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Environmental stresses such as drought, high salinity, and low temperature

can adversely modulate the field crop’s ability by altering the morphological,

physiological, and biochemical processes of the plants. It is estimated that

about 50% + of the productivity of several crops is limited due to various types

of abiotic stresses either presence alone or in combination (s). However, there

are two ways plants can survive against these abiotic stresses; a) through

management practices and b) through adaptive mechanisms to tolerate plants.

These adaptive mechanisms of tolerant plants are mostly linked to their

signalling transduction pathway, triggering the action of plant transcription

factors and controlling the expression of various stress-regulated genes. In

recent times, several studies found that Zn-finger motifs have a significant

function during abiotic stress response in plants. In the first report, a wide range

of Zn-binding motifs has been recognized and termed Zn-fingers. Since the

zinc finger motifs regulate the function of stress-responsive genes. The Zn-

finger was first reported as a repeated Zn-binding motif, comprising conserved

cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a

transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly

attached to amino acid residues and thus espousing a tetrahedral coordination
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geometry. The physical nature of Zn-proteins, defining the attraction of Zn-

proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+

facilitates their characteristic function and how proteins control its mobility

(intra and intercellular) as well as cellular availability. The current review

summarized the concept, importance and mechanisms of Zn-finger motifs

during abiotic stress response in plants.
KEYWORDS

abiotic stresses, Zn-finger proteins, mechanisms, plants, gene signalling ABA -
abscisic acid
1 Introduction

Crops usually encounter a wide range of hostile climatic

fluctuations during their life cycles. Such abnormal

environmental fluctuations are covered by stressors of both

biotic origins, including infection by pathogens (virus,

bacteria, fungi, etc.), attack by weeds, and insects, as well as by

abiotic components also (Moulick et al., 2018d; Ghosh et al.,

2020a; Ghosh et al., 2020b; Ghosh et al., 2021; Ghosh et al.,

2022a; Ghosh et al., 2022b; Mateos Fernández et al., 2022;

Tonnang et al., 2022; Jain et al., 2022a; Jain et al., 2022b).

Among the abiotic stress including heat and chilling stress

(Aslam et al., 2022; Haider et al., 2022; Ullah et al., 2022;

Verma et al., 2022), limitation of water (drought), limitation of

nutrients, elevated levels of salt, and hazardous/toxic metals and

metalloids in the soil (Hernandez et al., 2000; Moulick et al.,

2019; Saha et al., 2019; Sahoo et al., 2019; Moulick et al., 2021;

Choudhury et al., 2022a; Choudhury et al., 2022b; Choudhury

and Moulick, 2022; Mazumder et al., 2022).

Environmental stress can adversely modulate the field crop’s

ability to maintain its yield potential, i.e., their determining yield

despite satisfactory inputs and other factors. A field crop/plant’s
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vulnerability to adverse deviations from (maximum yield) yield

potential is usually calculated by measuring the respective crop’s

yield stability (Bhadra et al., 2021). The difference between the

actual yield and yield potential of a particular site (agro-

environment) is regarded as the yield gap (Mueller et al.,

2012). Crops seldom touch their real yield potential in most

broad-acre agri-environmental systems due to experiencing

stress (s) during crop’s life cycle. Stress-affected plants

exhibited three primary response segments: first is the alarm

or apprehension phase, sometimes also called the initiation of

stress; the next phase, i.e., the second phase is characterized by

resistance or fight phase through the initiation of defence

systems; and the last or third phase is the exhaustion phase or

collapse stage where loss due to stress is evident (Larcher, 2003;

Moulick et al., 2019; Sahoo et al., 2019).

Among the stresses, salinity (high Na+) is the critical agro-

environmental factor that limits growth and yield/productivity.

Under salinity stress, crops usually modulate their physiological

processes by endorsing water acquisition and retention, and

shifting the ion homeostasis management process (Parida and

Das, 2005; Barman et al., 2022; Roy et al., 2022). At the same

time, scarcity of available water to plants or drought stress results

in decreased survival of plants, growth, and development due to

metabolic imbalances. Drought is often linked with a lack of

accessibility of groundwater in the land/soil but can also be

worsened by greater evapotranspiration (Jaleel et al., 2009;

Choudhury et al., 2022c; Jadhav et al., 2022). Such stress

(drought) may occur under dry/humid conditions and with

elevated air temperatures. The disparity in the water loss due

to evapotranspiration flux and water uptake from soil may

attribute to the key reason behind imposing drought stress

(Lipiec et al., 2013; Dash et al., 2022; Sagar et al., 2022). On

the other hand, toxic heavy metals and metalloids are also posing

a serious threat to achieving agricultural sustainability in crop

production with significant accumulation in the edible parts

imposing a menace to the food chain (Moulick et al., 2016a;

Moulick et al., 2016b; Moulick et al., 2018a; Moulick et al.,
frontiersin.org
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2018b; Moulick et al., 2018c; Saha et al., 2019; Chowardhara

et al., 2019a; Chowardhara et al., 2019b; Saha et al., 2022).

From a genetic point of view, stress is a set of certain

environmental conditions that prevent a crop from

experiencing its complete genetic expression. An abiotic

component-induced stress, not only due to the exchanges

(mainly with signalling) with other organisms and that can

negatively impact particular organisms in an agro-

environment, is regarded as abiotic stress. The effect of abiotic

stresses on the agro-environmental sector is a crucial threat

presently intensified by anthropogenic activities and global

warming (Kang et al., 2017; Mukherjee and Hazra, 2022).

Reports indicate that abiotic stresses not only impose

adverse on a crop’s anatomy, physiology, biochemistry and but

subsequently limit essential metabolic processes like respiration,

photosynthesis, and growth when lingered for a long time often

inducing death also (Hirayama and Shinozaki, 2010; Lima et al.,

2015; Basu et al., 2016). Plants are equipped with mechanisms

(physiological and metabolic) that may be crucial in lightening/

mitigating agro-environmental stresses. These stress-induced

shuffling crops’ metabolic machinery is controlled using the

initiation of genetic networks or pathways. The outcome of this

genetic alternation is imparting greater/better tolerance or

resistance to certain stress (s) (Claeys and Inzéand Inzé, 2013;

Thorpe et al., 2013). Upon exposure to environmental stresses,

dangerous by-products to crop health were found to be

instrumental to plants’ normal health and wellbeing. H2O2

(hydrogen peroxide), superoxide radicals, OH-radicals

(hydroxyl radicals), are regarded as reactive oxygen species

(ROS), generated as a result of leakage of electrons that occurs

during the photorespiration and photosynthesis process (Thorpe

et al., 2013; Kao, 2017; Moulick et al., 2021). Within the plant

cells, the proper antioxidant defense machinery and ROS build-

up sustain a steady-state balance (Hasanuzzaman et al., 2012).

Keeping a satisfactory level of ROS within the cell permits

adequate operation of redox biology (metabolic reactions) and

the management of numerous phycio-biochemical processes

vital for plant’s growth and development. This kind of

harmony among ROS formation and ROS quenching is an

example of intermediate level of ROS management/

homeostasis (Hasanuzzaman et al., 2019).

These reduced oxygen radicals or ROS were reported to

adversely influence key components of a crop’s metabolic cycle

resulting in significant damage to cellular processes and death

(Nouman et al., 2014). In order to lessen the excessive ROS

production and subsequent oxidative stress, plants/crops have

well-maintained anti-oxidative machinery that consists of non-

enzymatic as well as an enzymatic unit that can bring

equilibrium among ROS generation and quenching and

protection of cellular damage even PCD or programed cell

death also (Raja et al., 2017; Duan et al., 2012; Das and

Roychoudhury, 2014; Choudhury et al., 2021a; Hossain

et al., 2021).
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The magnitude of ROS induced damage to biomolecules

subjected to many factors like the concentration of target

biomolecule(s), site of the particular biomolecule(s) in relation

to the ROS production site, the rate constant of the reaction

among biomolecules and ROS, efficacy ROS quenching

components are to name a few (Davies, 2005). Increasing the

antioxidant level within the plant cells can be achieved by

spontaneously through use of genetic engineering or by

supplementing can boost up the defense system of the plant

and saving them from the adverse impact of ROS generated as a

result of environmental stress (Mishra et al., 2006; Gupta et al.,

2009; Kaur et al., 2022; Upadhyay et al., 2022). SOD (superoxide

dismutase), CAT (catalase), and POX or peroxides are well-

recognized enzymes involved in antioxidant systems that adjust

the ROS homeostasis by reducing OH• into H2O2 of crops (Gill

and Tuteja, 2010; Nouman et al., 2016). Whereas, in

coordination, with enzymatic components, the non-enzymatic

units of the antioxidant system (glutathione, flavanoid, lipids

carotenoids, etc.) work on H2O2 through various means (Duan

et al., 2012; Yin et al., 2020; Choudhury et al., 2022c).

At present, the main concern for the researchers working on

developing suitable strategies to mitigate abiotic stress in crops,

the main challenge is the complexities regarding stressor (s), i.e.,

abiotic components and the responses by crops towards the

stressors. Apart from agronomic practices, irrigation

management comparatively newer avenues like seed priming

technology (Moulick et al., 2016a; Moulick et al., 2017; Moulick

et al., 2018a; Moulick et al., 2018b; Moulick et al., 2018c),

potentials of wild relatives (Hossain et al., 2022) potentials of

metabolomics and next generation sequences are to name a few

(Choudhury et al., 2021b; Hossain et al., 2021).In order to

properly understand how stressors and crops interact at the

molecular level, i.e. replication, transcription and translation.

One such exciting topic of how the information imposed upon

exposure to a stressor communicates at the cellular level is to

illustrate the contributions made by transcription factors or Tfs.

Among the well-known TFs, Zn-Fingers are of prime interest.

The Zn-finger was first reported as a repeated Zn-binding

motif, comprising conserved cysteine (Cys) and histidine (His)

ligands, in Xenopus laevis oocytes as a transcription factor (TF)

IIIA (TFIIIA) (Miller et al., 1985). Since its first report, a wide

range of Zn-binding motifs has been recognized and termed Zn-

fingers. To meet the cellular demand, many proteins employ

non-protein (often metallic ions) as cofactors. Among the

metallic ions considered cofactors, transition metal ions are

the most important due to their significant influence on

modulating a wide range of cellular activities. From the

periodic table’s perspective, d-block elements are found to be

more actively involved as cofactors. Zn is one cofactor that can

influence as much as >10% of human proteins with a

pronounced impact on structural and catalytic activities

(Andreini et al., 2006; Maret and Li, 2009; Kochańczyk et al.,

2015). In the proteins where Zn2+ is mostly attached to amino
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acid residues and thus espousing a tetrahedral coordination

geometry. The physical nature of Zn-proteins, defining the

attraction of Zn-proteins for Zn2+is crucial for knowing how

a Zn2+ facilitates their characteristic function and how proteins

control its mobility (intra and intercellular) as well as cellular

availability. In the mammalian genomes, encoded Zn-finger

proteins dominate in number and are known as TF-regulators.

A specific number and variety within Zn-finger or Zn-

containing domains contribute to different cellular processes

like regulation of transcription, binding to nucleic acid, and

folding of proteins. Intermolecular attachment spots are the

most significant and sort after when compared with similar

intermolecular bindings. Due to having structural complexities

(peptide chain composit ion, orientation, etc.) , the

intermolecular attachment of ligands and their respective

targets poses serious challenges to analysis analyze (Maret

et al., 2004; Kochańczyk et al., 2016). Findings have shown

that an optimum level of Zn2+ concentration is essential to

maintaining the stability and folding of protein subunits and for

satisfactory performance of the catalytic activity of a particular

enzyme (Keilin and Mann, 1940; Vallee and Neurath, 1954;

Parraga et al., 1988). This innovative concept of small Zn2

+-stabilized domains was further supported by the in-depth

analysis of the TFIIIA sequence, which exhibited that a

continuous stretch of nine tandemly repeated 30 amino acid

residues (13 to 276) having two invariant pairs of Cys along with

His residues coordinating one Zn2+. This particular pattern was

later coined as ZF/zinc finger (Miller et al., 1985; Fairall et al.,

1986; Rhodes and Klug, 1986).

In this review, we are going to assess the contributions made

by ZFs in elaborating and imparting abiotic stress tolerance in

field crops with unique references to salinity, water stress,

thermos-stress, heavy metals, irradiation and elevated CO2 levels.
2 Zn-finger acellular perspective

2.1 Sub-cellular localization of Zinc
Finger Proteins

Zinc Finger Proteins (ZFPs) contain a highly conserved

signature domain consisting of 20–30 amino acid residues

having the consensus sequence of CX2–4CX3FX5LX2HX3–5H

(X denotes any amino acid). Structural differences in different

ZFPs are basically due to the differences in positions and

numbers of cysteine (Cys) and histidine (His) residues that

interacts and bind to the zinc ion and are constituted of

several sub-groups which are designated as Cys4/C4 (GATA-

1), Cys6/C6 (GAL4), Cys8/C8, Cys2HisCys/C2HC (Retroviral

nucleocapsid), Cys2His2/C2H2 (TFIIIA), Cys2HisCys5/C2HC5

(LIM domain), Cys3His/C3H/CCCH, Cys3HisCys4/C3HC4

(RING finger) and Cys4HisCys3/C4HC3 (Requium), DnaJ-like

zinc finger protein and many others (Lyu and Cao, 2018; Han
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et al., 2020; Yuce and Ozkan, 2020; Ali et al., 2022). As ZFPs are

basically the members of the most prominent transcription

factor family having a DNA binding domain, they are

generally localized to the nucleus after translation. However,

the zinc finger domain, an important structural motif, is also

reported to be involved in other cellular activities such as RNA

binding, membrane association and protein-protein

recognitions and interaction (Han et al., 2020). Thus, different

types of ZFPs are localized to cellular compartments as per their

specific role in cellular activities. Protein sorting in a cell can also

offer clues about the functions of these proteins (Wang

et al., 2020).

Among all the sub-groups of ZFPs, the C2H2 (TFIIIA) has

been extensively studied in plants. It represents the large

proportions of ZFPs in plants where 189 members in rice

(Agarwal et al., 2007), 321 in Soybean (Yuan et al., 2018), 122

in Cucumis sativus (Yin et al., 2020) and many more members in

other crops have been reported. Its DNA-binding motif is one of

the best-characterized motifs having two residues each of Cys

and His amino acids tetrahedrally combined into a zinc ion (Xie

et al., 2019). Focussing on plant-specific C2H2 type ZFPs (Q-type

C2H2-ZFPs), it is reported to have different lengths of long

spacer between two Zn finger motifs as compared to other

eukaryotic organisms. Apart from the Zn finger motif, the core

sequence KXKRSKRXR, which is present in the N-terminal of

protein sequences, acts as an NLS for sorting of C2H2 type ZFPs

to the nucleus (Xie et al., 2019) and the QALGGH motif present

in the helical region is required for binding to DNA (Kielbowicz-

Matuk, 2012). Having multiple functions in the nucleus, most of

the reported C2H2-type ZFPs in plants were found to be

localized in the nucleus. Several experiments were conducted

with the C2H2 type ZFP genes to confirm the nuclear

localization, such as FEMU2 of Chlamydomonas reinhardtii,

fused with the b-glucuronidase (GUS) reporter gene was

bombarded into onion epidermal cell and found that FEMU2

protein was in fact localized to the nucleus. A similar experiment

was conducted with JcZFP8 gene of Jatropha curcas fused with

the GFP reporter gene under the control of the CaMV35S

promoter. The 35Sp : JcZFP8:GFP gene construct was injected

into tobacco protoplast for transient expression, and the

fluorescence signal results clearly showed the localization of

35Sp : JcZFP8:GFP fusion protein into the nucleus of the tobacco

cells (Shi et al., 2018). WRKYs with its conserved consensus

sequence of WRKYGQK along with zinc-finger-like motifs of

C2H2 and C2HC type ZFPs also have a NLS for their localization

to the nucleus (Bakshi and Oelmüller, 2014). In the nucleus, it

acts as a transcription factor and binds to the TTGAC(C/T) W-

box cis-element in the promoter of their target genes (Bakshi and

Oelmüller, 2014; Chen W et al., 2019) and transcriptionally

regulates the expression of target genes (Cheng et al., 2017).

Similarly, another extensively studied sub-class of plant

ZFPs is Cys3His/C3H/CCCH type. Plant genome encodes

large numbers of CCCH type ZFPs and has been identified
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and characterized in crop plants such as Chickpea (Pradhan

et al., 2017), Brassica rapa (Pi et al., 2018) and many other

plants. The CCCH-type ZFPs of plants have conserved CCCH

motifs ranging from one to six copies, with the most prevalent

consensus sequence of the C-X7–8-C-X5-C-X3-H motif in the

middle of the protein sequence (Pi et al., 2018; Chen et al., 2020).

Although C-X7–8-C-X5-C-X3-H is the most common motif in

CCCH-type ZFPs in plants, other structural variations in the

consensus sequences suggest different cellular localisation

patterns and roles in cellular activities (Han et al., 2020).

Many of the CCCH-type ZFPs are localized to the nucleus,

such as AtZFP1, KHZ1 and KHZ2 of Arabidopsis (Han et al.,

2014), SAW1 and OsC3H10 of rice (Wang et al., 2020; Seong

et al., 2020). CCCH-type ZFPs such as AtTZF2/3, ZFP36L3 and

ZC3H12a are localized to the cytoplasm [84-86), where some of

the CCCH-type ZFPs, namely OsC3H10, AtTZF4-6, etc. gets co-

localized with stress granules (SGs) and processing bodies (PBs)

(Seong et al., 2020). Likewise, some CCCH-type ZFPs are

localized to plasma membranes such as AtOZF1and AtOZF2

(Oxidation-related Zinc Finger 1) of Arabidopsis and PeC3H74

ofMoso bamboo (Huang TL et al., 2012; Chen et al., 2020) where

some of the members are involved in secondary wall synthesis in

response to biotic and abiotic stresses (Zhang et al., 2018; Chen

et al., 2020), while several other members of CCCH type ZFPs

such as OsLIC of rice, AtTZF of Arabidopsis shuttle between the

nucleus and the cytoplasm (Wang et al., 2008; Bogamuwa and

Jang, 2013). Shuttling of CCCH type ZFPs between cytoplasm

and nucleus is due to the presence of leucine-rich NESs (Nuclear

Export Signals) and NLSs (Nuclear Localization Signals) which

are mainly present in their N- or C- terminal of the protein

sequence (Han et al., 2020). These shuttle signals are current in

several CCCH-type ZFPs across the crop species indicating their

potential role in stress responses and signal transduction (Wang

et al., 2008; Chai et al., 2012). Sub-cellular localization to

cytoplasm and membrane was observed in another class of

ZFPs called RING ZFPs. Arabidopsis RING ZFPs, AtRZFP

fused with GFP under the control of 35S promoter was

transformed into onion epidermal cells, and the signal of

AtRZFP-GFP was clearly observed in the cytoplasm and

plasma membrane (Zang et al., 2016). Some of the RING ZFPs

located in the plasma membrane and cytoplasm include

AtAIRP1, RHA2a, AtATL78 of Arabidopsis, OsRDCP1,

OsSIRH2-14, OsRFPv6 of rice, LjCZF1 of Lotus japonicas,

VpRH2 of grape are located to the plasma membrane (Han

et al., 2021) and ZmXerico2 of maize (Gao et al., 2012),

OsSIRH2-14 and OsSIRP1 of rice (Hwang et al., 2016),

AtAIRP4, EMR of Arabidopsis (Park et al., 2018), CaDSR1,

CaASRF1 of pepper (Lim et al., 2018; Joo et al., 2019) are

located in the cytoplasm. Other studies suggested that other

than plasma membrane and cytoplasm, RING ZFPs are also

localized to nucleus and other cellular compartments. For

instance, CaASRF1, CaAIRF1, CaDSR1 of pepper (Lim et al.,

2017), AtHOS1, AtATRF1 of Arabidopsis (Tian et al., 2015; Kim
Frontiers in Plant Science 05
et al., 2017; Qin et al., 2017) and OsSADR1 of rice (Park et al.,

2018) were located to nucleus, whereas, OsSIRH2-14 of rice was

not only located in the cytoplasm and plasma membrane but was

also found to be localized to Golgi bodies (Park et al., 2019).

Likewise, wheat TaDIS1 was also reported to be localized to

Golgi bodies (Lv et al., 2020). Rice RING-H2 zinc finger proteins

OsHCI-1 and OsMAR-1 were found to be localized to the

cytoskeleton particularly in microtubules (Lim et al., 2013;

Park et al., 2018) and RING-H2 ZFPs of wild tomato SpRING

was found to be localized to the endoplasmic reticulum.

GATA-1 which is one of the sub-group members of ZFPs

conserved families of transcription factors regulating the

expression genes involved in cellular processes (Zhang et al.,

2015). With the consensus sequence of CX2CX17−20CX2C

along with DNA binding domain, it binds to the WGATAR

(W = T/A, R = G/A) sequence in the promoter region of the

target genes (Behringer and Schwechheimer, 2015; Gupta et al.,

2017). As a transcription factor family, it has to be localized to

the nucleus for its activities and to confirm it a study was

conducted using the GATA gene of Poplar (P. deltoids) where

Arabidopsis plant was transformed with PdGNC-GFP gene

fusion under the control of CaMV35S promoter. Its nuclear

localization was confirmed as the 35S: PdGNC-GFP fusion

protein was detected in the nucleus (An et al., 2014).

Likewise, Brachpodium distachyon BdGATA13-eGFP gene

fusion under the control of 35S promoter which was used for the

transformation of tobacco leaves was found to be localized into

the nucleus (Guo et al., 2021). However, reports on FIP (FtsH5

Interacting Protein), which is a type of GATA-1 ZFPs

highlighted its localization to plastid as well specifically to

thylakoid membrane in response to abiotic stress signals

(Lopes et al., 2018). Similarly, DnaJ-like ZFPs with their

characteristic C-terminal tandem 4× repeats of the CxxCxxxG

are reported to have roles in the accumulation of carotenoids in

plastids of non-pigmented tissues (Osorio, 2019) and inducing

chromoplast biogenesis and simultaneously repressing the

chloroplast biogenesis and chlorophyll biosynthesis in the

nucleus of de-etiolating cotyledons cells (Sun et al., 2019).

With its functions specific to the nucleus and chloroplast,

DnaJ-like ZFPs are localized to both the nucleus and

chloroplast. Chloroplast localization of DnaJ like ZFPs is due

to the presence of N-terminal chloroplast transit peptide (cTP)

along with C-terminal zinc finger domain (ZF) which is

separated by two trans-membrane domains (TMs) (Chen

et al., 2021a). For nuclear localization, ubiquitination of

lysine58 in ORANGE/OR (a type of DnaJ like ZFPs) by

UBC19 was reported to be essential to generate truncated OR

ZFPs proteins (Chen et al., 2021a). Sub-cellular localization

studies of another class of ZFPs called as FCS-like ZFPs

(FLZs) were conducted as it was found to be active both in

cytoplasm and nucleus. FCS-like ZFPs are reported to act as

scaffold proteins for plant-specific SnRK1 complex which is

involved in various stress responses and are reported to be
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localized to both cytoplasm and the nucleus in plants like

Arabidopsis and Maize (Jamsheer et al., 2018a; Chen et al.,

2021b). The distribution of ZFPs to different compartments of

plant cell clearly indicates that this class of proteins are involved

in several cellular processes either at both transcriptional and

post-transcriptional level.
2.2 Transcription and post-
transcriptional roles of Zn finger proteins

Many ZFPs acts as critical transcriptional regulators that

correlate with their localization into the nucleus. However, it also

interacts with RNA and other proteins to regulate the post-

transcriptional expression of the target genes at RNA and

protein levels, respectively (Han et al., 2020). As a

transcription factor, it binds to the cis-acting element and

subsequently activates or represses the expression of

downstream target genes. The conserved zinc finger structure

helps it bind to DNA double helix at specific sites to act as a

transcription factor (Han et al., 2021). In plants like Arabidopsis,

durum wheat and rice, a highly conserved sequence QALGGH

of Q-type C2H2-ZFPs provide the ability for ZFPs to recognize

the target sites and to further regulate the expression of

downstream genes through activator or repressor domain (Lyu

and Cao, 2018; Xie et al., 2019). However, the QALGGH

sequence is not the only key and ubiquitous sequence for

binding to target genes (Liu et al., 2022), the C2H2 type ZFPs

may bind to the target site of the genes through DNA binding

domain which is present in long spacers between the two

adjacent zinc finger motifs (Sakamoto et al., 2004).

Apart from binding to DNA as a transcription factor, C2H2

ZFPs can also bind to RNA based on their bases and folding

backbones, which recognize variants of phosphoric acid

skeletons in RNA (Lin and Lin, 2018; Han et al., 2020). It is

found that amino acid residues of C2H2 zinc finger proteins

positioned at -1 and +2 of the a-helix play a vital role in its

binding to RNA (Han et al., 2020). Upon binding to RNA, some

of the members of ZFPs such as cleavage and polyadenylation

specificity factor 30 (CPSF30) belonging to CCCH/Cys3His/

C3H type ZFPs are involved in the polyadenylation step of pre-

mRNA processing after forming a complex which is collectively

called as CPSF (Shimberg et al., 2016). The RNA binding

AtCPSF30 known for involvement in the polyadenylation step

of pre-mRNA also interacts with other molecules like

calmodulin, however, its RNA binding activity gets reduced in

presence of its other interacting molecules like calmodulin (Lee

et al., 2012). For interacting with other proteins including other

zinc finger proteins, ZFPs like the C2H2 type utilize domains

such as L-box motif and EAR motif for interaction resulting in

binding/prevention of binding of the target protein to DNA

which in turn regulates the expression of downstream genes
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(Gamsjaeger et al., 2007; Brayer and Segal, 2008). Among the

two motifs, the EARmotif which is the smallest known repressor

domain in plants is reported to be essential for the inhibition of

transcriptional activities (Hiratsu et al., 2004).

Correspondingly, WRKY proteins which are the type of Cys

(2)-His(2) (C2H2) or Cys(2)-HisCys (C2HC) ZFPs, have two

highly conserved domains with WRKYGQK sequences of

WRKY domain and C-terminal zinc finger domain (Rushton

et al., 2010). The target DNA binding site generally recognizes

W-box cis-elements in the promoter region of target genes. For

instance, a WRKY protein of Hylocereus polyrhizus HpWRKY44

was found to be directly binding to the W-box element present

in the promoter of HpCytP450-like1 and transcriptionally

activated the HpCytP450-like1, resulting into induced betalain

biosynthesis in pitaya fruit (Cheng et al., 2017). However, some

WRKY proteins bind to the promoter region other than W-box

cis-elements (Chen et al., 2019). The selective binding of

different WRKY TF members to W-box cis-element is based

on neighboring DNA sequences outside of the W-box core motif

(Bakshi and Oelmüller, 2014). Several experiments highlighted

the role of the WRKY gene family to be associated with the

regulation of transcriptional reprogramming in response to

environmental stresses. For example, PROPER genes of

Arabidopsis which encodes for small peptides which act as

molecular patterns associated with injury or damage are

perceived by PEPR1 and PEPR2 (leucine-rich repeat receptor

kinases) and amplify the defense responses. Upon receiving the

stress signal WRKY TF binds to the promoter of these two

kinases and regulates their expression (Logemann et al., 2013).

Advancement in molecular techniques has helped to

characterize various TF and regulatory element functions on a

genome-wide scale, such as the utilization of the DAP-seq

technique to discover the binding sites of TFs in DNA

(O’Malley et al., 2016). Similarly, transcriptional role and

binding sites of ZFPs like AtWRKY33 under biotic were

successfully identified using the techniques like ChIP-seq and

revealed that AtWRKY33 negatively regulates the NCED3 and

NCED5 (ABA biosynthesis genes) to impart resistance against

biotic stress like necrotrophic fungus (Liu et al., 2015). Some

C2H2 type ZFPs are reported to transcriptionally regulate the

expression of genes involved in programme cell death of the

plants, thereby inducing PCD of plant cells (Yin et al., 2020).

Similar to C2H2 type ZFPs, many C3H/CCCH type ZFPs are

keys to regulating transcriptional activities with the presence of

its conserved activator or repressor domains. For instance, rice

OsLIC and Ehd4 protein have a conserved EELR domain in its C

terminal, which acts as the key component for transcriptional

activation of the target genes (Wang et al., 2008). CCCH type

ZFPs such as OsLIC and Ehd4 of rice, AtTZF1 and AtTZF6

(PEI1) of Arabidopsis can bind to the promoter region of target

genes (Wang et al., 2008; Bogamuwa and Jang, 2013; Wang et al.,

2020). However, in some of the CCCH-type ZFPs, the
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transcriptional activator domain, called EELR-like, was found to

be in N-terminal. This EELR-like domain of ZFPs such as

AtC3H17 and AtZFP1were found to play an essential role in

transcriptional activation of downstream salt-responsive genes

like AtP5CS1, AtGSTU5, SOS1 and ABA-dependent responsive

genes RD22, COR15A and RAB18 (Seok et al., 2016; Seok et al.,

2018). In addition to transcriptional activators, some other

proteins are transcriptional repressors. For negatively

regulating the transcription of target genes, CCCH ZFPs like

GLUB-1-BINDING ZINC FINGER 1 (OsGZF1) and ILA1-

interacting protein 4 (IIP4) of rice have repressor motifs. After

binding of ZFPs in the promoter region of target genes like

MYB61, CESAs and GluB-1, it negatively regulates the

expression of CESAs and MYB61 for secondary wall synthesis

and GluB-1 for accumulation of gluten (Chen et al., 2014; Zhang

et al., 2018). In addition to its involvement in transcriptional

activities, CCCH ZFPs like AtTZF1, KHZ1 and KHZ2 of

Arabidopsis also has been reported to be involved in post-

transcriptional regulation of gene expression by binding to

mRNA through its RNA binding motif (Yan et al., 2017; Pi

et al., 2018). It is reported that with the help of the RNA binding

domain, ZFPs namely, OsTZF1 bind to mRNA at the 3’ un-

translated region specifically at AU-rich elements (AREs) (Jan

et al., 2013). In plants like Arabidopsis, ZFPs like HUA1 with its

RNA binding ability regulates flower development through pre-

mRNA processing of AGAMOUS (Rodriguezcazorla et al., 2018)

and FRIGIDA-ESSENTIAL 1 (FES1) promotes the winter annual

growth habits in a FRIGIDA-dependent manner by regulating

mRNA levels of FLOWERING LOCUS C (FLC) (Schmitz et al.,

2005). A recent study has found that the splicing efficiency of

FLC pre-mRNA can be inhibited by KHZ1 and KHZ2 (RNA

binding ZFPs) and promotes flowering in Arabidopsis through

other independent pathways (Yan et al., 2020). Likewise, it has

been reported that zinc finger homeodomain proteins (ZF-HD)

another class of ZFPs are essential for the induction of flowers in

plants like Arabidopsis. As the induction of flowers is affected by

environmental stresses, ZF-HD1 proteins over-expresses during

such stress condition and helps in coping with stress through

transcriptional activation of genes like ERD1 (Shalmani

et al., 2019).

In plants, through in vitro studies, KTEL (V) residue at the N

terminus of ZFPs was observed in each zinc finger motif proving

to be a key interface for RNA binding (Wang et al., 2008) and

plant-specific TZF motif (RR-TZF) & RR sequence in AtTZF1

were found to be the essential motifs for binding to AREs of

RNA leading to mRNA degradation (Qu et al., 2014). More

recently two putative mRNA binding domains namely RRM and

OST-HTH/LOTUS were identified in CCCH type ZFP

(AtC3H18L) sequence (Xu et al., 2020).

Some ZFPs are co-localized to PBs and SGs. These PBs and

SGs have essential roles in the post-transcriptional regulation of

several genes, more importantly, during plant tolerance against

environmental stresses (Bogamuwa and Jang, 2016). Some ZFPs,
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namely AtTZF1, AtTZF4, AtTZF5, and AtTZF6 of Arabidopsis,

with their cytoplasmic shuttling characteristics, work in

association with these PBs and SGs for post-transcriptional

regulation of target proteins (Jang, 2016; Seong et al., 2020).

Different from the rest of the ZFPs, most of the RING zinc finger

proteins have E3 ubiquitin ligase activity and it is involved in

post-transcriptional activities of the ubiquitin-proteasome

pathway. In this pathway, E3 RING ZFPs help in the

recognition of the substrate proteins and degrades or change

the activity of target proteins through ubiquitination (Swatek

et al., 2019). For instance, AtATL78, StRFP2, AtRZF1, DRIP1,

DRIP2, OsDIS1 and HOS1 post-transcriptionally regulate the

target proteins such as DREB2A, OsNek6, OsSKIPa, AtERF53,

ICE1, OsARK4, OsHRK1, AtRma1 and CaRma1H1, etc. through

ubiquitination (Han et al., 2021) of which many of the target

proteins like CaRma1H1 and AtRma1 are involved in the

transport of the aquaporin PIP2;1 from the ER. It is also

reported to have roles in transcriptional and post-

transcriptional regulations of different genes involved in ABA-

dependent pathways, ROS and Ca2+ signalling pathways (Han

et al., 2021). Transcriptionally it is involved in the activation of

genes encoding enzymes of ABA pathways such as ABA aldolase,

NCED, ZEP and short-chain dehydrogenase/reductase

(Vaičiukynė et al., 2019) and post-transcriptionally it is

involved in forming a complex with other proteins such as

PP2Cs and SnRK2s for ubiquitination and phosphorylation of

other proteins and transcription factors like protein phosphatase

1 (CaADIP1), CaATBZ1, AtAIRP3, bZIP, AtKPNB1, TaSTP,

GDU1 and RD21 which further activates or represses the

transcription of ABA-responsive genes (Sah et al., 2016; Joo

et al., 2020; Lv et al., 2020; Oh et al., 2020). In the MAPK

signalling pathway, zinc finger proteins such as RGLG1 and

RGLG2 have been involved in post-transcriptional modification

ofMAPKKK18 in response to environmental stress like drought.

In ROS and Ca2+ signalling pathways, it is involved in

transcriptional activation of genes encoding antioxidant

enzymes like SOD and POD in response to environmental

stresses (Zang et al., 2016). The ORANGE or OR proteins

which are the type of DnaJ type ZFPs with their dual sub-

cellular localization abilities, perform transcriptional and post-

transcriptional activities in the nucleus and plastids. In the

nucleus, it interacts with eRF1-2 (eukaryotic release factor 1-2)

for transcriptional regulation of the downstream gene involved

in cell elongation of petiole and plastids. It plays a role in post-

transcriptional regulation by interacting with phytoene synthase

to induce biogenesis of chromoplast and accumulation of

carotenoid in non-pigmented tissues, simultaneously

interacting with TCP14, a type of TFs to repress ELIPs (Early

Light Induced Proteins) and biogenesis of chloroplast in de-

etiolating cotyledons (Sun et al., 2019; Chen et al., 2021b).

Whereas, some reports suggest that DnaJ ZFPs function as

molecular chaperones in post-transcriptional or rather post-

translational maintenance of structures and functions of its
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interacting proteins (Ali et al., 2022). The FCS-like zinc finger

(FLZ) proteins which are reported to be localized to the

cytoplasm and nucleus extensively interact with the kinase

subunit of the SnRK1 complex and act as an adaptor to

facilitate the interactions of effector proteins with the SnRK1

complex. In plants, it was found to be acting as a transcriptional

activator by mediating the interactions of SnRK1 and effector

proteins under various environmental stresses, however many of

them are reported as negative regulators of SnRK1 signalling

(Jamsheer et al., 2018a and Jamsheer et al., 2018b).
3 Role of Zn finger in conferring
tolerance to abiotic stress and
possible mode of action

Zinc finger proteins play an extensive role in plant tolerance

to various abiotic stress, such as drought, high salt, cold, high

light, and osmotic and oxidative stresses (Wang et al., 2019; Han

et al., 2020). In the process of external stress resistance, plants

have evolved a set of complex and effective defence mechanisms,

including signal perception, signal transduction, transcriptional

regulation and response, to reduce or avoid damage to plants

and ensure their average growth (Figures 1, 2) (Noman et al.,

2019; Liu et al., 2022).

Several studies found that Zn-finger motifs significantly

function during abiotic stress response in plants. In the first

report, a wide range of Zn-binding motifs has been recognized

and termed as Zn-fingers. Since the zinc finger motifs regulate

the function of stress-adaptation genes. The Zn-finger was first

reported as a repeated Zn-binding motif, comprising conserved
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cysteine (Cys) and histidine (His) ligands, in Xenopus laevis

oocytes as a transcription factor (TF) IIIA (TFIIIA) (Laity et al.,

2001; Ciftci-Yilmaz and Mittler, 2008; Kielbowicz-Matuk, 2012;

Lyu and Cao, 2018). In the proteins where Zn2+ is mainly

attached to amino acid residues and thus espousing a

tetrahedral coordination geometry. The physical nature of Zn-

proteins, defining the attraction of Zn-proteins for Zn2+, is

crucial for having an in-depth knowledge of how a Zn2+

facilitates their characteristic function and how proteins

control its mobility (intra and intercellular) as well as

cellular availability.

Many C2H2-type zinc finger proteins involved in the abiotic

stress signalling pathway were identified based on stress

induction, mutant, compliment, and ectopic expression

analysis. Phytohormones are responsible for abiotic stress

resistance and participate in the process of response to various

stresses via C2H2-type zinc finger proteins, especially ABA

(Abscisic acid) (Roychoudhury et al., 2013; Ku et al., 2018;

Takahashi et al., 2018; Chong et al., 2020). ABA, acting as a

pivotal regulator of abiotic stress responses in plants, induces the

expression of stress-related genes and triggers a range of

adaptive physiological responses under abiotic stress

conditions in the plant (Ku et al., 2018; Takahashi et al., 2018;

Chong et al., 2020). C2H2 zinc finger proteins regulate plants in

response to abiotic stresses through two ABA-mediated signal

pathways: ABA-dependent and ABA-independent signal

pathways (Smekalova et al., 2014; Ku et al., 2018; Takahashi

et al., 2018; Chong et al., 2020). In addition to the ABA signal

pathway, C2H2 zinc finger proteins enhance abiotic stress

resistance by the MAPK (mitogen-activated protein kinase)

signaling pathway (Smekalova et al., 2014; Ku et al., 2018;
FIGURE 1

C2H2 zinc finger proteins are involved in plant stress responses. Source: (Liu et al., 2022).
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Takahashi et al., 2018; Chong et al., 2020; He et al., 2020; Lin

et al., 2021). MAPKs, as highly conserved signaling transduction

modules, play an essential role in regulating responses to adverse

environmental stresses (Lin et al., 2021). Typically, a MAPK

module is composed of at least three protein kinases, including

MAPK (MPK), MAPK kinase (MAPKK/MAP2K/MKK/MEK)

and MAPK kinase (MAPKKK/MAP3K/MEKK). The MAPK

cascade amplifies and conveys stress signals from signaling

receptors to downstream stress response factors through a

sequential phosphorylation manner (De Zelicourt et al., 2016;

He et al., 2020; Lin et al., 2021). Thus, C2H2 zinc finger proteins

regulate abiotic stress responses via both the ABA signaling

pathway and MAPK signaling transduction pathway and

constitute a certain degree of crosstalk and a complex

regulatory network (Figure 3) (Liu et al., 2022).
3.1 Salinity

In many regions of the globe, soil salinity is significant

abiotic stress that inhibits plant production. Salinity stress

creates nutrient imbalances, is a source of harmful ions, and

alters the osmotic condition of plants (Yaghoubian et al., 2021).

It has been reported that more than 108 × 108 km2 of land

throughout the world are affected by salinity (Riaz et al., 2019).

Due to salinity and problematic soils, millions of hectares in the

humid areas of South and Southeast Asia that are technically
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suitable for various field crops, particularly rice cultivation, are

left uncultivated or are cultivated with extremely poor yields.

(Mainuddin et al., 2019; Mainuddin et al., 2020). In addition,

mineral shortages and toxicity often exacerbate the issue of

salinity since it seldom occurs alone. These soil stresses change

in magnitude and interactions throughout time and space,

making long-term adaptation dependent on its degree of

tolerance to all environmental stresses (Sarkar et al., 2022).

Moreover, the ill response of soil and water salinity in the

different crops varied significantly.

As transcription factors, zinc finger proteins (ZNPs) play an

essential part in a wide variety of cellular processes, including

RNA binding, transcription control, stress tolerance, and plant

growth and development in response to phytohormones)

(Noman et al., 2019). Scientists have identified a large number

of zinc finger proteins in higher plants that can regulate the

various environmental cues (Yu et al., 2015). Around 189 stress-

induced zinc finger proteins especially for indica rice and maize

have been classified and amongst them, Cys2/His2- and CCCH-

types have received greater attention (Agarwal et al., 2007)

Multiple C2H2-type zinc finger proteins in rice, including

ZFP36, ZFP179, ZFP182, ZFP245, and ZFP252, have been

implicated in salt, drought, and oxidative stress responses (Xu

et al., 2008; Wang et al., 2015; Wang et al., 2022a). It has been

found that drought and salt tolerance in rice are improved by

overexpressing the ZFP252 zinc finger protein gene by elevated

synthesis of free proline and soluble sugars (Xu et al., 2008) and
FIGURE 2

Some important Zinc Finger Proteins (ZNPs) involved in abiotic stress factors of the plants (1st order of the hierarchy is the name of the crop/
plant, 2nd order is the type of the protein and 3rd order is the name of the ZNPs) (Source: Modified after Noman et al. (2019) with the permission
from the Elsevier Rights Links (https://s100.copyright.com/), Licence No.: 5371200779212, Dated 17th August 2022).
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increased ROS scavenging activity (Huang et al., 2009). Huang

et al. (2007) found that the production of ZFP182 in transgenic

tobacco or overexpression in rice plants boosted their salt

tolerance, ZFP182 may have a curative function in salt

tolerance in plants. Wang et al. (2022a) reported that some

C2H2 type Zinc finger protein plays a significant role in salinity

tolerance in rice seedlings by enhancing ABA catabolism. They

also stated that overexpression of OsZFP15-like Zinc finger

protein increased the production of reactive oxygen species

(ROS) and decreased tolerance to oxidative stress, resulting in

increased salinity stress tolerance in rice seedlings. The A20/

AN1-type (ZmZnF1) and ring-binding type (ZmZnF2) zinc

finger proteins found in maize kernels are reported to induce

by ABA, mannitol and NaCl stresses. Similarly, simultaneous

overexpression of these zinc finger proteins in transgenic lines of

rice significantly increased the Na induced stress tolerance (Yu

et al., 2015). It has been observed that transgenic Arabidopsis

plants that constitutively produce the Cys2/His2 zinc finger

protein Zat7 exhibit slower growth and development and a

higher degree of tolerance for the effects of salt stress and the

ability to tolerate high salinity is lost when the EAR motif of Zat7

has a mutation or deletion (Ciftci-Yilmaz et al., 2007). Wang

et al. (2022b) found that the overexpression of C2H2-type zinc

finger protein ‘MdZAT17’ in transgenic apple and Arabidopsis

reduces the sensitivity to abscisic acid (ABA) and regulates salt

tolerance positively. They also reported that the growth of both

wild-type and transgenic Arabidopsis seedlings was inhibited
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under salt stress, but the growth shyness of transgenic plants was

pointedly lower than that of wild-type seedlings. In another

study (Xu et al., 2022) has been identified 36 B-box (BBX) family

of proteins in maize consists of zinc-finger transcription factors

that have a significant role in the regulation of different abiotic

stresses, including drought and salinity.
3.2 Soil moisture

Water is one of the fundamental inputs for the growth and

yield of any arable crop. Still, both excess and deficit water

supply in different growth stages can significantly reduce crop

production. In the present era of climate change, aberrant

weather conditions have increased the excess and deficit

supply of soil moisture in most growing regions worldwide.

Crop physiological and biological adaptability with the excess

and deficiency supply of soil moisture has emerged as a potential

research question (Osakabe et al., 2014). Multiple Zinc finger

proteins have been identified from various crops has a definite

role concerning drought and excess moisture stress of the field

crops. Numbers of ZFPs have been identified in transgenic rice

that has significant functions in enhancing drought, and excess

moisture tolerance (Huang et al., 2009; Li et al., 2013; Wang

et al., 2022a). Huang et al. (2009) reported that ZFP245 type

ZNPs have significantly enhanced the cold and drought

tolerance in rice by augmenting free proline and antioxidant
FIGURE 3

The signalling pathways of zinc finger proteins during abiotic stress response in plants. Note: The lines marked as solid indicate regulation, and
the dashed lines indicate putatively. The C2H2 zinc finger proteins are SCOF-1, ZFP245, ZFP179, AZF1/2/3, ZFP36, IbZFP1, OsZFP213, ZAT4, DST,
ZAT10/STZ, ZAT12, ZAT7 and ZAT6. Source: (Liu et al., 2022).
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concentration in transgenic rice plants. They further suggested

that ZFP245 transgenic rice plants under 14 days drought

stressed condition has survived at 70-80% with 7 days

recovery period. It has been postulated that under cold or

drought stress, ZFPs boost the SOD and POD enzymatic

activities in transgenic rice seedlings and thereby help to

enhance the abiotic stress tolerance by triggering the ROS-

scavenging mechanism (Rizhsky et al., 2004). In harmony to

the previous findings, (Sakamoto et al., 2004) found that two

Cys-2/His-2-type ZNPs viz. AZP2 and STZ in transgenic

Arabidopsis have significantly overexpressed under drought-

stressed conditions and facilitated the plant to tolerate drought

stress. (Gao et al., 2012) reported that ‘CgZFP1’, a Cys2/His2

type ZFP isolated from Chrysanthemum has a significant role in

regulating drought and salinity stress in transgenic Arabidopsis.

In severer drought conditions, abscisic acid plays an important

role in enhancing the plant’s leaf senescence rate, reducing the

yield. It has been found that a Cys-2/His-2-type ZNP, ´

MdZAT10´, reduced the sensitivity to abscisic acid in apples

and in addition to that, MdZAT10 (overexpressed in

Arabidopsis) has a beneficial effect on seed germination and

seedling growth (Yang et al., 2021). In another study,

Mukhopadhyay et al. (2004) isolated a ZNP from rice viz.

“OSISAP1” (induced by abscisic acid) overexpressed in

transgenic tobacco increased tolerance to cold, dehydration,

and salt stress at early growing stages. Giri et al. (2011)

reported that Stress-associated ZNP isolated from rice viz.

A20-AN1 increased the abiotic stress tolerance in transgenic

Arabidopsis plants.

Most of the study suggested that ZNPs isolated from various

plant sources involved in regulating abiotic stress factors

has manually controlled the drought and salinity stress

simultaneously (Huang et al., 2009; Lawrence et al., 2022). But

application or overexpression of ZNPs in different transgenic crops

is precise in nature.
3.3 Temperature

Temperature stress due to both cold and high temperatures is

considered a vital abiotic stress a plant faces during its growth and

development (Liu et al., 2018). Thus, a clear-cut concept about the

bio-physical-chemical impacts of temperature on a plant and its

subsequent response mechanism is crucial to breeding improved

stress-tolerant cultivars (Liu et al., 2018). Many Zn-finger proteins

are responsible for mitigating the different temperature-related

stresses in plants. CCCH Zn-finger proteins can control the

expression of cold-induced genes; these proteins can improve

cold tolerance in plants. Lin et al. (2011) found that the

expressions of the cold-temperature genes viz. COR15A, RD29A,

KIN1 etc. were upregulated in the cold-stress tolerant different

Arabidopsis lines. Enhancement of the cold-stress tolerance in the

plants can also be explained through signalling pathways of ABA,
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which are controlled by CCCH Zn-finger proteins (Xie et al., 2019).

Transgenic switchgrass lines with induced Zn-finger protein,

PvC3H72, survived even at –5°C temperature, while the lines

with the low Zn-finger proteins could not survive (Xie et al.,

2019). Zn-finger protein, DgC3H1, can improve the proline and

soluble sugar levels in Chrysanthemum plants along with increased-

level of SOD and POD, which ultimately make the plants able to

survive under cold stress (Bai et al., 2021). C2H2 Zn-finger proteins

also play a pivotal part in mitigating cold stress by regulating the

ABA pathways. Kim et al. (2001) reported that the overexpression

of C2H2 Zn-finger proteins results in cold-stress tolerance in

soybean and tobacco by controlling ABA-response elements

which facilitate COR gene-expression responsible for developing

the plant cold-tolerance. The ABA-independent pathway for cold

tolerance through C2H2 Zn-finger proteins is represented in

Figure 4. In addition to the above two Zn-finger proteins, the

AZF: Arabidopsis Zn-finger protein and STZ: salt-tolerance Zn-

finger proteins are also responsible for cold-stress tolerance in

Arabidopsis (Kodaira et al., 2011). The AZF genes, AZF, AZF2,

AZF3, and STZ gene regulate the ABA-dependant pathway of

Arabidopsis by regulating the ATPase gene, Na+, and Li+ outflows

in plants (Lippuner et al., 1996).
3.4 Heavy metal (HM)

3.4.1 HM-tolerance through cellular layer
modification

For any HM stress, the plant has a three-tier strategy

including absorption or isolation of HM inside the plant, HM

removal through a series of chelating mechanisms and ROS

removal which are accumulated during HM stress. Other than

this a few subsidiary events of the HM-tolerance mechanism

include an impedance of HM transport within the plant through

HM binding to the cytoderm (composed of cellulosic material)

(Chen et al., 2019). Few HM ions bind to the active groups

(-COOH, -OH) of cellulose (inside cytoderm) which reduces the

quantity of HM that enters the protoplasm resulting in damage

alleviation caused by HM (Nedelkoska and Doran, 2000;

Clemens et al., 2013). Three types of zinc finger transcription

factors (ZF-TFs) (GATA-type, CCCH-type, and C2H2-type) are

expressed differentially and reported to be up-regulated under

cadmium stress in cotton roots, some of which are shown to be

associated with secondary cell wall biosynthesis (Chen et al.,

2019). Up-regulation in the homologs of cellulose synthase genes

during cadmium stress reveals the involvement of ZF-TF in

cellular layer modification as one of the possible modes of action

for imparting HM-stress tolerance in cotton plants.

In Arabidopsis thaliana, upon exposure to HMs exhibited some

interesting findings. With the help of yeast-two-hybrid model when

interaction among the different members of the HIPP family and

the related zinc finger TF or transcription factors, have borne a

particular interaction pattern of ATHB29 and HIPP proteins (of
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cluster III). Thus, a purposeful connection among ATHB29 and

HIPP26 is also shown by experiments conducted with HIPP26

(mutants), displayed reformed expression pattern levels of such

genes earlier known to be controlled by ATHB29 (Barth et al.,

2009). Chakrabarty et al. (2009) while investigating genome‐wide

expression pattern of Zn-finger proteins in plants exposed to As3+

and As5+ reported a contrasting scenario. Proteins of the zinc‐finger

family were found to be downregulated under As5+ stressed

situation whereas, Zinc‐finger C3HC4‐type proteins were found

to exhibited both up and down regulated expression profile upon

exposed to As3+ stressed situation. Authors like Abercrombie et al.

(2008); Chakrabarty et al. (2009); Tripathi et al. (2012) have

presented the expression profile of Oryza sativa (monocot) and

Arabidopsis thaliana (dicot). Under As stressed condition both

exhibited a downregulated Zn-finger protein expression profile.

Shah et al. (2022) observed that spermine (Spm), a polyamine

compound upon supplanting in common bean (P. vulgaris)

exposed to As stress have enhanced the expression of PvC3H24,

PvC3H25, PvC3H26 and PvC3H27 (Zn-finger proteins). The

authors concluded that, Spm confer tolerance to As induced

phyto-toxicity by modulating polyamine metabolism, antioxidant

defense system along with facilitating (as enhancer) for zinc-finger

proteins related genes expressions. Huang et al. (2012) reported
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some interesting findings while analysing the transcriptomic profile

of rice roots exposed to As stress. among the 231 TFs, the zinc-

finger protein (expressed particularly in inflorescence meristem or

ZIM) had a share of only 3.46%. The authors have concluded that

under As stress ZIM-TF were enhanced in a noteworthy fashion.
3.4.2 HM-tolerance through HM-homeostasis
strategies

HM homeostasis strategies mainly involve the phytochelatin,

metallothionein and metallochaperones (responsible for safe

transport of metal ions inside the cell) induction (Harrison

et al., 2000; de Abreu-Neto et al., 2013; Zhang et al., 2014) as

well as vacuolar sequestration mediated by phytochelatin binding

(Yang and Chuand Chu, 2011). Barth et al. (2009) found a

functional association between a ZF-homeodomain (ZF-HD) TF

(known as ATHB29) and arrays of HIPP26 (a type of

metallochaperone protein) in A. thaliana under HM stress by

double checking mutant line assay (mutated for HIPP26

functional loss) for the expression of stress-responsive genes

which showed that the genes up-regulated under the influence

of ATHB29 are inhibited in the absence of functional interaction

between HIPP26 and ZF-HD.
FIGURE 4

ABA-independent pathways for cold-tolerance by C2H2 Zn-finger proteins. Note: Zn-finger proteins also regulate the several pathways of
plants under heat-induced stresses. Huang et al. (2008) found A20/AN1-type Zn-finger proteins in japonica rice regulating the heat-induced
stresses in the plants. Moreover, they reported that Zn-finger protein, ZFP177 was responsive to heat stress tolerance in plants. Overexpression
of Zn-finger protein, ZFP177, is also responsible for the heat tolerance in tobacco plants (Mukhopadhyay et al., 2004).
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3.4.3 HM-tolerance through protein-protein
interactions (PPIs) and signal transduction

Plant stress-associated proteins (SAPs) contain ZF domains

(either [Cys2-Cys2]n finger motifs or [Cys and His]n residues; ‘n’

represents multiple numbers of motif repeat) at the N- or C-

terminal (Jin et al., 2007). These SAPs can be a key player in stress

signaling through protein-protein interactions (PPIs) via their ZF-

domain (Opipari et al., 1990; Kanneganti and Gupta, 2008).

Additionally, SAP10 of A. thaliana was found to be coding for a

nuclear or cytoplasmic protein that might act early in the signal

transduction of the HM-stress tolerance response (Ströher et al.,

2009; Dixit and Dhankher, 2011). Many of the HM defense

responses shown by the plants are due to the major contribution

of cellular receptors involved in signaling cascades like MAPK

(three-tier phosphorylation module) (Rodriguez et al., 2010; Sinha

et al., 2011; Jalmi and Sinha, 2015) which modulates downstream

WRKY and ZAT TFs (containing ZF motifs) (Ogawa et al., 2009;

Opdenakker et al., 2012). PPI (protein-protein interaction) study

performed by Nguyen et al. (2012) between ZAT-TF (ZAT10; a ZF-

containing TF) and ArabidopsisMAPK (MPK3,MPK6) under HM

stress has paved a conceptual understanding that MAPKs are

involved in HM stress signaling either through ZF-TFs or

transcription factors containing ZF-motifs. Major plant stress

tolerance responsive signaling factors includes EF-Tu receptor,

ETR1/ETR2, SIT1, ER etc. Ca signaling is important in heavy

metal stress hormone signaling, as is MAPK signaling, which uses

Calmodulin, a Calcineurin B-like protein, and Ca dependent kinase

(Steinhorst and Kudla, 2014). Among these, MAPK signalling is

one of the major signalling pathways involved in alleviating heavy

metal stress. Two transcription factors, viz., MPK3 and MPK6, get

activated under high Cd stress mediated by ROS signalling (Liu

et al., 2010). Calcium- and cadmium-responsive mitogen activated

protein kinase (MAPKKK) in Arabidopsis remains a major signal

transduction protein component (Suzuki et al., 2001).

3.4.4 HM-tolerance through ROS-
detoxification

HM stress always generates oxidative stress and causes

destabilization in the balance between ROS and the antioxidant

system (Zhang et al., 2013; Jin et al., 2016; Yin et al., 2016; Xu et al.,

2019). Different transcription factors (TFs) families including zinc

finger-TFs are involved in such ROS-mediated stress responses

(Singh et al., 2019). HM accumulation ROS mediated functional

disruption of biomolecules among several other damages (Stohs

and Bagchi, 1995; Cuypers et al., 2009; Haider et al., 2021). Under

HM-stress SlRING1-ZFP overexpression in tomatoes led to more

chlorophyll content and photosynthetic rate. Moreover, the

maximal photochemical efficiency of photosystem II was

evidently improved by SlRING1-ZFP mediated minimization of

ROS levels and electrolyte leakage (Ahammed et al., 2020). Soybean

ZFP (GmRZFP1) and Arabidopsis ZFP (AtOHRP) are reported to

be involved in oxidative stress (activity induced by ROS) in plants
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thereby promoting ROS scavenging enzyme systems (Wu et al.,

2010; Li et al., 2015). Putting together, zinc finger protein (ZFP) is

involved in HM stress alleviation and detoxification of ROS as two

underlined strategies of HM tolerance. Abscisic acid enhances plant

stress response mechanisms under drought stress. Ring-zinc finger

protein overexpression enhances genes like AtNECD3, which codes

for a key enzyme in ABA biosynthesis (Ko et al., 2006). Zinc finger

protein also enhances major genes’ expression (ABA3, ABI5, etc.)

responsible for ABA biosynthesis in rice (Zeng et al., 2015). Zinc

finger protein ZFP-185 regulates ABA and GA synthesis

modulation, which enhances stress response (Zhang et al., 2016).

Flowering and gibberellin biosynthesis are also controlled by ZFP in

Chrysanthemum (Yang et al., 2014). The effect of different Zinc

finger protein in mitigating various abiotic stresses has been

presented in Table 1.

3.4.5 HM-tolerance through ubiquitin
proteosome-mediated degradation of
misfolded or altered protein

Under abiotic stress, including HM, many functional

proteins undergo the ubiquitin proteosome-mediated

degradation process due to the altered quaternary structure of

the protein (resulting in misfolded design) and hence no longer

required for average growth and development (Blasiak et al.,

2019). This way of aberrant protein identification and removal

ensures better survival of plants under stress conditions (Stone,

2019). Most RING zinc finger proteins have E3 ubiquitin ligase

activity (Joazeiro and Weissman, 2000; Ahammed et al., 2020)

similar to the last enzyme of the ubiquitin-proteasome pathway

(which plays a specific role in recognising target substrates and

then degrades the target protein or changes the activity of the

target protein). Hence RING-ZFP can be engaged in ubiquitin

proteosome-mediated degradation of the misfolded or altered

protein (Swatek et al., 2019) as a stress tolerance mechanism.

3.4.6 HM-tolerance through domain
interaction with metal ions

Further bioinformatics analysis on RING-ZFP (possess

intra- and extra-cellular domains) has already revealed

research findings on extracellular domain binding (negatively

charged) of RING-ZFP to the positively charged extracellular

harmful metal ions suggesting a sensor-like activity of ZFP upon

HM accumulation. Additionally, the intracellular domain of

RING-ZFP interacts with and promotes ROS-mediated ABA

signalling (Suh et al., 2016).

3.4.7 HM-tolerance through GSH-dependent
pathway and chelation-based vacuolar
sequestration

A GSH-dependent pathway and phytochelatin

(polymerized GSH encoded by PCS)-conjugated vacuolar

sequestration are two established mechanisms contributing to
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HM-tolerance (Flores-Cáceres et al., 2015; Hernández et al., 2015;

Jozefczak et al., 2015). Cd-tolerant Arabidopsis phenotypes

resulted from ZAT6 over-expression, when undergoing BSO (an

irreversible inhibitor of GSH biosynthesis; g-glutamylcysteine

synthetase; Reliene and Schiestl (2006) treatment, completely

loses its HM-tolerance ability which implies that the ZAT6-

mediated enhanced Cd tolerance is GSH-dependent (Chen

et al., 2016). Furthermore, Chen and his co-workers have also

found GSH1 (encoding g-glutamylcysteine synthetase) as the

transcriptional target of ZAT6 through qRT-PCR (outcome:

positive regulation of GSH1 by ZAT6) and transient expression

analysis (outcome: activation of GSH1 promoter activity by

ZAT6). Putting together, it is clear that GSH1 which regulates

HM tolerance in Arabidopsis is under transcriptional control of

ZAT6, a ZF-TF. Phytochelatin synthesis was found to be under

ZAT6 (acts as TF for gene encoding PCS1 and PCS2)
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transcriptional regulation too under HM-stress (Chen et al.,

2016). Phytochelatin synthesis additionally augments the effect of

GSH towards Cd-tolerance by accumulating Cd followed by

phytochelatin-conjugated vacuolar sequestration (Wawrzynski

et al., 2006; Lin and Aarts, 2012). Saad et al. (2018) demonstrated

that LmSAP overexpression in tobacco seedlings enhanced the

expression of several genes encoding metallothionein proteins

(thiol group of cysteine amino acid residue binds with metal ions

and/or ROS, (Yuan et al., 2008; Hassinen et al., 2009).
3.4.8 HM-tolerance findings through
QTL analysis

Out of twenty-three sequences of sorghum gene homologs

identified by BLASTP searches of the Xtxp270-QTL genomic

region on chromosome 10, two gene homologs encoding ZFPs
TABLE 1 The effect of different Zinc finger protein in mitigating various abiotic stresses.

Stress Crops Mechanism involved Effect Reference

Heavy
Metal

Arabidopsis
thaliana

MAPKKK Alterations in Auxin Homeostasis Kovtun et al. (2000)

Arabidopsis
thaliana

PIN Auxin transport Tognetti et al. (2010)

Oryza sativa MAPK Decreased ROS induced root cell death Tsai and Huang (2006)

Oryza sativa GSH and Sodium nitropruside By product S nitrosoglutathione generates bioactive NO Mostofa et al. (2015)

Medicago sativa MAPKs Cellular Signal induction Jonak et al. (2004)

Gossypium
hirsutum

Reduced Glutathione (GSH) Multivesicular body formation induced, structural integrity of
cellular components

Khan et al. (2020)

Drought Oryza sativa OsC3H47, OsTZF1, OsTZF2 Involves in ABA and JA Production modulation Han et al. (2021)

Oryza sativa OsC3H10 Enhances expression of LEAs, GLPs and PR protein Seong et al. (2020)

Glycine soja GsZFP, a new cis2/His2 type Zinc finger
protein

Plant development and stress response Luo et al. (2012)

Arabidopsis
thaliana

AetTZF1 Enhances expression of CBF1, CBF2, DREB2A, COR47 Jiang et al. (2014)

Malus domestica MdZAT10 Negative regulator of Drought resistance Yang et al. (2021)

Malus domestica MdDof54 Development and stress response Chen et al. (2020)

Salinity Festuca
arundinacea

FaZNF Regulation of Salt stress response pathway Martin et al. (2012)

Arabidopsis
thaliana

ZAt7 Senescence and defense Ciftci-Yilmaz et al.
(2007)

Chrysanthemum
sp

CgZFP1 Osmotic adjustment, ROS scavenging, and ion homeostasis Gao et al. (2012)

Arabidopsis
thaliana

ZPT2 Transcriptional repressor Sakamoto et al. (2004)

Ipomea batatus IbZFP Growth, developemnt and homeostasis Wang et al. (2016)

Cold Petunia hybrida PhZFP1 Modulation of galactinol synthase Zhang et al. (2022)

Gossipium
hirsutum

GhZAT Transcription regulator Fan et al. (2021)

Panicum
virgatum

PvC3H72 Transcriptional Activator factor Xie et al. (2019)

Arabidopsis
thaliana

GmZF1 Modulates cold responsive genes Yu et al. (2014)

Nicotiana
tabacum

OSISAP1 Stress response inducer Mukhopadhyay et al.
(2004)
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(SbZFP17 and SbZFP346) were found to be up-regulated under

HM stress (Abou-Elwafa et al., 2019). Another HM-tolerance

study on Arabidopsis reported decreased HM-tolerance upon

mutation in the gene encoding a ZFP (ZAT6) (Chen et al., 2016).
3.5 Radiation/high light stress

Over-expression of a gene encoding an HM (Si) transporter in

rice was found to promote strong cell membrane structure and

activate regulators (ZF protein viz. Lsd1 and dof, protein kinase

domain) of the UV-B tolerance signal transduction pathway (Fang

et al., 2011), suggesting the possible involvement of zinc finger

motif in irradiance-induced signalling.

The B‐box (BBX) proteins are a family of zinc finger TFs

containing one or two BBX motifs, which has already elucidated its

role in PPI (Gangappa and Botto, 2014; Zhang et al., 2017). Fang

et al. (2019) monitored the transcript levels of eight BBX genes in

the apple, which were significantly induced by UV‐B radiation.

Further, MdBBX20 overexpression in apple callus promoted the

expression of structural genes encoding anthocyanin pigments and

their subsequent accumulation under UV‐B radiation, possibly by

its transcriptional coactivator role (promoter modulation of several

proteins) that coordinates with MdHY5 (Fang et al., 2019). In fact,

the direct relationship between the expression profile of rhl41

(encode for a ZFP) and collective accumulation of anthocyanin

and chlorophyll under UV irradiation suggests the disguised role of

zinc finger in photo-protection and increased level of

photosynthetic efficiency (both are evolved as strategies of light

and radiation tolerance in plants) respectively (Iida et al., 2000).

Exposure of plants to light intensities that exceed the

electron utilization capacity of the chloroplastic photosystem

(PS) and light-harvesting complex (LHC) dramatically impacts

nuclear gene expression. In this regard, the interaction and

genetically association (binding component unknown to date)

between GATA-type zinc finger-TF (ZML) and CryR1

(cryptochrome involved in growth and regulation) induce the

formation of ZML heterodimer regulating the expression of

photo-protective genes (Shaikhali et al., 2012).

Protective role (as a shield of LHC of PS-I, II and as an

antioxidant; quenching of excited electrons during an

imbalanced state of excitation transfer at the LHC) of

flavonoid (anthocyanin) class of metabolites are very

prominent under light and irradiance stress (Hughes et al.,

2014; Tattini et al., 2014). HY5 (a type of Leucine zipper TF)

positively regulates light‐responsive gene expression (Nawkar

et al., 2017) through interaction (via phytochrome interacting

factor) with BBX-ZFP resulting in anthocyanin accumulation

under light and/or radiation stress (Wei et al., 2016; Zhang et al.,

2017). MdBBX20 responds to UV‐B signaling and forms an

active heterodimer with HY5 (one of the key regulatory factors

for UV-B response; facilitating the transcriptional activity of

HY5 (An et al., 2019; Fang et al., 2019).
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Modulation in antenna size of LHC is another approach

adopted by the plant to tolerate incoming high light and

radiation stress (Rossel et al., 2002; Kimura et al., 2003; Mittler

et al., 2004). Genetic alteration of ZAT10 (ZF-TF) has a

modulatory impact on high light-induced transcriptome

(Rossel et al., 2002) whose products are targeted to chloroplast

suggesting the involvement of ZF-TF (zinc finger motif) in

plants’ manipulation of chloroplastic apparatus.
3.6 Elevated CO2 stress

The experiment setup (95% CO2+1% O2 treatment; Artificial

high-CO2 atmosphere) designed by Jamil et al. (2019) reported

abundant levels of C2H2-type ZFP (DkZF1-5) transcripts. Even

though there are no direct in-vivo reports on ZF-motif-mediated

stress tolerance under the influence of elevated CO2 to date but

still, the existing elucidated protein-protein interactions among

the expressed product of DkZF1-5 transcripts might have some

synergistic regulatory role under CO2 stress. Notably, comparative

transcriptome analysis had already unveiled up-regulation in

stress-related TFs (WRKY; domain containing C2HC ZF motif)

(Rushton et al., 2010) in immature California grapes under CO2

gaseous treatment (Rosales et al., 2016; Romero et al., 2019). ABA

phytohormone maintenance (balance between anabolism and

catabolism) and their optimal levels are influenced by elevated

CO2 (linear relationship between CO2 concentration and ABA

synthesis) (Seo et al., 2000; Iuchi et al., 2001; Xiong et al., 2001;

Xiong et al., 2002; Xiong and Zhu, 2003; Zou et al., 2007). Both of

the above concepts indicate the possible involvement of WRKY

with ABA-inducible and -repressible genes (under the influence of

HVA22 promoter; Zou et al. (2004) under elevated CO2

suggesting ABA-mediated stomatal response to CO2 stress in

plants. The present interpretation and previously made

elucidations suggest the involvement of WRKY-TF as a

functional node integrating stress signaling. Non-fluctuating

concentrations of existing intracellular monosaccharides and

disaccharides (soluble sugars like glucose and sucrose) (Katny

et al., 2005; Zou et al., 2007)and increased accumulation of storage

polysaccharides (starch) (Poorter et al., 1997) under elevated CO2

remain a mystery which can be taken up as future research to

establish the link between ABA-signaling and intracellular starch

proportion of the cell under elevated CO2 situation.
4 Conclusion

From the discussion of the current overview of the recent

study, it can be concluded that abiotic stresses, particularly

drought, high salinity, heavy metal, photo-stress, and high and

low temperatures, are the major hindrances that limit crop

productivity. After overviewing various earlier studies, the

current study revealed that Zn-finger motifs have a significant
frontiersin.org

https://doi.org/10.3389/fpls.2022.1083960
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Moulick et al. 10.3389/fpls.2022.1083960
role in the better understanding of abiotic stress. The study also

recognized that a wide range of Zn-binding motifs, termed Zn-

fingers’ proteins, had been identified. However, the function of

stress-adaptation Zn-finger motifs is fully controlled by various

genes. Speaking of abiotic stress and illustration the role of ZFP in

wide range of plants, drought, salinity, temperatures etc. seems to

be predominated. However, the involvements of ZFP in heavy

metal stress are comparatively less than the other stresses.

Moreover, the consequences of radio-nucleotides exposure to

plants and the behaviour of ZFs will be an area of interest in

the near future, as there is hardly any article addressing this issue.

On the other hand, there is an ample scope to work on the effect of

HM on the yield of crops as associated with various zinc finger

protein. Another area of interest will be the documentation of the

role of ZFP when plants were exposed to multiple stresses in

different magnitudes. The information on the concept,

importance, and mechanisms of Zn-finger motifs during abiotic

stress response in plants will be helpful for the sustainability of

crop production in the modern era of the changing climate.
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