), which results in the NLP7 phosphorylation

by Ca2+-sensor protein kinases (CPKs) at Ser205, thereby

triggering NLP7 nuclear localization, which regulates

downstream gene expression and promotes plant growth (Liu

et al., 2017). Nevertheless, under nitrate-deficient conditions,

KIN10 is induced to phosphorylate Ser125 and Ser306 of NLP7

protein, which increases its cytoplasmic localization and the
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subsequent degradation, therefore repressing nitrate-regulated

gene expression and inhibiting growth (Wang et al., 2021a).

These pathways may not require a nitrate sensor (like NRT1.1),

but may be regulated through changes in cellular nitrate levels.

So far, the nitrate signaling panorama is still incomplete. The

role of KIN11 and its correlation with KIN10 in nitrate signaling

are still unclear. The association between CPKs and AMPK (who

is the upstream kinase, who is the upstream kinase, or they could

phosphorylate each other) requires further studies. And the

relationship between NRT1.1 (sensor)-dependent nitrate

signaling and NRT1.1-independent nitrate signaling also needs

further investigations.
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