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Plants are exposed to increasingly severe drought events and roots play vital

roles in maintaining plant survival, growth, and reproduction. A large body of

literature has investigated the adaptive responses of root traits in various plants

to water stress and these studies have been reviewed in certain groups of plant

species at a certain scale. Nevertheless, these responses have not been

synthesized at multiple levels. This paper screened over 2000 literatures for

studies of typical root traits including root growth angle, root depth, root

length, root diameter, root dry weight, root-to-shoot ratio, root hair length and

density and integrates their drought responses at genetic and morphological

scales. The genes, quantitative trait loci (QTLs) and hormones that are involved

in the regulation of drought response of the root traits were summarized. We

then statistically analyzed the drought responses of root traits and discussed

the underlyingmechanisms. Moreover, we highlighted the drought response of

1-D and 2-D root length density (RLD) distribution in the soil profile. This paper

will provide a framework for an integrated understanding of root adaptive

responses to water deficit at multiple scales and such insights may provide a

basis for selection and breeding of drought tolerant crop lines.

KEYWORDS

root system architecture, water deficit, genes and QTLs, hormones, root length
density (RLD) distribution
Introduction

Root system underpins the development of terrestrial vegetation as it anchors plants

in the soil and provides the main route through which plants acquire water and nutrient

from the soil (Sebastian et al., 2016; Ma et al., 2018; Fromm, 2019; Gupta et al., 2020).

Plants are routinely exposed to myriad environmental stresses threatening plant survival,
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growth, and reproduction in the natural ecosystems (Huang et

al., 2014; Kramer-Walter et al., 2016) and affecting crop yield

and quality (Maqbool et al., 2022) in the agricultural system

(FAO, 2020). Drought is one of these stresses (Gupta et al., 2020)

and root has evolutionarily become the first organ that senses the

changes in soil moisture and adapts to them at morphological,

anatomical, and molecular scales (Amtmann et al., 2022). Fresh

water availability is projected to decline by 50% owing to climate

change, whereas water demand for agriculture is expected to

double by 2050 (Gupta et al., 2020). Overcoming the water

challenge in agriculture is central to achieving Zero Hunger, one

of the 17 goals proposed in the 2030 Agenda for Sustainable

Development (FAO, 2020). Hence, producing high-yielding

crops under water-limiting conditions, particularly in the

dryland agricultural system, is required to ensure global food

security. Despite the significant advances made in the

understanding of adaptive mechanisms of above-ground parts

under changing climate, such research in plant root systems has

not received due attention (Li et al., 2021; Moran et al., 2017).

Hence, root has become an important target for genetic selection

and modification in an effort to enhance crop resilience and

maintain yield and quality under water-limiting conditions

(Fromm, 2019; Kamoshita et a l . , 2008) . A better

understanding of plant root systems has been widely

recognized as a key component of the second green revolution

(Lynch, 2007), especially in the regions with low-input

agricultural systems (Villordon et al., 2014). In this case, the

patterns of root growth and responses under water-limiting

conditions are fundamental aspects regarding crop production

especially in arid areas (White, 2019).

Root system architecture (RSA) is the spatial distribution of

roots in the soil profile (Lynch, 1995; Koevoets et al., 2016;

Pandey and Bennett, 2019), and it is primarily shaped by length,

branching, angle, and thickness. RSA is characterized by a series

of traits including rooting depth, root growth angle, root-to-

shoot ratio, root diameter, root length density, root surface area,

root volume, root distribution, and root tip frequency and root

hair development (Germon et al., 2020; Siddiqui et al., 2021).

Roots have developed the ability to change the RSA traits in

response to water stress (‘plasticity’) (Fromm, 2019; Gupta et al.,

2020; Siddiqui et al., 2021; Kang et al., 2022). Nevertheless, these

traits are not equally sensitive to drought (de Vries et al., 2016;

Stagnari et al., 2018). A review showed that drought decreased

total root length and tip frequency, increased rooting depth and

had no effect on root branching in tree species (Brunner et al.,

2015). It is becoming increasingly evident that considerable

inter- and intraspecies variations are present in the drought

response of RSA (Guenni et al., 2002; Belachew et al., 2018;

Berny-Miery et al., 2019; Fromm, 2019). Plasticity of plant traits

are closely associated with drought tolerance which is generally

evaluated as the capability of surviving and maintaining growth

and yield under drought conditions (Volaire and Lelievre, 2001;
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Feller and Vaseva, 2014; Gao et al., 2015; Suseela et al., 2020).

Similar to the plasticity of shoot traits that have a great impact

on plant reproductive performance (Funk et al., 2021), root traits

are also highly correlated with crop yield (Uga et al., 2013; Ogura

et al., 2019) and yield stability (Sandhu et al., 2016) under

drought conditions. Therefore, understanding how RSA is

responding to water stress and regulated by genetic and

metabolic mechanisms in plants has great importance on

agricultural sense, which can be potentially manipulated for

crop improvement.

A number of recent reviews have focused on how root

traits respond to drought at a certain scale (s) (Wasson et al.,

2012; Comas et al., 2013; Lynch, 2013; Khan et al., 2016;

Valliyodan et al., 2017; Lynch, 2018; Ye et al., 2018; Kim et al.,

2020; Siddiqui et al., 2021). A meta-analysis study of root

traits, based on 128 published studies under field conditions,

has shown that drought significantly decreased root length

and root length density, while it increased root diameter and

root-to-shoot biomass ratio (Zhou et al., 2018). A whole-

genome meta-analysis was performed to find out candidate

genes and genomic regions involved in controlling RSA traits

under well-watered and drought stress conditions in rice

(Daryani et al., 2022) and other major cereal crops including

maize (Guo et al., 2018), bread wheat (Darzi-Ramandi et al.,

2017; Soriano and Alvaro, 2019; Bilgrami et al., 2020), and

durum wheat (Iannucci et al., 2017). Specifically, plant

hormones are known to play critical roles in the molecular

regulation of RSA traits under drought and the progress has

been reviewed by Ranjan et al. (2022). Beyond these factors,

root distribution in the soil, generally described by the

distribution of root length density (RLD), at different

dimensional scales determines the efficiency of water and

nutrient uptake (Ahmadi et al., 2011; Ahmadi et al., 2014;

Thidar et al., 2020). A few studies have shown that plants

adjusted root distribution under drought conditions to access

water available in different soil layers (Jongrungklang et al.,

2012; Fitters et al., 2017; Morris et al, 2017; Song et al., 2020;

Shabbir et al., 2021). However, up-to-date knowledge on

responses of RSA in a wide range of plant species at

multiple scales has not been well analyzed.

Therefore, this paper synthesizes up-to-date knowledge on

RSA drought responses in a wide range of plant species at

multiple scales (Figure 1). We briefly summarized the genes

and QTLs and hormones that are involved in the drought

response of root traits. We then statistically analyzed the

drought responses of typical root traits under controlled

manipulative experiments and discussed the underlying

mechanisms. We finally generalized the responses of 1-D root

length density distribution to drought and well-watered

conditions in the soil profile. Meanwhile, we discussed the

effects of water deficit on 2-D root length density distribution

and 3-D RSA and its regulation mechanism.
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Methods

Literature search and data selection

We screened the literature using different combinations of key

words that indicate water availability (“water deficit”, “water

stress”, “water deficiency”, “water shortage”, or “drought”) and

describe the root traits (“root growth angle”, “root depth”, “root

length”, “root diameter”, “root dry weight”, “root-to-shoot ratio”,

“root length density”, and “root hair”) in Web of Science (https://

www.webofscience.com/). Among the over 2000 articles found, we

obtained the papers for the analysis of root trait response to

drought based on the following criteria: 1) the experiment was

conducted in well-controlled environments (e.g. pot, PVC tube,

box, and small plots in field); 2) at least 3 biological replications

were performed; and 3) data are available and obtainable under

both well-watered and water-stressed conditions.
Data extraction

Data for gene, QTL and hormones were extracted and

summarized from the related papers. Data for the root trait

analysis and 1-D distribution of root length density in the figures
Frontiers in Plant Science 03
were extracted using GetData Graph Digitizer and data in the

tables were copied.
Data analysis

In the analysis of molecular manipulation of RSA under

drought, we compiled a dataset of 109 records of genes and

QTLs involved in the drought response of root traits in different

plant species from 52 published papers; we also complied a

dataset including 105 records of hormones from 29 published

papers for the analysis. In the analysis of root traits in response

to drought, we collected 808 pairs of data under well-watered

and water-stressed conditions from 79 published papers. The

number and percentage of papers reporting each trait in different

species were presented (Figure 2). Ratio of drought response was

calculated as the value of root traits observed under water-

stressed condition divided by that under well-watered condition.

Meta-analysis for drought response ratio of root traits was

performed with the method from Zhou et al. (2018). In the

study of one-dimensional root distribution to drought, 156 pairs

of RLD data under well-watered and water-stressed conditions

were collected from 6 published papers. Data were normalized

with respect to the maximum values of sampling depth and RLD
FIGURE 1

Framework integrating the root responses to water stress at genetic and morphological levels.
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observed under each water availability condition in each selected

paper. An exponential function was fitted between normalized

depth and root length density. The number of 2-dimensional

and 3-dimensional root distribution studies in response to

drought was too small for a valid statistical analysis. Hence, we

presented typical results in published studies as an example to

discuss the effects of water deficit on 2-D root density

distribution and 3-D RSA and its regulation mechanism.
Results and discussion

Genes, QTLs and hormones involved in
the drought response of root traits

The responses of RSA traits to drought are controlled by a

complex regulation network involving sensing, signaling, and

gene expression in a wide range of plants, as reviewed by Janiak

et al. (2016). Several literature reviews have discussed these genes

and QTLs in drought responses in cereal crops (Siddiqui et al.,

2021), centering on rice (Kim et al., 2020), wheat (Kulkarni et al.,

2017; Li et al., 2021), and grain legumes (Ye et al., 2018). A very
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recent review (Ranjan et al., 2022) has summarized the genes,

QTLs, transcription factors, mRNAs involved in RSA responses

to drought in a wide range of plants. A number of genes and

QTLs governing the responses of RSA to drought have been

identified in a variety of plants (Figure 3). Wheat is the most

intensively studied crop, followed by rice and Arabidopsis.

Among the root traits of interests, root length and root dry

weight under drought are associated with the largest number of

genes (Figure 3). These two traits reflect the overall growth of the

root system and hence it has received sufficient attention. For

instance, root length under drought was associated with QTLs

including CRL1, PRL2, PRL3, SRL2, SRL7, and SRL9 in maize

(Li et al., 2017) and QTRL.cgb-3B in wheat (Liu et al., 2013).

Root dry weight under drought was associated with Qrdws.uwa-

4AL and Qrdws.uwa-5AL in wheat (Ayalew et al., 2017) and

qRDW1_2, qRDW1_5, and qRDW1_8 in sorghum (Mace et al.,

2012). Root angle was regulated by DEEPER ROOTING 1

(DRO1), a rice quantitative trait locus and higher expression of

DRO1 increases the root growth angle (Uga et al., 2013). Root

diameter was enlarged by the overexpression of OsNAC5 (Jeong

et al., 2013) and OsNAC10 (Jeong et al., 2010) in rice roots under

drought. Very recently, the regulation of lateral root diameter by
A B

DC

FIGURE 2

The number and percentage of papers reporting different root traits of different plant species with tap (A, C) and fibrous (B, D) root systems.
Grasses in the tap root system include weed from Maganti et al (2005) and Paspalum dilatatum from Vasellati et al. (2001). Grasses in the fibrous
root system (indicated by * in (B, D) include Perennial grass Dactylis glomerata from Bristiel et al. (2019), switchgrass from Liu et al. (2019), and
perennial native grasses from Vega et al. (2020).
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QHB and OsWOX10 has been identified under mild drought in

rice (Kawai et al., 2022).

A recent genome-wide association study (GWAS) on the

roots of two contrasting rice varieties under drought revealed

288 differentially expressed genes from the families of NAC,

AP2/ERF, AUX/IAA, EXPANSIN, WRKY, and MYB (Abdirad

et al., 2022). This finding warrants further research into verifying

the roles of these genes in the differential RSA responses to water

stress as one variety enhanced growth and root exploration to

access water to avoid water deficit, whereas the other relied on

cell insulation to maintain water and antioxidant system to

withstand water stress (Abdirad et al., 2022).

We also covered species not yet been reviewed such as poplar

(Zhou et al, 2020b), apple (Geng et al., 2018), and alfalfa (Wan

et al., 2021) to complement published reviews (Figure 3). Poplar,

a biofuel crop grown on marginal lands with insufficient water

and nutrient resources, are the most well studied tree species in

the molecular mechanism modifying RSA in response to

drought (Dash et al, 2017; Dash et al, 2018; Wang et al., 2020).

PtabZIP1-like gene was reported to enhance lateral root

formation and biomass growth under drought stress (Dash

et al., 2017). A recent study demonstrated that WUSCHEL-

related homeobox gene PagWOX11/12a promoted root

elongation and biomass growth in poplar in response to

drought stress (Wang et al., 2020). Additionally, transgenic

apple plants over expressing MdMYB88 or MdMYB124 had

higher root-to-shoot ratios under long-term drought stress
Frontiers in Plant Science 05
(Geng et al., 2018). Compared with annual crops, the genetic

control of RSA in perennial trees to drought is poorly

understood due to the lack effective phenotyping tools.

Plant hormones, such as abscisic acid (ABA), auxin,

cytokinin, ethylene, gibberellic acid (GA), jasmonic acid (JA),

salicylic acid (SA), and brassinosteroid (BR), are known to

mediate root growth which contribute to development of RSA

under normal and droughted conditions (Dalal et al., 2018;

Karlova et al., 2021; Ranjan et al., 2022). Wheat, rice, and

Arabidopsis are the most studied species (Figure 4) as they are

the source for staple food for mankind or serve as the model

plant in scientific research. Root length, root dry weight and

root-to-shoot ratio are the most studied traits, as they are closely

associated with the function of the root system (Figure 4). The

number of studies involving ABA is the largest, followed by

auxin and cytokinin (Figure 4). ABA plays the most critical role

in regulating RSA. The records of ABA account for 34.3% of the

total observations and it is involved in the regulation of almost

all root traits under water stress (Figure 4). Moderate water

stress in tomato increased the primary root length in the wild

type but failed to enhance it in the mutant which lacked a

fundamental gene in the ABA biosynthetic pathway and

therefore had a lower ABA concentration compared to the

wild type, suggesting that ABA played a positive role in

mediating the regulation of primary root elongation under

drought (Zhang et al., 2022). Higher expression of DRO1 was

shown to increase root growth angle under drought but it was
FIGURE 3

Genes and QTLs involved in the drought responses of root traits in different plant species reported in the literature. Different colors of lines and
flows represent different crops. Data and references are included in Supplementary Table 1 and Supplementary File 1, respectively.
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negatively regulated by auxin (Uga et al., 2013). Cytokinin is

known as a negative regulator of root growth (Ranjan et al.,

2022) and the degradation of it was reported to increase the

length of lateral roots and root dry weight, leading to improved

drought tolerance in barley (Pospıśǐlová et al., 2016). In addition

to a single hormone, Rowe et al. (2016) revealed how the

hormonal network including ABA, auxin, ethylene, and

cytokinin influence root growth under water stress. As the

interplay of hormones in shaping RSA is very complex even

under well-watered condition, drought will add a new layer of

complexity and greater knowledge is needed to understand the

complex hormonal crosstalk in the drought response of RSA.

ABA and auxin played roles in xerotropism, hydropatterning,

and xerobrancing (Giehlvon Wiren, 2018; Orman-Ligeza et al.,

2018; Dinneny, 2019; Lucob-Agustin et al., 2021), which contribute

to the drought response of RSA. When water supply in soils is

sufficient and homogeneous, the root system is likely to develop

symmetrically around the root axis. When water availability in top

soil layers is limited and sufficient water is retained in deep soil

layers, auxin is involved in the mediation of root growth towards

deep soil layers. This phenomenon is termed as xerotropism, in

which the response of roots to gravity is enhanced to form deeper

roots (Lucob-Agustin et al., 2021). When roots are exposed to

differential water availabilities on either side of the root, formation

of roots hairs and aerenchyma (plant tissues containing enlarged

gas-filled intercellular spaces) is induced on the side exposed to air

while formation of lateral roots are enhanced on the side in direct

contact with water (Giehlvon Wiren, 2018). This phenomenon is

termed as hydropatterning. Auxin has been reported to promote the

initiation of lateral roots on the side in contact of water, determining

whether and in which direction lateral roots form (Orosa-Puente
Frontiers in Plant Science 06
et al., 2018). When roots encounter dry soil patches or air, ABA has

been reported to repress lateral root formation there

(xerobranching) (Orman-Ligeza et al., 2018). In soils that are not

completely dry or flooded, an air-water interface forms between soil

particles (Giehlvon Wiren, 2018). Such variation in soil water

availability stimulates the growth towards water and this

response, termed as hydrotropism, is also auxin-dependent

(Lucob-Agustin et al., 2021). Hydrotropism guides the growth of

roots to water while hydropatterning alters the distribution of root

hairs and lateral roots along the circumference of the root surface

(Giehlvon Wiren, 2018).
Responses of typical root traits
to drought

Positive, negative, and null responses to drought in each root

trait are reported in the literature and they are indicated by the

ratio > 1, < 1, and =1, respectively (Figure 5). The inconsistent

results are likely due to the different timing and intensity of

water stress and the crops (Kato et al., 2006; Rauf and Sadaqat,

2007; Kamoshita et al., 2008; Kano et al., 2011; Padilla et al.,

2013; Larson and Funk, 2016). The distribution of the ratio

values determined the average ratio of each trait, which can be

used to demonstrate the overall impact of drought on each trait

(Figure 5). Due to the contrasting and diversified results (Olmo

et al., 2014; Welles and Funk, 2021), generalizations need to be

made very cautiously regarding the response of root traits to

drought. The root traits in both the tap root and fibrous root

systems follow a similar pattern in response to water

stress (Figure 5).
FIGURE 4

Hormones involved in the drought responses of root traits in different plant species reported in the literature. The numbers of observations are also
shown. Crops are listed on the left-hand side and root traits on the right-hand side. Crops and root traits are connected by specific flows in different
colors representing different hormones involved. Data and references are included in Supplementary Table 2 and Supplementary File 2, respectively.
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In the fibrous root system (Figure 5A), water stress increased

root hair density, root hair length and root-to-shoot ratio by

49.4%, 35.8%, and 21.6%, respectively. Water stress decreased

root dry weight and root length by 21.9% and 19.8%,

respectively. There are different reasons accounting for the

increased root-to-shoot ratio in response to drought. In most

cases, water stress decreased the dry matter accumulation in

both shoot and root with a greater reduction in the root system,

leading to an enhanced root-to-shoot ratio. Increased root dry

weight accompanied by decreased shoot dry weight also

occurred, which also caused increased root-to-shoot ratio.

Although water stress had no effect on the mean of root

depth, root growth angle, and root diameter, both positive and

negative effects on the traits have been reported in the literature

as reflected in the distribution of the ratio values (Figure 5). In

the tap root system (Figure 5B), water stress caused an increase

in root hair density, root growth angle, and root-to-shoot ratio

by 27.3%, 25.3%, 42.6%, respectively. Water stress induced a

decrease in root dry weight and root length by 26.5% and 3.4%,

respectively. Similar to the fibrous root system, in most cases
Frontiers in Plant Science 07
water stress decreased the dry weight in both shoot and root with

a greater reduction in the root system, leading to an enhanced

root-to-shoot ratio. Inconsistent responses to drought reported

in each trait (Figure 5) reflected the different strategies plants

used to deal with drought.

Root growth angle is generally defined as the degree

between the horizontal and the root (Lynch, 2022). Larger

root growth angles result in root elongation towards the

deeper soil layers and this is believed to be an important trait

for the access to and capture of deep soil water under drought

(Vega et al., 2020; Lynch, 2022). Larger root growth angle

contributed to higher yield as reported in maize (Ali et al.,

2015) and rice (Uga et al., 2013) under water-limited

conditions. Therefore, larger root growth angle is considered

as a desirable trait of drought tolerance in the breeding

program. However, some species do not increase root growth

angle under drought (Figure 5). Introducing genes such as

DRO1 into the cultivar may enable the crop to avoid drought

by increasing rooting depth and hence maintain yield under

drought conditions. Growth angle largely determines root
A B

C

FIGURE 5

The drought response of typical root traits reported in the fibrous root (A) and tap root (B) systems in 70 published papers. (C) shows data from
both the fibrous and tap root systems. Ratio is calculated as the value observed under water-stressed condition divided by that under well-
watered condition. Data and references are included in Supplementary Table 3 and Supplementary File 3, respectively.
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depth and larger rooting depth is associated with steeper root

angles (An et al., 2017; Alahmad et al., 2019).

Root depth determines plants’ ability to capture water in the

deep soil layers (Nippert and Holdo, 2015; Nardini et al., 2016).

A deeper root system under drought is achieved by the

continued and sustained growth of root systems even at

extremely low water availabilities, which might increase the

mechanical strength of the soil and penetration impedance for

the roots (Rich andWatt, 2013). Root depth has been reported to

affect seasonal progression of water status, gas exchange, and

maintenance of vascular integrity (Nardini et al., 2016). Plants in

different ecosystems differ considerably in rooting depth (Schenk

and Jackson, 2002) and drought-tolerant species tended to be

deep-rooted while drought-sensitive ones were shallow-rooted

(Padilla and Pugnaire, 2007; Zhou et al., 2020a). Nevertheless,

recent evidence in Arabidopsis has also shown that shallow

rooting system is developed under drought for capturing water

in the surface soil (Ogura et al., 2019). This new discovery

challenges the conventional thinking of deep rooting and

drought tolerance and opens up a debate over whether deep or

shallow rooting benefits plants under drought. This shallow

rooting pattern could occur in the ecosystem where rainfall

happens within a short period of time. This shallow rooting

strategy has also been adopted in succulent plants (e.g. cacti) in

order to capture moisture in the topsoil owing to the light and

brief desert rain (Schenk and Jackson, 2002). Nevertheless, it

remains to be investigated whether this strategy is applicable to

crops depending on the water availability in the soil profile.

Water is mostly stored in the deep soil layer in the dryland

agricultural system although water in the topsoil layer is

temporarily available following sporadic rainfall. In contrast,

water is constantly available in the topsoil layer during the

growing season of the crops in the irrigated system.

Root hairs are specialized structures in the shape of tubular

protrusions (typically 10 mm in diameter) arising from root

epidermis and emerging behind the root elongation zone and

they represent about 2% of the root mass (Marin et al., 2021).

Root hair density and length are important traits affecting root

water uptake (Mackay and Barber, 1987; Brown et al., 2012;

Wang et al., 2016; Carminati et al., 2017). Negative and positive

responses of these traits to water stress have been reported

(Figure 5). Among the 22 wheat genotypes examined, most

genotypes showed increased root hair density and length with

only a couple of exceptions (Robin et al., 2021). Similar to the

proliferation of lateral roots (Robin et al., 2021), increased root

hairs significantly increase the contact area between roots and

the surrounding soil (White and Kirkegaard, 2010) and

facilitates water uptake under abiotic stresses (Xiao et al.,

2020a; Xiao et al., 2020b; Kohli et al., 2022). Root hairs also

play an important role in plant-microbe interaction (Fromm,

2019). Root hairs, together with mucilage secretion from roots

and microbes, form the rhizosheath (Karanja et al., 2021; Zhang

et al., 2021), which can facilitate the water uptake in the sheathed
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region under water deficit (Zhang et al., 2020). It remains to be

investigated regarding the drought adaptive mechanism behind

the genotypes without increased root hair proliferation. The

possible adaptive strategies these plants adopted might include

the changes in the root hydraulic properties (Leitner et al., 2014;

Tron et al., 2015) or the osmotic adjustment of root cells (Palta

and Turner, 2019), which also contributed to increased root

water uptake.

Root diameter is a measure of root thickness. Building both

finer and thicker roots in response to drought has been reported

(Figure 5) and both responses are considered to benefit crops

under drought. Building finer roots under drought is considered

as a strategy for conserving resources when dry matter

production is reduced (Henry et al., 2012). Finer roots may

also benefit the crop under drought by increasing the surface to

volume ratios of roots and hence the surface area of roots in

contact with soil, allowing for increased withdrawal of water

from the soil (Palta et al., 2011; Comas et al., 2013; Awad et al.,

2018). On the other hand, thicker roots may be advantageous

under drought because they have been hypothesized to be more

capable of branching and producing more lateral roots, thereby

increasing root length density and exploring deep soil layers and

thus, enhancing drought tolerance (Ingram et al., 1994; Trillana

et al., 2001). Rice plants that were genetically modified to have

increased root diameter have been reported to have a higher

yield under drought (Jeong et al., 2010; Jeong et al., 2013).

Root-to-shoot ratio is the ratio of the root and the shoot on a

dry weight basis (Whitmore and Whalley, 2009). Increased root-

to-shoot ratio under drought conditions has been widely

reported and it is a drought avoidance strategy allowing the

allocation of resource (dry matter) to the root for efficient water

and nutrient acquisition (Figure 5). However, decreased root-to-

shoot ratios have also been reported (Figure 5). Although

continued investment in root growth reduced the risk of crop

failure under water stress, it penalized shoot growth during dry

periods. Particularly, continued root growth under drought

could result in permanently retarded shoot growth at a critical

developmental stage. Hence rather than grow a large root system

in response to drought, a plant may allow part of the root system

to die during drought and start new growth when favorable

conditions return. These views proposed in much of the older

literature were discussed in a review (Whitmore and Whalley,

2009). The responses of root-to-shoot ratio are also dependent

on other factors such as cultivar (Ovalle et al., 2015; Moles et al.,

2018) and the degree of drought (Liu and Li, 2005). Water

restriction increased the root-to-shoot ratio of the deep-rooted

saplings, while it had no significant effect on the shallow-rooted

saplings (Ovalle et al., 2015). In an experiment where two spring

wheat cultivars were subjected to mild and severe water stress, an

increase in root-to-shoot ratio was observed under moderate

water stress for the drought-tolerant cultivar and under severe

water stress for the drought-sensitive cultivar (Liu and Li, 2005).

This was explained by the significantly reduced respiration rate
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in the drought-tolerant cultivar under moderate drought. The

diminished costs of maintaining root function allow the

drought-tolerant plants to maintain a relatively large root

system for water capture (Liu and Li, 2005).

Root length can be a measure of the overall growth of the

root system. It is not surprising that inconsistent and dynamic

responses of root length to drought have been reported

(Figure 5). Total measurable root length did not necessarily

reflect the root’s ability to take up water as it was argued that

only a fraction of the total root length is active in water and

nutrient uptake (Robinson et al., 1991; Sharma et al., 2018).

Although the long and deep roots may not directly contribute to

water uptake, they are functionally important in transporting

the water and nutrients taken from active root parts to the rest

of the plant (Sharma et al., 2018). Increased root length under

drought condition may come at a significantly increased

expense of root metabolic cost (Hasanuzzaman et al., 2019).

Hence, for the genotypes that are capable of gaining more water

by increasing root length at reduced metabolic costs, greater

productivity can potentially be achieved under drought

(Hasanuzzaman et al., 2019). Therefore, the selection of plant

genotypes for long root length also needs to consider the

metabolic cost to the plant, and otherwise increased metabolic

cost could decrease the yield.

Root responses to drought are dependent on the soil types

differing in texture, depth, water-holding capacity, and root

penetration resistance (Cairns et al., 2004; Annicchiarico,

2007; Cairns et al., 2011; Menge et al., 2016; Palta and Turner,

2019). In the low rainfall environment (e.g. Mediterranean-type

climate), clay soils are more susceptible to subsoil compaction

and poor drainage than sandy soils (Palta and Turner, 2019),

which may hinder the rapid profuse growth and proliferation of

the root system. It was not surprising that faster early root

growth improved grain yield and water use efficiency on deep

sandy soils with low water-holding capacity while such

advantage disappeared on clay soils with better water-holding

capacity (Palta and Turner, 2019). Despite a decrease in root dry

weight under drought in many studies (Figure 5), there was a

trend towards the concentration of the roots in the topsoil layer

(25–30 cm) in fine-textured soils (e.g. clay) under drought

(Christian, 1977; Palta and Turner, 2019). This was attributed

to the high soil water-holding ability, which might prevent most

water from reaching deeper soil layers (Palta and Turner, 2019).

For soils with a high root penetration resistance due to

underground mechanical impedance, developing more lateral

roots in the shallow soil layer in response to drought stress was

an appropriate strategy; in contrast, for soils without or with a

low penetration resistance, enhancing the root development into

the deep wet soil layer under drought is more suitable (Menge

et al., 2016). In agricultural practice, shallow soil is commonly

seen in lowland fields containing a hardpan, which is

approximately 20cm beneath the soil surface. Hardpan

restricts root growth into deeper soil layers, hence water and
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nutrient uptake is limited in the shallow soil layer (Lucob-

Agustin et al., 2021).

Root responses to drought are also associated with the life

cycle of the plants (Thorup-Kristensen et al., 2020). Short-lived

species might be more flexible and plastic to changes in soil

water availability than species with a long life cycle. Compared

with perennial plants, annual, short-lived plants may have a

different strategy of capturing water in the soil (Lombardi et al.,

2021). It was reported that in the semi-arid grasslands, short-

lived grass species showed greater rhizosheath thickness and fine

root development compared to successional climax grasses

(Hartnett et al., 2013). These adaptive responses indicated that

enhanced rhizosheath development, which aided in water uptake

and retention the rhizosphere, and extensive fine root system,

which aided in water acquisition, might be important traits of

short-lived grasses coping with drought conditions. Many

perennial species, such as trees, have a tap root system. It was

shown that plasticity of root biomass allocation was lower in tap-

rooted species than fibrous-rooted species (Fry et al., 2018).

When water was only available in the deep soil layers under

drought conditions, fibrous–rooted species changed their

biomass allocation to evenly distribute their roots through the

soil profile while tap-rooted species remained largely the same.

The lack of response of tap-rooted species was attributed to the

adaptation of taproots: they are already designed to forage in

deeper soil layers and no change is necessary in response to

drought (Fry et al., 2018).
Responses of 1D/2D root length density
distribution and 3D RSA to drought

Root length density (RLD) is generally described as the

length of roots per unit of soil volume (Liang et al., 2017; El,

Hassouni et al, 2018). RLD was larger in the surface soil layers

and it decreased exponentially with soil depth (D) under both

control and water stress conditions (Figure 6). Water stress

decreased RLD almost at all depths and such decrease was most

pronounced in the surface soil layers and it decreased with soil

depth . The fi t t ed equat ions between RLD and D

areRLDww=1.22×e
-3.42×D (n=154, R2 = 0.41, P<0.001) for well-

watered condition and RLDws=0.83×e
-3.14×D (n=154, R2 = 0.47,

P<0.001) for water-stressed condition, respectively.

Similar to root dry weight and root length that reflect the

growth of the whole root system (Figure 4), responses of RLD at

the whole root level to drought are also inconsistent (Li et al.,

2010; Padilla et al., 2015; Belachew et al., 2019). It has been

argued that it is not the RLD of the whole root system, but the

distribution of RLD in the soil profile is important for water

extraction under drought (Vadez et al., 2013). A larger root

system alone may not contribute much to drought tolerance if

the large root portion is not distributed into moist soil

(Jongrungklang et al., 2011). A number of studies have
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documented the distribution of RLD in response to drought in

wheat (Zuo et al., 2006; Steinemann et al., 2015; Ali et al., 2018),

barley (Ahmadi et al., 2020), chickpea (Purushothaman et al.,

2017), sesame (Hamedani et al., 2020), maize (Zhan et al., 2015;

Gao and Lynch, 2016; Jia et al., 2018), and melon (Sharma et al,

2018). These studies revealed different strategies in response to

drought and in many cases RLD in the topsoil was more

negatively affected by water stress (Figure 6). However, there

are exceptions. RLD in the topsoil was increased in sorghum

subjected to severe water deficit (Liang et al., 2017) and a similar

increase was also reported in lettuce exposed to late drought

(Kerbiriou et al., 2013). Although the interpretation for such

increases is unclear, it might be a strategy to sustain shoot

growth at the expense of root growth (Kerbiriou et al., 2013).

Increased RLD in deep soil layers under drought is generally

considered as a worthy trait for plant breeders (Thangthong

et al., 2018). The rice genotype with higher root length density in

deep soil layers was reported to maintain dry matter production

in two genotypes tested under a simulated rainfed lowland

condition (Kameoka et al., 2015). The increase in drought

duration makes this pattern more pronounced (Thangthong
Frontiers in Plant Science 10
et al., 2016). However, the adjustment of RLD distribution

under drought does not always confer yield and growth

advantages depending on the genotype. A study demonstrated

that both pearl millet lines (“SL28” and “LCICMB1”) reduced

root growth in the dry topsoil layers and reoriented their root

growth in deeper soil layers under drought conditions (Faye

et al., 2019). However, SL28 showed a very strong and significant

reduction in grain production in response to drought even

though roots were reoriented to the deep soil layers. Similarly,

it was reported that some peanut genotypes with high RLD

under terminal drought had low yield (Koolachart et al., 2013).

This inconsistent effect of RLD adjustment on crop yield

suggested that RLD alone might not be used as a selection

criterion for drought tolerance. It remains unclear how RLD

distribution in conjunction with other root traits confer

drought tolerance.
FIGURE 6

The distribution of root length density (RLD) at different soil
depth (D) under well-watered (ww) and water-stressed (ws)
conditions. Data are normalized with respect to the maximum
values of soil depth and RLD observed under each water
availability condition in each paper. Under well-watered
condition, RLDww=1.22×e

-3.42×D (n=154, R2 = 0.41, P<0.001).
Under water-stressed condition, RLDws=0.83×e

-3.14×D (n=154,
R2 = 0.47, P<0.001). Original data are obtained from Figure 4 in
Zhan et al. (2015), Figure 5 in Gao and Lynch (2016), Figure 5 in
Fitters et al. (2017), Figure 2 in Ahmadi et al. (2018), Figure 7 in
Faye et al. (2019), and Figure 5 in Hamedani et al. (2020).
A

B

FIGURE 7

The horizontal and vertical distributions of root length density
(RLD, cm cm-3) in the soil profile under well-watered (A) and
water-stressed (B) conditions. The figure is adapted from
Figure 6 in Shabbir et al. (2021).
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The center of RLD at 2-dimensional scale was shifted

downwards in response to drought (Figure 7). RLD in the

deep soil layer was increased under water stress while it was

decreased in other layers of the soil. This change allows the roots

to obtain water present in the deep soil layer. This change

requires increased root growth angle and root depth

(Figure 4). In agricultural practice, the response of 2-

dimensioanl distribution of RLD to drought is affected by

irrigation method (Oliveira et al., 1996; Perez-Pastor et al,

2014). The root system has been reported to tend to

preferentially grow in the dripper zone under subsurface

deficit irrigation. Perez-Pastor et al (2014) studied the RLD

distribution of apricot trees in response to full irrigation at 100%

of ETc (control), continuous deficit irrigation at 50% of ETc, and

two regulated deficit irrigation. RLD values at the soil surface

close to the drip-line band nearly doubled in the deficit irrigated

treatments compared with those in the control treatment. In

contrast, far from the drip line, RLD values in the control

treatment were higher than those in all the deficit irrigation

treatments. However, the tendency of growing towards emitters

can adversely affect the utilization of water stored in the deeper

soil profile. Hence, cultivars having the ability to extend root

growth deeper in the soil profile under water deficit are

promising to overcome the limitation of subsurface irrigation

(Sharma et al., 2018).

The responses of horizontal and vertical distributions of RLD

to water deficit were also dependent on whether the plant was

grown in narrow deep soil or shallow wide soil (Zhang et al.,

2019). Zhang et al. (2019) investigated the distribution of RLD of

Loliumperenne L. (a perennial grass) grown in these two soil

environments subjected to full irrigation and two levels of deficit

irrigation. RLD tended to decrease from the center outward in the

wide shallow soil, or from the surface to bottom in the narrow

deep soil under all three treatments. The RLD in each soil ring in

the shallow wide soil decreased gradually with decreased water

supply, however, decreased supply had no significant effect on the

distribution of RLD in the deep narrow soil.

Plant roots have diverse and complex 3D formations, which

determines plants’ efficiency in acquiring water and nutrients in

the soil (Morris et al, 2017). New technologies such as magnetic

resonance imaging(MRI) and X-ray computer tomography (X-ray

CT), ground penetrating radar (GPR) have been adopted to

observe roots on 3D scale in the lab and the field (Rellan-

Alvarez et al., 2015; Morris et al., 2017; Fan et al., 2022). 3D

models have been developed to quantify RSA. Dunbabin et al.

(2013) reviewed six widely used models including RootTyp,

SimRoot, ROOTMAP, SPACSYS, R-SWMS, and RootBox. Until

now, these models have aided in elucidating the root distribution

and root function in interaction with variable environmental

conditions (Leitner et al., 2010; Dunbabin et al., 2013) including

drought. Here we present the key findings of 3D root distributions

under drought. Using a combination of RootBoxand R-SWMS,

Leitner et al. (2014) studied the role of root architectural and
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functional traits of maize in dealing with water stress at the

flowering stage subjected to two hydrological scenarios (when

most of the water is located at the top of the profile and when the

water content increased in depth). The three phenotypes with

different RLD profiles include P1 (with more roots at the top), P3

(with deeper rooting distribution), and P2 (an intermediate

distribution). Simulations revealed that P1 was more efficient in

water uptake than P2 and P3 when most of the water is located at

the top, but has low ability to deal with a drier upper layer and that

P3 outperformed P1 and P2 when the water content increased in

depth. This corresponds to previous findings (e.g. Schenk and

Jackson, 2002; Preti et al., 2010) showing that superiority of a

given root architecture was dependent on the water regime. A

deep and steep phenotype is beneficial only in situations where

crop water supply depends on subsoil moisture while allocation of

roots near the surface is more preferential when crops can rely on

high in-season rainfall (Leitner et al., 2014). A similar conclusion

was reached in a study modeling transpiration of 48 root

architectures in 16 drought scenarios with distinct soil textures,

rainfall distributions, and initial soil moisture availability (Tron

et al., 2015). When sufficient rainfall is available before the

growing season, root depth is a key trait for exploiting water

stored in deep soil layers, especially in fine soils; when plant water

supply mainly relies on rainfall events during the root system

development, root density, especially near the soil surface,

represents the most relevant trait for the exploration of soil

moisture (Tron et al., 2015). These two studies (Leitner et al.,

2014; Tron et al., 2015) also emphasized that that mere

architectural description is insufficient to find root systems of

optimum functionality and it required to consider the hydraulic

traits of the root system, which did not fall into the scope of the

current paper.
Conclusion and prospect

Land plants adjust RSA to variable soil water availabilities

for survival, development, and reproduction. Much progress has

been made in the understanding of how the interplay of genes

and hormones contribute to a single RSA trait (e.g. root growth

angle) in different plants under drought (Figures 3–5). The

inconsistent responses of a single RSA trait to drought

(Figure 5) indicated that attention needs to be paid to

understand how these RSA traits coordinate to shape the RSA

at the 2- and 3- dimensional scales, which determines the

function of the root system for optimal water uptake.

Adjustment of RSA at the whole root system level in response

to drought requires sensing the spatial and temporal dynamics of

soil moisture and reallocating the dry matter within the root

system at different soil depths. In the agricultural system, in

order to breed optimal RSA suited for drought, it is important to

exploit the mechanisms regulating root plasticity and sense

ability at multiple levels. Other environmental stimuli and
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management strategies such as irrigation also impact RSA in the

agricultural system. It is essential to gain an integrated multi-

scale (molecular, cellular, tissue, and organ levels) understanding

of the mechanisms regulating the drought responses of RSA.

Such knowledge will aid in selecting and breeding crops with

root ideotypes that are better adapted to different drought

scenarios under different environments and management

strategies. Given the complexity of RSA traits, high-

throughput screening methods and GWAS will be helpful for

in depth evaluating the drought adaptive responses of root

system. A comprehensive and systematic understanding of

RSA adaptive responses to drought at multiple levels will play

an essential role in selection and breeding of drought tolerant

crops, and water management in agricultural practice, which will

help combat hunger and ensure food security in the context of

global climate change.
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