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Novel trifluoromethylpyridine
piperazine derivatives as
potential plant activators

Wei Zhang1,2, Shengxin Guo1,2, Ya Wang1,2, Hong Tu1,2,
Lijiao Yu1,2, Zhichao Zhao1,2, Zhenchao Wang1,2*

and Jian Wu1,2*

1State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Ministry of
Education, Guizhou University, Guiyang, China, 2Key Laboratory of Green Pesticide and Agricultural
Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
Plant virus diseases seriously affect crop yield, especially tobacco mosaic virus

(TMV) and cucumber mosaic virus (CMV). The development of plant immune

activators has been an important direction in the innovation of new pesticides.

Therefore, we designed and synthesized a series of trifluoromethyl pyridine

piperazine derivatives (A1-A27), and explored the action mechanism of active

compound. The antiviral activity test showed that compounds A1, A2, A3, A9,

A10, A16, A17 and A21 possessed higher activities than commercialized

ningnanmycin. Particularly, the in vivo antiviral activity indicated that

compound A16 showed the most potent protective activity toward TMV

(EC50 = 18.4 mg/mL) and CMV (EC50 = 347.8 mg/mL), compared to

ningnanmycin (50.2 mg /mL for TMV, 359.6 mg/mL for CMV). The activities of

defense enzyme, label -free proteomic and qRT-PCR analysis showed that

compound A16 could enhance the defensive enzyme activities of superoxide

dismutase (SOD),polyphenol oxidase (PPO) and phenylalanine ammonialyase

(PAL), and activate the phenylpropanoid biosynthesis pathway to strenthen the

antiviral activities of tobacco. This study provides reliable support for the

development of new antiviral pesticides and potential antiviral mechanism.
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1 Introduction

Plant virus diseases seriously affect crop production, causing global economic losses of up

to $60 billion annually (Bos, 2000; Zhao et al., 2017). Taking tobaccomosaic virus (TMV) and

cucumber mosaic virus (CMV) as examples, they can host hundreds of crops (Wei et al.,

2019; Yuan et al., 2022). TMV is one of the oldest known plant viruses, and once infected with

TMV, plants develop viral diseases with symptoms including stunting, leaf mosaic and

shedding (Xiang et al., 2019). CMV could infect many crops in addition to cucumbers, and

plants infected by CMV generally exhibited dwarfing, leaf curls, necrosis, and even plant

death and often bring about huge economic losses (Palukaitis et al., 1992; Garcia-Arenal et al.,

2000). Therefore, it is urgent to develop efficient and stable pesticide.
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In the long-term evolution and the game with the pests,

plants have already formed a relatively complete immune system

(Aljbory et al., 2018; Jones et al., 2006; Zhang et al., 2019). Plants

could resist the foreign invasion by releasing phytoalexin,

ethylene, salicylic acid and other substances (Hu et al., 2017;

Klessig et al., 2018; He et al., 2021; Guo et al., 2021). Studies have

shown that exogenous substances could elicit the defense

responses of plants to give the SAR (systemic acquired

resistance) for resisting the infection of microorganisms. More

than 10 exogenous substances have been developed as activators

of endogenous substances for controlling plant virus diseases

(Xu et al., 2006; Qiu, 2014). The development of plant immune

activators has been an important direction in the innovation of

new pesticides (Nakashita, 2021; Stephens et al., 2022). As an

activator of salicylic acid pathway, dufulin (Figure 1A) has been

successfully developed for controlling the viruses in rice and

vegetable in China (Chen et al., 2012). More recently,

vanisulfane (Shi et al., 2018; Shi et al., 2022) and an indole

analog (Wei et al., 2019) were discovered as activators by

switching on the abscisic acid (ABA) signal pathway and

malate dehydrogenase (MDH) pathway in plants, respectively.

As an important and special organic base with a symmetrical

diamine structure, piperazine often serves as a bridge connecting

the different active groups to expand the diversity of structures

(Elliott, 2011; Zhang et al., 2021; Garg et al., 2021; Acharya et al.,

2021). Compounds containing the structure of piperazine with
Frontiers in Plant Science 02
different biological activities (Stoilkova et al., 2014; Han et al.,

2020; Fang et al., 2022), are widely used as the potential plant

activators for striving against the plant viruses. Li and co-

workers (Li et al., 2022) (Figure 1B) found that the piperazine

derivatives with a moiety of imidazo could activate the

glycolysis/gluconeogenesis pathway in tobacco to mitigate the

infection of potato virus Y. Ji et al. (Ji et al., 2022) synthesized

some piperazine derivatives via installing an oxadiazole sulfide,

which were confirmed to inhibit the systemic spread of TMV

from adjacent tissues of tobacco plants and the biosynthesis

process of TMV. Additionally, increasing expression of genes in

photosystem II and parts of the cytochrome b6/f complex could

uniquely express and activate photosynthesis by the piperazine

derivatives with the substitution of sulfonyl and unsaturated

phenylpropionic acid (Yuan et al., 2022).

Moreover, the unique electronic effects and fat-soluble

penetration effects of trifluoromethyl pyridine could greatly

affect the conformation and metabolism of compounds (Zheng

et al., 2022). It has become one of the main active structures of

many commercial pesticides, such as the herbicide pyroxsulam

(Nugent et al., 2015), the insecticide fluazuron (Cai et al., 2010;

Chen et al., 2019), and the fungicide fluopyram (Xie et al., 2014),

etc (Figure 1C). Our previous work (Figure 1D, left), revealed the

trifluoromethyl pyridine derivatives showed significant anti-viral

activity (Wang et al., 2019a;; Guo et al., 2021; Xu et al., 2022).

Herein, in order to discover antiviral molecule with

trifluoromethyl pyridine, we sought to make a cyclization for

the replacement of the thiourea/urea (Guo et al., 2021; Xu et al.,

2022) by combining the trifluoromethyl pyridine with piperazine,

and installing the substitutions via nucleophilic substitution

reaction at opposite end of piperazine, which may result in

trifluoromethyl pyridine piperazine derivatives with good

antiviral activity (Figure 1D, right). Consequently, 27 novel

trifluoromethyl pyridine piperazine derivatives were synthesized.

Bioassays against TMV and CMV indicated that some of the

compounds showed excellent antiviral activities. Further studies

indicated that the compounds with excellent protective activity

could induce the activities of superoxide dismutase (SOD),

polyphenol oxidase (PPO) and phenylalanine ammonialyase

(PAL). The phenylpropanoid biosynthetic pathway could also

be triggered by the active compounds, thereby the systemic

acquired resistance (SAR) could be enhanced by the

trifluoromethyl pyridine piperazine derivatives. This type of

piperazine derivative could be regarded as the potential plant

activators for controlling plant viruses.
2 Materials and methods

2.1 Chemicals and instruments

All reagents and solvents were obtained from TCI (Tokyo

Chemical Industrial Development Co., Ltd) and used without
FIGURE 1

Design ideas for target compounds. (A) "Plant immune activators".
(B) " Piperazine derivatives with induce plant defense responses".
(C) "Commercial pesticides containing trifluoromethylpyridine".
(D) "Design for target compounds".
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further purification. Newly synthesized intermediates and

piperazine derivatives were characterized using an AVANCE

III HD 400 MHz nuclear magnetic resonance (NMR, 1H, 13C,

and 19F) spectrometer (Bruker Corp., Fallanden, Switzerland)

and using an XT-4 binocular microscope (Beijing Tech

Instrument Co., China) to determine the melting points.

Thermo Scientific, St. Louis, MO, U.S.A. was used for high-

resolution mass spectrometry (HR-MS). The qRT-PCR analysis

was performed using a PCR thermal cycler (Bio-RAD, USA).

Defense enzyme detection (Suzhou Comin Biotechnology Co.,

Ltd., China).
2.2 Synthetic of compounds A1 − A27

The synthetic route for A1 − A27 was depicted as Figure 2.

More details for the protocols and the spectral information (1H,
13C, 19F NMR, and HR-MS) of synthesized compounds were

given in the Supporting Information.
2.3 Antiviral activity assay

For antiviral activity assays, the nicotiana tabacum L. and

chenopodium amaranticolor plants were used as experimental

plants. The anti-TMV activity of compounds A1−A27 were

preliminarily screened at 500 mg/mL by the half-leaf method

(Song et al., 2005; Wang et al., 2019b). Then the compounds

with outstanding activity were tested for their anti-TMV

activities at 500, 250, 125, 62.5 and 31.25 mg/mL with NNM as

the positive control agent. After the lesions recording 2−3 days
Frontiers in Plant Science 03
later, half maximal effective concentrations (EC50) value were

calculated. Finally, for target compounds with outstanding anti-

TMV activities (Gooding and Hebert, 1967), anti-CMV activities

were evaluated on chenopodium amaranticolor by using the

same half-leaf method (Luo et al., 2013).

2.3.1 Curative activity of target compounds
The silicon carbide was sprinkled evenly on the leaves, then

the virus was dipped in a brush and gently rubbed on the leaves.

After inoculation with the virus, the leaves were rinsed with

clean water half an hour later. When the leaves were dry, the

target compounds solutions were applied on the left side of the

leaves, and the other side was smeared with 1% tween 80 solvent

as a control. After 2 − 3 days, the number of spots was counted,

and each experiment was repeated 3 times.

2.3.2 Protective activity of target compounds
Different from the experimental procedure for curative

activity, the target compounds solution was smeared on the

left side of the leaf, the 1% tween 80 solvent was smeared on the

other side as a control. Then 24 h later, the virus was inoculated

on leaves, and the leaves were rinsed with clean water after half

an hour. The number of spots followed 2 − 3 days appearing was

counted, and each experiment was repeated 3 times.

2.3.3 Inactivation activity of target compounds
Firstly, the silicon carbide was sprinkled evenly on the leaves.

After the target compounds mixing with the virus solution for

30 min, the mixture was then smeared on the left side of the

leaves, and the other side of the leaves were coated with a

mixture of solvent and virus as a control. After half an hour of
FIGURE 2

Synthesis of compounds A1−A27.
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inoculation, the leaves were washed with water. The number of

the appeared spots was counted after 2 − 3 days. Each

experiment was repeated 3 times.
2.4 Defense enzyme activity assays

K326 tobacco at the six-leaf stage was selected and treated

with compound A16, NNM (positive control) and CK (negative

control), respectively. Four treatment modes were applied in this

work, such as CK, “CK + TMV”, “A16 + TMV” and “NNM +

TMV”. After 24h spraying of compound A16 and NNM (500

mg/mL) evenly, the TMV was inoculated on the leaves. Then the

tobacco leaves were collected on the 1st, 3rd, 5th, and 7th days, and

stored at -80 °C. Finally, the activities of SOD, PPO and PAL

were determined with a defense enzyme detection kit (Suzhou

Comin Biotechnology Co., Ltd., China), and all experiments

were repeated 3 times.
2.5 Label-free proteomic analysis

When the defense enzyme activities were measured, it were

found that the activities were significantly different on the third

day after infection with the TMV virus, so K326 tobacco on the

third day was used as a sample for proteomic analysis. Both

protein extraction and protein identification were entrusted to

APTBIO (Shanghai China). GO functional annotation of all

differentially expressed proteins (DEPs) were analyzed by

Blast2Go software. (https://www.blast2go.com/). Analysis and

annotation of proteins through the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway database were produced (http://

www.genome.jp/kegg/pathway.html).
2.6 RNA extraction and qRT-PCR analysis

The total RNA from the tobacco sample was extracted by

using the Trizol kit (Vazyme, China). RNA reverse transcription

was explored by using a cDNA kit (Vazyme) with b-actin as the

endogenous control. qRT-PCR experiments and calculations

used in this work were followed by the literature (Livak and

Schmittgen, 2001). The design and synthesis of primers were

entrusted to Sangon Bioengineering (Shanghai) Co., Ltd.
3 Results and discussion

3.1 Anti-TMV activity

The primary anti-TMV activity (including curative,

protective, and inactivation activities) of A1−A27 are shown in
Frontiers in Plant Science 04
Table 1. The EC50 values of some active compounds are shown

in Table 2. The following is a preliminary structure-activity

relationship analysis.

The curative activities of most compounds against TMV

were higher than that of NNM at 500 mg/mL, and compound

A17 (R = benzene) had the highest curative activity (68.6%,

EC50 = 86.1 mg/mL), which was higher than that of NNM

(56.6%, EC50 = 131.7 mg/mL). When X = CH2, R contains a

benzene ring, the curative activity was generally more

prominent. However, with the addition of other groups to the

benzene ring of R, the activity decreased slightly. For example,

the curative activities of R = 2,6-difluorobenzyl (A1), R = 2-

bromo-5-fluorobenzyl (A2), R = 4-fluoro-3-(trifluoromethyl)

benzyl (A3), R = 5-bromo-2- fluorobenzyl (A5), R = 2,3-

dichlorobenzyl (A9), R = 3-fluorobenzyl (A11), R = 4-

chlorobenzyl (A15), R = 2-chloro-4-fluorobenzyl (A16) were

64.3, 66.1, 59.4, 57.5, 59.0, 58.3, 60.7 and 62.8%, respectively, and

the activities were higher than that of NNM. In particular, the

EC50 = 112.3 mg/mL of compound A2 and the EC50 = 107.8 mg/
mL of A16 were lower than those of NNM. When X = SO2, R =

N, N-dimethy (A25) had a curative activity of 56.4%, which was

comparable to that of NNM, but the overall curative activity is

not as good as when X is -CH2 and R is a benzene ring.

Some compounds had good protective activities against

TMV at 500 mg/mL, especially the protective activities of

compounds A3 (X = CH2, R = 4-fluoro-3-(trifluoromethyl)

benzyl)) and A16 (X = CH2, R = 2-chloro-4- fluorobenzyl))

are 79.1%, EC50 = 20.2 mg/mL and 87.0%, EC50 = 18.4 mg/mL,

which were higher than that of NNM (74.5%, EC50 = 50.2 mg/
mL). The activity of A21 was 76.7% higher than that of NNM at

500 mg/mL.

Compound A10 (X = CH2, R = 4-(trifluoromethoxy)benzyl)

had the highest inactivation activity (93.1%, EC50 = 54.5 mg/mL),

which was higher than that of NNM (91.4%, EC50 = 38.0 mg/
mL). The activity of compound A9 (X = CH2, R = 2,3-

dichlorobenzyl) with EC50 43.1 mg/mL was similar to that

of NNM.
3.2 Anti-CMV activity

Because of the favorable anti-TMV activities of these

compounds, the curative, protective and inactivation activities

against CMV were also evaluated. As shown in Table 3, some

compounds showed good curative and protective activities. The

curative activities of compounds A1 and A3 at 500 mg/mL were

64.1 and 61.0%, respectively, which were higher than NNM

(59.0%). Meanwhile, A3 and A16 showed a remarkable

protective effect on CMV, with protective values of 58.0 and

47.8%, respectively, which were superior to that of NNM

(44.2%). The protective activity of compound A16 (EC50 =

347.8 mg/mL) was higher than that of NNM (EC50 = 359.64
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mg/mL). The inactivation activities of compounds A9 and A10

were 62.4% and 63.3%, respectively, lower than that of

NNM (89.6%).
3.3 Defensive enzyme activity assay

Among the protective activities, compound A16 explored

the best and most stable characteristic, so the preliminary

antiviral mechanism of A16 was further investigated. SOD,

PAL and PPO are protective enzymes in plants, and their

strength is directly related to the ability of plants to resist

diseases. Therefore, the effects of compound A16 on the above

enzymes in tobacco were examined (Figure 3). PAL (Zhang et al.,

2018; Li et al., 2019) induced by the biosynthetic pathway of
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secondary metabolites such as lignin and phytoalexin, activates

the system to acquire resistance, strengthens the cell wall, and

inhibits pathogen infection. In defense enzyme assays, “A16 +

TMV” presented an earlier increase and later decrease trend

both in PPO and PAL. The PAL activity of “A16 + TMV”

reached the peak on the fifth day (65 units/g), which was 1.67,

1.57 and 1.32 times that of “NNM + TMV”, “CK + TMV” and

CK, respectively. SOD is a metal antioxidant enzyme widely

existing in natural organisms (Pan et al., 2020) that defends

against the damage of superoxide free radicals to cells, and

maintains the normal physiological metabolism and biochemical

reactions of cells in the organism. After infecting tobacco with

TMV, the SOD activity of the “A16 + TMV” was higher than

that of “CK + TMV” and “NNM + TMV”. At the same time, the

SOD activity of “A16 + TMV” group reached the peak on the
TABLE 1 Activity of compounds A1–A27 on TMV.

Compounds Curativeactivity (%) Protective activity (%) Inactivation activity (%)

X R

A1 CH2 2,6-F-Ph 64.3±4.9 66.0±5.6 49.1±4.5

A2 CH2 2-Br-5-F-Ph 66.1±3.5 70.3±5.0 67.3±1.8

A3 CH2 4-F-3-CF3-Ph 59.4±3.5 79.1±4.6 67.0±4.5

A4 CH2 4-Br-2-F-Ph 41.9±5.0 64.9±0.6 81.1±4.1

A5 CH2 5-Br-2-F-Ph 57.5±5.0 68.2±3.6 65.6±4.6

A6 CH2 2,5-F-Ph 32.5±5.5 64.1±5.2 79.3±5.0

A7 CH2 3-Br-Ph 39.7±2.4 44.0±3.6 83.3±3.8

A8 CH2 4-C(CH3)3-Ph 56.6±1.3 56.1±4.9 84.9±2.8

A9 CH2 2,3-Cl-Ph 59.0±1.8 48.5±1.4 88.4±4.3

A10 CH2 4-OCF3-Ph 43.4±2.8 46.0±5.6 93.1±3.4

A11 CH2 3-F-Ph 58.3±2.9 59.1±3.1 78.2±4.0

A12 CH2 2-F-5-CF3-Ph 26.5±3.4 52.5±3.8 61.1±4.4

A13 CH2 2-Cl-Ph 39.3±5.0 43.6±1.1 67.8±1.4

A14 CH2 3,5-F-Ph 34.8±4.4 50.2±5.0 83.6±4.9

A15 CH2 4-Cl-Ph 60.7±4.9 66.0±5.1 81.2±4.8

A16 CH2 2-Cl-4-F-Ph 62.8±3.9 87.0±3.7 78.8±3.5

A17 CH2 Ph 68.6±3.6 60.3±4.3 76.2±3.7

A18 CH2 4-CF3-Ph 57.3±2.7 57.0±4.7 64.0±4.0

A19 CH2 2,4-F-Ph 53.8±2.6 46.1±3.8 74.8±2.5

A20 CH2 2-CF3-Ph 43.8±4.5 71.3±4.9 59.4±3.2

A21 CH2 3-Cl-4-F-Ph 47.3±3.1 76.7±1.9 71.5±5.1

A22 CH2 3,4-F-Ph 40.4±6.0 33.1±1.5 77.8±2.7

A23 CH2 2-pyridin 51.2±5.0 64.8±2.3 72.9±4.3

A24 CH2 6-Cl-pyridin-3-yl 37.3±6.3 60.0±2.2 67.8±1.9

A25 SO2 -N(CH3)2 56.4±4.5 68.5±5.0 78.3±4.9

A26 SO2 4-methylbenzyl 29.1±1.5 56.4±0.7 74.5±2.9

A27 SO2 piperidin-1-yl 32.3±2.3 63.4±6.7 69.3±3.3

NNM 56.6±3.2 74.5±4.9 91.4±2.9
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fifth day (622 units/g), which was 1.41, 2.03 and 7.58 times of

“NNM + TMV”, “CK + TMV” and CK, respectively. PPO is a

copper-containing oxidoreductase (Boeckx et al., 2015), which

catalyzes the formation of quinones from phenolic substances

during the growth and development of crops, and has a

defensive effect on insect pests and pathogenic bacteria. The
Frontiers in Plant Science 06
PPO activity of “A16 + TMV” reached a peak (200 units/g) on

the third day, which were 3.13, 2.63 and 2.35 times that of

“NNM + TMV”, “CK + TMV” and CK, respectively. These

results indicated that compound A16 could enhance the

activities of SOD, PPO and PAL defense enzymes after TMV

infection, thereby improving the disease resistance of plants.
A B C

FIGURE 3

Effects of compound A16 on SOD (A), PPO (B) and PAL (C) activities in tobacco leaves. Ningnanmycin is NNM. Vertical bars refer to mean ± SD.
TABLE 2 EC50 of active title compounds against TMV.

Compounds Curative effect Protective effect Inactivation effect

Regression
equation

R2 EC50 (mg/mL) Regression
equation

R2 EC50 (mg/mL) Regression
equation

R2 EC50 (mg/mL)

A1 y=0.58x+3.72 0.92 155.3 / / / / / /

A2 y=0.73x+3.52 0.95 112.3 / / / / / /

A3 / / / y=0.39x+4.49 0.92 20.2 / / /

A9 / / / / / / y=0.81x+3.66 0.97 43.1

A10 / / / / / / y=1.15x+3.00 0.96 54.5

A16 y=0.72x+3.54 0.98 107.8 y=0.59x+4.25 0.91 18.4 / / /

A17 y=0.79x+3.47 0.97 86.1 / / / / / /

A21 / / / y=0.62x+3.91 0.95 57.2 / / /

NNM y=0.72x+3.48 0.99 131.7 y=0.62x+3.93 0.94 50.2 y=1.56x+2.53 0.90 38.0
“/” indicates no test activity.
TABLE 3 Activity of compounds A1-A27 on CMV.

Compounds Curative activity (%) EC50 of curative activity (mg/mL) Protective
activity (%)

EC50 of protective
activity
(mg/mL)

Inactivating activity (%)

A1 64.1 ± 4.1 242.3 40.7 ± 4.8 / /

A2 46.7 ± 2.1 / 42.2 ± 4.9 / /

A3 61.0 ± 3.8 256.5 58.0 ± 4.6 399.5 /

A9 49.6 ± 2.2 / 29.2 ± 3.9 / 62.4 ± 4.3

A10 47.8 ± 2.2 / 37.3 ± 1.4 / 63.3 ± 2.9

A16 49.0 ± 3.8 / 47.8 ± 2.9 347.8 /

A17 54.2 ± 4.2 / 36.3 ± 3.3 / /

A21 48.2 ± 1.8 / 40.0 ± 4.0 / /

NNM 59.0 ± 3.0 234.7 44.2 ± 1.2 359.6 89.6 ± 4.1
“/” indicates no test activity.
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3.4 Label-free proteomic analysis

Given the promising determination of defense enzyme

activity, the expression levels of SOD, PPO, and PAL in the

tobacco leaves treated by compound A16 explored significant

presentation on the third day. Hence, in order to investigate the

anti-TMV mechanism of A16 on tobacco, Label-Free

quantitative proteomics were carried out. Different protein

expressions (DEPs) of tobacco in the “CK+TMV” and “A16 +

TMV” groups on the third day were analyzed. As indicated in

Figure 4, a total of 107 DEPs were screened and identified, of

which 63 proteins were upregulated (red dots; Fold Change,

FC > 2, P value < 0.05), 44 proteins were downregulated (blue

dots; Fold Change, FC < 0.50, P value < 0.05).
3.5 GO analysis

DEPs induced by A16 in tobacco was further interpreted by

using gene ontology (GO) annotation (p value < 0.05). The

functional information of DEPs is divided into three categories:

biological process (BP), molecular function (MF), and cellular

component (CC). BP were involved in metabolic processes,

cellular processes, biological regulation, response to stimulus,

regulation of biological process, cellular component

organization or biogenesis, localization, signaling, negative

regulation of biological process, positive regulation of

biological process, multi-organism process. MF were mainly

involved in catalytic activity, binding, structural molecule

activity, transporter activity, antioxidant activity, molecular

function regulator, molecular transducer activity, protein tag.

CC included cell, cell part, organelle, membrane, organelle part,

membrane part, protein-containing complex, extracellular

region, membrane-enclosed lumen, cell junction, extracellular
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region part, symplast, other organism, supramolecular complex,

other organism part. These results suggested that compound

A16 could alter plant physiology in many ways, some of which

were related to plant resistance to viruses (Figure 5).
3.6 KEGG analysis

Through the database KEGG, the potential biological

pathways (P value < 0.05) involved in DEPs of compound A16

were investigated (Figure 6 and Table 4). Seven DEPs related to

the phenylpropanoid biosynthesis pathway including four

upregulated proteins (A0A1S3X5R5_TOBAC, 7.60-fold;

Q70G33_TOBAC, 1.06-fold; A0A1S3ZTJ1_TOBAC, 1.36-fold;

A1XEL3_TOBAC, 1.34-fold) and three downregulated proteins

(A0A1S3Y048_TOBAC, 0.27-fold; Q9XIV9_TOBAC, 0.0008-

fold; A0A1S4CAV2_TOBAC, 0.15-fold). Phenylpropanoid

biosynthesis is one of the important secondary metabolic

pathways in plants, and the upregulated protein A0A1S3X5R5

(PAL) is the first key enzyme for the production of phenolic

compounds in plants. Cinnamate acid 4-hydroxylase (C4H) and

4-coumarate-COA ligase (A0A1S3ZTJ1, 4CL) are key enzymes

for the synthesis of phenolic compounds associated with disease

resistance. When plants are infected by a virus, the activity of

PAL increases rapidly (Reinold and Hahlbrock, 1996), promotes

the synthesis of phenolic compounds (Xia and Gao, 2009),

inhibits virus infection and proliferation, and induces plants

resistance (French et al., 1991; Li et al., 2021). At the same time,

PAL could induce 4CL enzyme activity to promote lignin

synthesis and improve plants disease resistance (Lawton et al.,

1980; Subramaniam et al., 1993). The phenylpropanoid

biosynthesis pathway was involved in plants disease resistance

and immunity. On the one hand, due to 4CL promotes the

synthesis of lignin, it thickens the cell wall and forms a physical
FIGURE 4

Volcano plot of the relative protein abundance changes between the “A16 + TMV” and “CK + TMV” treatments.
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FIGURE 6

Phenylpropanoid biosynthesis pathway in tobacco response to A16. The red color represents upaccumulated proteins in this pathway. PAL,
phenylalanine ammonialyaze; C4H, cinnamate acid 4-hydroxylase; 4CL, 4-coumarate-CoA; HCT, hydroxycinnamoyl transferase.
FIGURE 5

GO annotation statistics of DEPs (P value <0.05) of “CK+TMV” and “A16+TMV”.
TABLE 4 DEPs involved in the phenylpropanoid biosynthesis pathway.

Protein ID Protein names Gene names Organism Sig/Specific

A0A1S3X5R5_TOBAC phenylalanine ammonialyase LOC107761482 nicotiana tabacum up

Q70G33_TOBAC hydroxycinnamoyl CoA quinate transferase N/A nicotiana tabacum up

A0A1S3ZTJ1_TOBAC 4-coumarate–CoA ligase LOC107790326 nicotiana tabacum up

A1XEL3_TOBAC CYP73A47v2 N/A nicotiana tabacum up

A0A1S3Y048_TOBAC peroxidase (EC 1.11.17) LOC107770624 nicotiana tabacum down

Q9XIV9_TOBAC peroxidase (EC 1.11.17) LOC107825099 nicotiana tabacum down

A0A1S4CAV2_TOBAC peroxidase (EC 1.11.17) LOC107817021 nicotiana tabacum down
Frontiers in Plant Science
 08
 f
rontiersin.org

https://doi.org/10.3389/fpls.2022.1086057
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1086057
barrier that prevents viruses from invading cells. On the other

hand, the produced phenolic metabolites can further synthesize

phytoalexin, inhibit viruses, and comprehensively regulate the

disease resistance and defense capabilities of plants (Mauch-

Man i and S l u s a r enko , 1 996 ) . Q70G33_TOBAC ,

A0A1S3ZTJ1_TOBAC and A1XEL3_TOBAC all belong to

phenols, which indicates that these upregulated DEPs play an

important role in plants resistance. These results showed that the

phenylpropanoid biosynthesis pathway may be the main reason

for the protective mechanism of the compound A16

against TMV.

Gene Expression Analysis. To enhance the understanding of

the above proteomic conclusions, the confirmation of DEPs

expression was accomplished by a qRT-PCR method. As listed

in Table 5, the tested seven genes include A0A1S3X5R5_TOBAC,

Q70G33_TOBAC, A0A1S3ZTJ1_TOBAC, A1XEL3_ TOBAC,

A0A1S3Y048_TOBAC, Q9XIV9_TOBAC and A0A1S4CAV2_
Frontiers in Plant Science 09
TOBAC, with b-actin as the endogenous control. As shown in

Figure 7, after the tobacco plant was triggered by compound A16,

the upregulated gene A0A1S3X5R5_TOBAC was strongly

activated with a 7-fold change. The other three upregulated

genes: Q70G33_TOBAC, A0A1S3ZTJ1_TOBAC and

A1XEL3_TOBAC also changed at least 1-fold. The

downregulated genes A0A1S3Y048_TOBAC, Q9XIV9_TOBAC

and A0A1S4CAV2_TOBAC were also strongly inhibited. These

results are consistent with the proteomic results, further

confirming that compound A16 can modulate the

phenylpropanoid biosynthesis pathway and it can be used as a

promising lead compound for controlling plant viruses with

inducer function.

In summary, we synthesized novel trifluoromethyl

piperazine derivatives and evaluated their TMV and CMV

activities. The biological activities showed that some of the

compounds showed good to excellent antiviral activities on
frontiersin.org
TABLE 5 Primer sequences of qRT-PCR.

Protein ID reverse Forward primer Reverse primer

A0A1S3X5R5_TOBAC ATGCTCTCCGAACATCTCCACAATG AGTTGCCACCATGTAACGCCTTG

Q70G33_TOBAC CACTGATGGTAGGTCTAGGCTTTGC TTGCCATAGGTGTGCCTGTGAAC

A0A1S3ZTJ1_TOBAC CAGAGCGGTTCAAGAGCAGGTTC AGGCGACCAGCAGATCCATACC

A1XEL3_TOBAC GGAAGAAACCCGAAGAGTTCAGACC GCTCCTCCTACCAACGCCAAAC

A0A1S3Y048_TOBAC CCATTGCTGCTAGGGACTCTGTTG GACTGAGGACGACTGTGGTGTTG

Q9XIV9_TOBAC GGGACAACAATTTGGCACCACTTG TCACAATCGAATCGGCAGATCCAC

A0A1S4CAV2_TOBAC TTGCTGCTAGAGAAGGCGTTGTG TTGGTGCTGGGATTTGGGTGTTG

b-actin AGGGTTTGCTGGAGATGATG CGGGTTAAGAGGTGCTTCAG
FIGURE 7

Gene expression analysis of the related genes of the phenylpropanoid biosynthesis by qRT-PCR. (b-actin gene served as the internal control).
Vertical bars refer to mean ± SD. ****", "***" and "*" represent significance at the 0.0001, 0.001 and 0.05 level, respectively.
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TMV and CMV. Particularly, the protective activity of A16 was

significantly higher than that of NNM, which could enhance the

defense enzymes activities of SOD, PPO, and PAL. Label-free

quantitative proteome bioinformatics and the qRT-PCR

confirmation studies showed that the phenylpropanoid

biosynthesis pathway was induced by compound A16 against

TMV. Our findings suggested that compound A16 is a

promising new lead compound for antiviral molecule. Further

modifications and derivations are under way in our laboratory.
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