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‘hard-end’ fruit
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The hard-end is a disorder of pear fruit, however, the mechanisms underlying

its development remain unknown. In this study, we found that the hard-end

fruit contained a higher transcript abundance level of ethylene-response factor

1b-like (PpERF1b-like) and released more ethylene compared to normal pear.

In the ethephon treated normal fruit, flesh tissues accumulated more lignin

together with elevated expression of PpERF1b-like. Overexpressing PpERF1b-

like transiently in fruit and stably in callus increased lignin accumulation and the

expression of lignin biosynthesis genes; the opposite results were observed in

fruit showing repressed expression of PpERF1b-like. These results confirmed

the role of PpERF1b-like in promoting hard-end formation through promoting

lignin synthesis. This study provided valuable information for further clarifying

the regulation of hard-end formation in pear.
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1 Introduction

Hard-end fruit is a physiological disorder affecting the marketable quality of pear

(Pyrus pyrifolia) (Raese, 1993). In recent years, it has been occurring very frequently on

pear ‘Whangkeumbae’ (P. pyrifolia). The hard-end fruits have protruding calyx with

copper-green tough apex (Raese and Drake, 2006). Lu et al. (2015) reported that the

hard-end pears contain higher lignin content and more stony cells compared to normal

pears, especially a large amount of lignin is deposited in the peel tissue. Lignin deposition

on cell wall is critical for plant growth and development (Dixon et al., 2001; Rogers and

Campbell, 2004). The secondary cell wall of stony cell is mainly composed of lignin and

cellulose (Zhang et al., 2021), and the biosynthesis and deposition of lignin and cellulose

in pear flesh are closely related to the generation of stony cells (Cai et al., 2010; Brahem

et al., 2017).
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The development of hard-end fruit is usually accompanied

by lignification (Feng et al., 2021), but the correlation between

the two processes remains to be clarified. Ethylene plays a

regulatory role in many processes during plant growth and

development (Abeles et al., 1992). Studies have shown that

ethylene promotes lignification in bamboo shoot (Luo et al.,

2021), mung bean (Huang et al., 2013), and loquat (Shan et al.,

2008). Ethylene-response factor (ERF) belongs to the AP2/ERF

(APETALA2/Ethylene-Responsive Factor) transcription factor

(TF) superfamily, it plays some roles in providing resistance to

biotic and abiotic stresses (Xu et al., 2011). In ethylene treated

banana fruit, the expression levels of MaERF9 and MaERF11

were increased, which concurs with the involvement of AP2/ERF

TFs in ethylene biosynthesis and signal transduction

(Xiao et al., 2013).

The first ERF TF was isolated from tobacco (Nicotiana

tabacum) as a critical gene in ethylene signal transduction

pathway of plants (Ohme-Takagi and Shinshi, 1995; Bleecker and

Kende, 2000). In recent years, roles of ERF TFs in regulating

responses to stress-induced ethylene accumulation have been

studied on tomato (Liu et al., 2014; Nakano et al., 2014), kiwifruit

(Yin et al., 2012), grape (Licausi et al., 2010), apple (Wang et al.,

2007), sweet orange (Xie et al., 2014), and melon (Ma et al., 2015).

Additionally, the ERF TFs can also affect the lignification process of

plants by influencing lignin biosynthesis. For instance, the EjAP2-1

which was isolated from loquat (Eriobotrya japonica), was reported

to inhibit the activity of promoter for the lignin biosynthesis gene

Ej4CL1, and enhance the activation effect of EjMYB2 on lignin

biosynthesis by interacting with EJMYB1/2, thus negatively

regulating the lignification of loquat fruit (Zeng et al., 2015). Guo

et al. (2016) also reported that in island cotton, GbERF1-like up-

regulates the expression of genes in lignin biosynthesis pathway,

and the increased lignin accumulation helps to improve the

resistance of cotton to verticillium wilt.

In our studies, the expression of PpERF1b-like TF was found to

be significantly up-regulated in hard-end pears by using RNA-Seq

analysis (Li et al., 2019) and RT-qPCR verification. The function and

mechanism of PpERF1b-like TF were investigated using transient

overexpression of the gene in normal fruit and transgenic calli

derived from flesh tissues of pear ‘Whangkeumbae’. The results

presented here will not only help understanding the hand-end

formation in pear fruit, but also the process of lignin biosynthesis

and its interaction with ethylene release.
2 Materials and methods

2.1 Plant material

Ten-year-old pear ‘Whangkeumbae’ trees were grown in two

orchards located in Laiyang City, Shandong Province, China.

Normal fruit were picked in the orchard with low incidence rate

(Orchard 1), and the hard-end fruit in the orchard with high
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incidence rate (Orchard 2). Pears were harvested at 90 and 120

days after anthesis, respectively. Samples were transported to the

laboratory within two hours after picking from the trees. Normal

fruit of uniform size with no defects stored at 20 °C were used in

fruit injection experiments for studying transient overexpression

of genes. After removal of seeds or peel, fruit flesh tissues were

cut into small pieces (approximately 1 cm3), immediately frozen

in liquid nitrogen, and stored at -80 °C until analysis.
2.2 Ethylene production analysis

The ethylene production rate was measured using fruit

harvested at 90 and 120 days after anthesis by using a GC-

2010 Plus Gas Chromatograph (Shimadzu, Kyoto, Japan). The

hard-end and normal fruit with no visible defects (including

damages from wound, disease or insects) were selected and then

placed in a closed container for 1 hour. Gas was extracted, and

ethylene content was determined according to Yang et al. (2015).

Five fruits per sampling point and 3 biological replicates per

treatment group were used in ethylene assay.
2.3 Quantitative real-time
PCR validations

The total RNA was extracted from flesh tissues of pear

‘Whangkeumbae’ using RNA Plant Reagent (TianGen,

Shanghai, China) according to the manufacturer’s instructions.

The first strand cDNA was synthesized with 1 mg RNA using the

HiScript II Q RT SuperMix for qPCR (+ gDNA wiper) (Vazyme,

Nanjing, China). The RT-qPCR was performed on a Light

Cycler® 480 instrument (Roche, Basel, Switzerland), using a

program comprising an initial denaturation at 94 °C for 5 min,

followed by 42 cycles of 94 °C for 15 s and 60 °C for 1 min. A

negative control without template cDNA for each primer pair was

included in each run. For each group of samples, three biological

replicates and three technical replicates/sample were included. A

pear Actin gene (LOC125473976, NCBI database) was used as the

house keeping gene (internal reference) to normalize the relative

gene transcript abundance levels. The relative gene expression

was calculated using the 2−DDCT method (Livak and Schmittgen,

2000). The primers used for the RT-qPCR analysis were designed

using NCBI Primer designing tool (https://www.ncbi.nlm.nih.

gov/tools/primer-blast/) and are listed in Table 1.
2.4 Cloning of PpERF1b-like

Isolation of total RNA and synthesis of cDNA followed the

same protocol used in RT-qPCR analysis. The PCR reaction was

conducted using a program comprising of initial denaturation at

94°C for 5 minutes followed by 35 cycles of 94°C for 30 seconds,
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58°C for 30 seconds and 72°C for 1 minute; with a final extension

at 72°C for 10 minutes. The PCR primers used to clone PpERF1b-

like are listed in Table 2. The open reading frame (ORF) of

PpERF1b-like was amplified using the Phanta Max Super-Fidelity

DNA Polymerase (Vazyme, Nanjing, China). The PCR products

were cloned onto pMD-19-T vector (Takara, Dalian, China).
2.5 Vector construction and transient
overexpression of PpERF1b-like in
pear fruit

The full-length cDNA and the antisense fragment of

PpERF1b-like that were isolated by digestion with restriction

enzymes Xba I and Sma I were ligated onto the expression

vector, Super1300, driven a 35S promoter. The fusion vectors,

Super1300-sense-PpERF1b-like and Super1300-antisense-

PpERF1b-like were introduced into Agrobacterium tumefaciens

GV3101 using the freeze-thaw method (Weigel and Glazebrook,

2006). The transient overexpression assay of sense-PpERF1b-

l ike , ant isense-PpERF1b- l ike and empty vector in

‘Whangkeumbae’ normal pear fruit was conducted according

to a method described previously (Li et al., 2019). The primers

used to construct the expression vectors are listed in Table 2.
2.6 Subcellular localization of PpERF1b-
like transcription factor

Subcellular localization of the PpERF1b-like TF in onion

(Allium cepa) cells was conducted using A. tumefaciens
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harboring the pSuper1300-PpERF1b-like following the

method of Sun et al. (2007) with some modifications. Onion

scales were incubated at 28 °C for 24 h in dark. For infection, the

onion peels were submerged in A. tumefaciens suspension

(OD600 = 0.6-0.8) and supplemented with acetosyringone

(20 mg/L) for 15-20 min. The onion peels were then

transferred to 1/2 MS solid medium supplemented with

acetosyringone (20 mg/L) followed by incubation at 28 °C for

24 hours in dark. The infected cells producing green fluorescent

protein (GFP) were observed and imaged using EVOS™ FL

Auto 2 Imaging System (EVOS FL AUTO 2.0, Thermo Fisher,

Waltham, America). Positive signals indicate the subcellular

localization of PpERF1b-like TF.
2.7 Ethephon treatment

During harvest season of pear ‘Whangkeumbae’, normal and

hard-end fruit were treated with ethephon, and water was used

as non-treated control. One half of the fruit was soaked in 400

mg/L ethephon solution and the other half in water, each for 5

minutes. The treated fruits were stored for 3 days before stained

with phloroglucinol.
2.8 Weisner staining, microscopy and
lignin content determination

The Wiesner reaction assay using phloroglucinol-HCl

staining was conducted using tissue sections in order to

visualize lignified structures (Blanco-Portales et al., 2002).
TABLE 2 Primers used for PCR amplifications of PpERF1b-like gene from pear genomic DNA.

Gene name Primer name Primer sequence

PpERF1b-like PpERF1b-like-F 5’- ATGCATTGCCACAAACACAC -3’

PpERF1b-like-R 5’- TCACCAATTAGGAGTGGCATTAG -3’
TABLE 1 Primers used for RT-qPCR reactions.

Gene name Primer name Primer sequence

PpERF1b-like PpERF1b-like-F 5’-GACTCCACTAGACATGGCATAAG-3’

PpERF1b-like-R 5’-CCTCACATCTCTGTCCACTTTAC-3’

PpActin PpActin-F 5’-CCCAGAAGTGCTCTTCCAAC-3’

PpActin-R 5’-TTGATCTTCATGCTGCTTGG-3’

PpCAD1 PpCAD1-F 5’-GATGTCACAGACCCAAAGGCA-3’

PpCAD1-R 5’-AGGCGTTCGAGGTTTTCCAT-3’

PpCAD2 PpCAD2-F 5’-TTTGGTTGAGAGAGTTGCCCAC-3’

PpCAD2-R 5’-ATTCGACACCCAAGCTCTTCG-3’

Pp4CL3 Pp4CL3-F 5’-ACTCCTACTGCCTCCACAAC -3’

Pp4CL3-R 5’-GCTGCCTCATCCTTCATTGG -3’
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Sections of 2 mm in thickness were cut along the equator of the

fruit, and stained with Wiesner reagent for 10 min. Lignified

tissues appeared pink or fuchsia in color. Images were captured

using a camera (ZXUS 230 HS; Canon, Tokyo, Japan). After

staining in the Wiesner reagent for 5 minutes, the thin-sections

were observed under a Leica Fluorescence Microscope and

imaged using the CCD image acquisition system on the same

microscope. The lignin content was measured as previously

described by Dyckmans et al. (2002). The stone cell area was

counted by Adobe Photoshop 2020.
2.9 Transformation of pear calli

The pear calli were induced from the flesh of ‘Nanshui’ (P.

pyrifolia) of fruitlets in our laboratory, and the pear calli were

cultured following the method of Wang et al. (2021). The calli

were transformed with pSuper1300-PpERF1b-like-GFP and

pSuper1300-GFP as the empty vector control, using the

Agrobacterium-mediated genetic transformation method

described by Wang et al. (2021) with some modifications. Pear

calli were inoculated with A. tumefaciens GV3101 harboring the

vector constructs after incubation for 20-30 min at 24 °C. After

co-culture on plates containing acetosyringone (100 µg/mL) in

dark for 3 days, calli were sub-cultured onto selection plates

containing cephalosporin (300 mg/L) and hygromycin (10 mg/

L) for 25 days. Newly-formed calli were subcultured to fresh

selection media monthly until tissues with no sign of brown and

died cells were obtained. Tissue culture was conducted at 24 °C

in a growth chamber.
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2.10 Statistical analyses

Data were analyzed using Microsoft Excel software. Significant

differences between sample groups were calculated using

GraphPad Prism 8 and data were graphed in the same program.
3 Result

3.1 Ethylene production rate of pear
‘Whangkeumbae’ before harvest

Ethylene production rate was measured for normal and

hard-end fruit with obvious phenotype at 90 and 120 days

after anthesis (Figure 1A), respectively. The ethylene

production rate of hard-end fruit was higher than the normal

fruit on both sampling dates (Figure 1B). The results showed

that ethylene production was positively correlated with the

occurrence of hard-end pear fruit.
3.2 Screening of PpERF1b-like

PpERF1b-like was identified as one of the different expressed

genes (DEGs) between hard-end and normal fruit harvested on 90

and 120 days after anthesis. The raw RNA seq sequences were

deposited in NCBI database (NCBI SRA Accession: SRP063385).

In this study, the transcript level of PpERF1b-like in pear

‘Whangkeumbae’ was higher in hard-end fruit harvested on

the 90 days after anthesis (Figure 2A). Moreover, results from
A B

FIGURE 1

Ethylene production rate of ‘Whangkeumbae’ at 90 and 120 days after anthesis. (A) Phenotypes of normal and hard-end fruit of pear
‘Whangkeumbae’ at 90 and 120 days after anthesis. Scale bars = 150mm. (B) Ethylene production rate of normal and hard-end fruit at 90 and
120 days after anthesis. Data are given as mean ± SD (n = 4). The asterisk represents a significant difference (***p <0.001; Student’s t-test).
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RT-qPCR analysis showed that the relative transcript abundance

level of PpERF1b-like in hard-end fruit was significantly higher

than that in normal fruit from the two harvests (Figure 2B). These

data indicate a positive correlation between the expression of

PpERF1b-like and the occurrence of hard-end fruit. A

phylogenetic tree was constructed using the amino acid

sequence of PpERF1b-like and other ERFs from a variety of

plant species. The results showed that PpERF1b-like protein has

the closest relationship with PbrERF1b protein from P.

bretschneideri Rehd (Figure 2C). The analysis for subcellular
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localization confirmed that the PpERF1b-like-GFP fusion protein

was localized in the nuclei of onion epidermal cells, indicating that

the PpERF1b-like is a nucleus protein (Figure 2D).
3.3 Effect of ethephon treatment on
lignification of pears

The effect of ethephon treatment on fruit lignification was

further analyzed using normal and hard-end fruits treated with
D

A B

C

FIGURE 2

Transcriptome sequencing and subcellular localization of PpERF1b-like. (A) Screening of PpERF1b-like by transcriptome sequencing. (B) The
relative expression level of PpERF1b-like in normal and hard-end fruit of pear ‘Whangkeumbae’ at 90 and 120 days after anthesis. Data are given
as mean ± SD (n = 4). The asterisk represents a significant difference (***p <0.001; Student’s t-test). (C) Phylogenetic analysis of PpERF1b-like.
PpERF1b-like protein sequences (indicated by red figure) were aligned with ERFs from P. bretschneideri Rehd (Pbr), Malus sylvestris (Ms), M.
domestica (Md), P. dulcis (Pd), P. avium (Pa), P. mume (Pm) and Rosa chinensis (Rc). The phylogenetic tree was constructed using the neighbor-
joining method with 1000 bootstrap replications in MEGA 11 software. Sequences were obtained from the National Center for Biotechnology
Information nucleotide database (http://www.ncbi.nlm.nih.gov/nucleotide/). Bootstrap values are indicated above the branches. (D) Subcellular
localization of PpERF1b-like-green fluorescent protein (GFP) fusion protein was determined by infecting onion epidermal cells and imaged
under a EVOS FL Auto 2 imaging system. Scale bars = 125mm.
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400 mg/L ethephon. Based on the intensity of lignin staining, both

normal and hard-end fruit accumulated more lignin after

ethephon treatments compared to the control group (Figure 3A).

The lignin content of ethephon treated fruits was significantly

higher than that of the water-treated control samples (Figure 3B).

The relative expression level of PpERF1b-like showed the same

pattern with higher abundance of transcripts in ethephon-treated

compared to the non-treated groups (Figure 3C). These results

indicate that accumulation of lignin and the expression of

PpERF1b-like were enhanced by ethephon treatment of pears.
3.4 Transient expression of PpERF1b-like
in pears

On the fruit, the sites inoculated with the PpERF1b-like

overexpression vector appeared to be more lignified

(Figure 4A). The expression of PpERF1b-like was analyzed in

fruit tissues surrounding the injection site. The relative

expression level of PpERF1b-like in fruit injected with the

sense-PpERF1b-like vector was significantly higher than the

control (inoculated with empty vector), whereas it was

significantly repressed by inoculation of the antisense-

PpERF1b-like vector (Figure 4B).
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3.5 Transient expression of PpERF1b-like
promoted lignin accumulation and the
expression of lignin-related genes in
normal fruit

In order to clarify the function of PpERF1b-like in regulating

lignin biosynthesis in pear, the thin-sections of fruit inoculated

with the gene constructs were stained in Wiesner reagent. As

shown in Figure 5A, the lignin stain of fruit with transient

overexpression of PpERF1b-like gene was much deeper than the

transient overexpression assay of antisense-PpERF1b-like and

empty vector. The frozen tissue section prepared using the

inoculated fruit also showed that the number of stony cells in

the injection site of PpERF1b-like gene increased significantly,

whereas the injection site with antisense-PpERF1b-like

contained a smaller number of stony cells (Figure 5A).

Furthermore, the fruit injection site with PpERF1b-like gene

has the largest area occupied with stony cells (Figure 5B). These

results demonstrated that PpERF1b-like has a positive regulatory

effect on fruit lignification of ‘Whangkeumbae’ pear. The

expression of lignin biosynthesis related genes was analyzed in

tissues collected around the injection site. As shown in

Figures 5C–F, the relative expression levels of four genes

related to lignin biosynthesis, Pp4CL3 (Figure 5C), PpCAD1
A B

C

FIGURE 3

Ethephon promoted lignin accumulation and induced the expression of PpERF1b-like. (A) Half of the fruit was treated with water and the other
half with ethephon. Scale bars = 100mm. (B), The content of lignin. (C) The relative expression level of PpERF1b-like. Data are given as mean ±
SD (n = 3). The asterisk represents a significant difference (*p <0.05; **p <0.01) using Student’s t-test.
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(Figure 5D), PpCAD2 (Figure 5E) and PpCCR (Figure 5F), were

significantly higher in fruit showing transient overexpression of

PpERF1b-like, compared to the control group. Conversely, the

expression of these genes was repressed in fruit with

overexpression of antisense-PpERF1b-like. When combining all

the data from lignin staining and changes in the expression of

genes affecting lignin biosynthesis, it can be concluded that the

PpERF1b-like gene has a positive regulatory function during

lignin synthesis which affects the occurrence of hard-end fruit.
3.6 Agrobacterium tumefaciens mediated
genetic transformation of calli derived
from pear flesh tissues

Transgenic calli with stable overexpression of PpERF1b-

like were stained with Wiesner reagents (Figures 6A, B). Calli

infected with PpERF1b-like turned red which corresponds to

high lignin content, whereas no such changes were shown in

calli inoculated with the control (empty vector). The relative

expression level of PpERF1b-l ike in PpERF1b-l ike-

overexpressing pear calli was significantly higher than the

control transformed with the empty vector (Figure 6C). The

relative expression levels of lignin biosynthesis related genes,

Pp4CL3 (Figure 6D), PpCAD1 (Figure 6E), PpCAD2

(Figure 6F) and PpCCR (Figure 6G), were also significantly

higher in PpERF1b-like-overexpressing calli than those from

the control group (Figures 6D–G). These results further

validated the role of PpERF1b-like TF in enhancing

lignin biosynthesis.
4 Discussion

APETALA2/Ethylene Response Factor (AP2/ERF) TFs

comprise one of the largest TF families in plants, and they are
Frontiers in Plant Science 07
involved in a variety of signal transduction and growth

regulation (Gu et al., 2017). The ERF subfamily is primarily

located downstream of ethylene signal transduction and is

involved in many biochemical pathways, such as metabolic

regulation (Yu et al., 2012), responses to biotic and abiotic

stress factors (Yao et al., 2017), hormone signal transduction

pathways in plants (Müller and Munné-Bosch, 2015) and plant

development (Banno et al., 2001). This study provided

experimental evidences for the function of an ethylene

response factor , PpERF1b- l ike , i solated from pear

‘Whangkeumbae’. In fruit harvested at 90 and 120 days after

anthesis, the ethylene production rate and the relative expression

level of PpERF1b-like in hard-end fruit were both higher than

those in normal fruit. It can thus postulate that the expression

level of PpERF1b-like is positively related with the physiological

disorder in pear.

Lignin is a group of aromatic polymers formed by oxidative

coupling of 4-hydroxyphenylpropane through phenylpropane

metabolic pathway (Boerjan et al., 2003; Ralph et al., 2004).

When plants are challenged with stress conditions, lignin

deposition on the secondary cell wall leads to wall thickening

which increases the hardness of fruit (Tao et al., 2009; Vanholme

et al., 2010). This study shows that ethephon treatment

promoted the accumulation of lignin, and the number of stone

cells in the treated fruits was also increased as well as the

expression of ethylene response factor PpERF1b-like. In a

study using ethephon treated mung bean roots, it induced

expression of peroxidase (POD) which is a key gene catalyzing

lignin formation, and more extensive lignification of stems

(Huang et al., 2013). As a response factor of ethylene,

PpERF1b-like may also participate in the regulation of lignin

biosynthesis similarly, and eventually affects the occurrence of

hard-end fruit in pear.

Based on results from lignin staining, pear flesh tissues

became more lignified when they were injected with the sense-

PpERF1b-like-overexpressing vector, and concurrently, the
A B

FIGURE 4

The relative expression level of PpERF1b-like in pear fruit surrounding the site of infiltration.in transient overexpression fruit. (A) Phenotype of
transient overexpression of fruit. Scale bars = 100mm. (B) The relative expression level of PpERF1b-like in pear fruit surrounding the site of
infiltration. Data are given as mean ± SD (n = 4). a-c, the different letters indicate significant differences between groups (p <0.05; Duncan’s
multiple-range test). Ev: Empty vector, Sense: Sense-PpERF1b-like, Antisense: Antisense-PpERF1b-like.
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number of stony cells was also increased, compared to the tissues

injected with empty vector. However, there was no significant

change in the degree of lignification in tissues injected with

antisense-PpERF1b-like in spite of fewer stony cells. In Wiesner

staining, pear calli infected with PpERF1b-like turned red, but

this reaction was not obvious in pear calli infected with empty

vector. Our results are consistent with a previous study on pear

‘Whangkeumbae’ where lignin staining, lignin content and the

number of stony cells in hard-end fruit were all significantly

higher than normal fruit (Lu et al., 2015). Taken together, these

results indicate that PpERF1b-like should positively regulate the

synthesis of lignin.

According to a study on Isatis indigotica, the AP2/ERF TFs

positively regulate lignin biosynthesis by activating salicylic acid

signal transduction and lignin pathway genes (Ma et al., 2017).

Lasserre et al. (2008) also found that the expression level of

AtERF38 gene was positively correlated with the thickening of

secondary wall in seeds and this process is intertwined with
Frontiers in Plant Science 08
lignin biosynthesis. In this study, overexpressing sense-

PpERF1b-like transiently in pear ‘Whangkeumbae’ fruit or

stably in calli both led to an elevated levels of expression of

PpERF1b-like and lignin biosynthesis related genes. On the

contrary, expression of these genes were repressed in the fruit

injected with antisense-PpERF1b-like. Future studies will

investigate if the PpERF1b-like gene directly or indirectly

regulate lignin biosynthesis genes, as well as its connection to

the formation of hard-end pears.
5 Conclusion

This study reports that the relative expression level of

PpERF1b-like was positively correlated with higher lignin

content in hard-end pears, indicating that PpERF1b-like is a

key gene affecting fruit lignification. Results from transient

expression of PpERF1b-like in normal fruit of pear
D

A B

E F

C

FIGURE 5

Transient overexpression of sense-PpERF1b-like promotes lignin synthesis and the relative expression levels of lignin synthesis related genes in
pear fruit surrounding the site of infiltration. (A) Lignin staining and frozen section staining in the injection site of transient overexpression fruit.
Ev: Empty vector, Sense: sense-PpERF1b-like, Antisense: antisense-PpERF1b-like. Scale bars = 100mm. (B) The area of stone cells in the injection
site. Data are given as mean ± SD (n=4). Bars with different letters indicate significant differences between groups (p <0.05; Student’s t-test).
(C–F) The relative expression levels of lignin synthesis related genes (Pp4CL3, PpCAD1, PpCAD2, PpCCR) in transient overexpression fruit. Data
are given as mean ± SD (n=4). a-c, the different letters indicate significant differences between groups (p <0.05; Duncan’s multiple-range test).
Ev: Empty vector, Sense: sense-PpERF1b-like, Antisense: antisense-PpERF1b-like.
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‘Whangkeumbae’ and in callus tissue provided experimental

evidences supporting the role of PpERF1b-like in regulating

the expression of lignin-related genes, and affecting the

occurrence of fruit calyx end hardening.
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