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from the hazardous effects of
Cu(OH)2 nanopesticides
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University of Medicine, Shiyan, China
Copper-based nanopesticides are released into the environment during foliar

spray application, and they could, on their own or in combination with

microplastics (MPs), pose threats to environmental safety and human health.

In this study, Cu(OH)2 nanowires greatly decreased the vigor of lettuce seeds

(p< 0.01) and the root length of lettuce seedlings (p< 0.01) and significantly

altered the lettuce antioxidant defence system and MDA content (p< 0.05).

Released Cu2+ played a critical role in the toxicity mechanism of Cu(OH)2
nanowires in lettuce seedlings, as evidenced by the substantial accumulation of

Cu in the seedling roots (p< 0.01) rather than in the leaves. Polystyrene (PS) MPs

(1 mg/L) stimulated lettuce seedling growth, as shown by the (highly) significant

increase in root and leaf length and in the seed vigor index (p< 0.01 or 0.05).

Notably, PS MPs (1 mg/L) neutralized the hazardous effects of 1 mg/L Cu(OH)2
nanowire treatment on lettuce growth, as reflected by the vitality and root

length of the seedlings returning to normal levels. The PS MPs (1 mg/L)

absorbed on middle root surfaces and strongly hindered Cu accumulation in

lettuce roots, which was the predominant mechanism by which PS MPs

suppressed the hazardous effects of the Cu(OH)2 nanowires. This study

strengthens the understanding of the toxicity and toxicity mechanisms of Cu

(OH)2 nanowires with or without PS MPs in the environment.
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1 Introduction
The nanopesticide copper(II) hydroxide (Cu(OH)2), as a

typical engineered nanomaterial, is widely applied in

agriculture for the purpose of plant growth due to its excellent

antimicrobial and antifungal properties (Li et al., 2019; Bindra

and Singh, 2021; Konappa et al., 2021). Inevitably, a large amount

of Cu(OH)2 nanopesticides will be released into the environment

when they are sprayed on plants (Conway, 2015), and thus, Cu

(OH)2 nanopesticides could pose serious threats to

environmental safety and human health (Nair and Chung,

2015). Correspondingly, the environmental fate, transport,

bioavailability and toxicity of Cu(OH)2 nanopesticides are now

being extensively investigated to elucidate their potentially

hazardous effects on different plant species (Zuverza-Mena

et al., 2015; Du et al., 2018). For example, studies have shown

that Cu(OH)2 nanopesticides can induce oxidative stress, defence

responses and enhanced Cu intake in lettuce (Lactuca sativa) and

basil (Ocimum basilicum); can cause a reduction in antioxidant

and defence-associated metabolites in spinach (Spinacia

oleracea); and can bring about metabolic reprogramming in

both cucumber (Cucumis sativus) and corn (Zea mays) (Zhao

et al., 2016a; Zhao et al., 2016b; Zhao et al., 2017c; Tan et al.,

2018). In addition to exhibiting effects on plants, Cu(OH)2
nanopesticides have been found to have toxic effects on other

organisms, such as Leptocheirus plumulosus, zebrafish, and

microbes, as well as on human hepatocellular carcinoma cells

(Aksakal and Sisman, 2020; Vignardi et al., 2020; Zhang et al.,

2020). Notably, the environmental and human health risks due to

contamination of Cu(OH)2 nanopesticides in water and residues

on food products are still poorly understood. Moreover, MPs

have been detected extensively in soil environments, organisms,

and even humans (de Souza Machado et al., 2018; Hermsen et al.,

2018; Ragusa et al., 2021; Song et al., 2021; Leslie et al., 2022).

However, the adverse effects of coexisting Cu(OH)2
nanopesticides and microplastics (MPs) on plants have not

been formally investigated, although the adverse effects of Cu2+

in concert with MPs on plant seedling growth have attracted

attention recently (Zong et al., 2021; Zhou et al., 2022).

Interestingly, MPs have shown two different effects on plant

growth: inhibition and stimulation. From the inhibition

perspective, MPs showed an adverse effect on seedling growth

and the antioxidant system of wheat (Triticum aestivum) (Liu

et al., 2021), on growth, photosynthesis and essential elements in

Cucurbita pepo (Colzi et al., 2022), and on rice seedlings (Dong

et al., 2020). From the stimulation perspective, MPs can stimulate

plant growth, as expressed by root length increases (Lian et al.,

2020; Lozano and Rillig, 2020; Liu et al., 2022; Zeb et al., 2022).

This plant growth stimulation could be explained by the MPs

increasing carbon and nitrogen levels in the plants (Lian et al.,

2020; Liu et al., 2022) and improving the aeration and penetration

of roots (Lozano and Rillig, 2020). Due to concerted efforts by
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been determined, although high concentrations of MPs were

applied in only some of these studies. Nevertheless, the effects of

MPs on plant growth at environmental concentrations (e.g., 1 mg/

L) have not been investigated. Given that both MPs and other

contaminants can coexist in the environment for a long time, MPs

can serve as vectors for other contaminants, such as Cu (Zong

et al., 2021; Zhou et al., 2022), Cd (Zong et al., 2021; Zeb et al.,

2022), Ag+ (Sun et al., 2020), As(III) (Dong et al., 2020),

phenanthrene (Liu et al., 2021), oxytetracycline (Bao et al.,

2021), and nanomaterials (Li et al., 2020; Yang et al., 2021;

Tong et al., 2022a; Tong et al., 2022b), and can modify the

toxicity of these environmental contaminants to biota (Fries

et al., 2013; Pacheco et al., 2018; Li et al., 2020; Yang et al.,

2021; Zhang et al., 2021; Tong et al., 2022a; Tong et al., 2022b). In

principle, MPs likely coexist with Cu(OH)2 nanopesticides in the

environment and induce coupled effects on plant growth, due to

they are share the entry path into environment and share the

major sink a long time in environment (Rajput et al., 2020; Wang

et al., 2021). Accordingly, there are synergistic or antagonistic

effects of Cu(OH)2 nanopesticides and MPs on plant growth,

which are consistent with the inhibitory or stimulatory effects of

MPs on plant growth. Nevertheless, it is still unclear whether

environmental concentrations of polystyrene (PS) MPs drive the

bioavailability and toxicity of Cu(OH)2 nanopesticides in the

context of plant seed germination or seedling growth.

To bridge these gaps, Lettuce (Lactuca sativa), which is a

model plant and is widely applied in toxicity assays (Zhao et al.,

2016a; Zhao et al., 2016b; Gao et al., 2021; Zeb et al., 2022), was

applied in this study to explore the physiological and biological

effects of Cu(OH)2 nanopesticides and/or MPs on plants.

Therefore, we hypothesized that Cu(OH)2 nanowires could

induce hazardous effects on L. sativa seed germination and

seedling growth after Cu(OH)2 nanopesticides enter the

environment. Furthermore, we proposed that PS MPs that

have been widely detected in realistic environments (Zhang

et al., 2018; Ding et al., 2021) possibly stimulate lettuce growth

at an environmental concentration (1 mg/L) and thus protect

lettuce from the toxicity of Cu(OH)2 nanopesticides.

Accordingly, this experiment aimed to (i) determine the

hazardous effects of Cu(OH)2 nanowires on seed germination

and seedling growth of lettuce and carry out a biological analysis,

and (ii) explore the effects of PS MPs (1 mg/L) on stimulating

lettuce seedling growth and suppressing Cu(OH)2 nanowire

toxicity to lettuce.
2 Materials and methods

2.1 Materials

PS MPs (0.1 μm) and fluorescent PS MPs were purchased from

Tianjin Baseline Chromtech Research Centre, China. Cu(OH)2
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nanowires (Product No. CuOH-NW-40) were obtained from

Beijing Dk Nano Technology Co., Ltd. Scanning electron

microscopy (SEM, GeminiSEM 500, Zeiss) was employed to

determine the sizes and morphologies of the PS MPs and Cu

(OH)2 nanowires. The hydrodynamic diameters and zeta potentials

of the PS MPs and/or Cu(OH)2 nanowires were determined with a

Zetasizer Nano instrument (1000S,Malvern Instruments, Ltd., UK).

Lettuce (Lactuca sativa) seeds were purchased from Nanyang Seed

Inc. (Henan, China). Peroxidase (POD), superoxide dismutase

(SOD), malondialdehyde (MDA) and catalase (CAT) activity

assay kits were purchased from Nanjing Jiancheng Bioengineering

Institute, Nanjing, China.
2.2 Lettuce culture and Cu and/or PS
MPs exposure

The lettuce seeds were surface disinfected in hydrogen

peroxide (3%, v/v) for 30 min with continuous stirring, rinsed

3 times with deionized water (DI water), and immersed in DI

water for 24 h. The seeds were randomly divided into eight

different groups (100 seeds), including a control group (CK), a 1

mg/L Cu(OH)2 nanowire group, a 10 mg/L Cu(OH)2 nanowire

group, a 10 mg/L Cu2+ group, a PS (1 mg/L) group, a PS (1 mg/

L) + 1 mg/L Cu(OH)2 nanowire group, a PS (1 mg/L) + 10 mg/L

Cu(OH)2 nanowire group, and a PS (1 mg/L) + 10 mg/L Cu2+

group. The 10 mg of Cu(OH)2 nanowire were added into a 100

glass measuring flask and sonicated on an ultrasonic water bath

(0.5 min) (ready-to-use). Certain of Cu(OH)2 nanowire/Cu2

+(CuSO4) were added to certain of 100 mg/L of PS MPs

solution or DI water to obtain the above different exposure

groups. Four replicates for these groups were performed, and

100 seeds were placed in each glass Petri dish (⌀ 90 mm).

Depending on the treatment group to which the seeds were

randomly assigned, the seeds were incubated with 7 mL of the

assigned Cu(OH)2 nanowires or Cu2+ with or without PS

solution and were kept in the dark at 25°C for seed germination.
2.3 Germination, lettuce seedling,
biomass, oxidative stress and
chlorophyll measurements

The germination rate was observed and recorded for three

days. Accordingly, the germination rate, germination index,

vigor index and germination energy of the seeds were

calculated by equations (1) to (4). The biomass of the lettuce

seedlings was measured, as well as the root length and shoot

height, and the fresh weights of shoots and roots were recorded.

Germination rate  GR,%ð Þ  ¼  
Seed germination number

Total number of tested seeds
 x 100

(1)
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Germination index  GIð Þ  ¼  o​ ð Gt

Dt
Þ (2)

Vigor index ðVIÞ  ¼  GI x fresh weight of seedlin 3)

Germination energy  GE,%ð Þ  ¼  
Seed germination number in 3 days

Total number of tested seeds
 x;  100

(4)

Where GR and GI represent the germination rate and

germination index, respectively. Gt represents the germination

number at t days, and Dt represents the corresponding

germination time (days). VI and GE represent the vigor index

and germination energy, respectively.

Antioxidant enzyme levels, including SOD, CAT and POD

activity levels and MDA levels, were measured with commercial

assay kits obtained from Nanjing Jiancheng Bioengineering

Research Institute during the seed germination (3 d) and

seedling growth (7 d) stages. The measurement processes for

the antioxidant enzyme activities were in accordance with the

manufacturer’s instructions. Chlorophyll a (Chl a) and

chlorophyll b (Chl b) were measured at the seedling growth

stage (7 d). A specific weight (m) of freeze-dried cotyledons of

lettuce samples was ground in a mortar with quartz sand and

then extracted with 80% acetone to a specific volume (V). The

obtained supernatant was centrifuged (5000 r/min for 10 min at

4 °C), and the absorbance was measured at 663 and 645 nm with

UV−Vis spectrometry. Finally, Chl a and Chl b were calculated

according to equations (5) and (6), respectively.

Chl a ðmg=gÞ ¼  ð12:7 �   OD663  −  2:6 �   OD645Þ  �  V=m (5)

Chl b ðmg=gÞ ¼  ð22:9 �   OD645  −  4:7  �   OD663Þ 
�  V=m (6)

Where m is the specific weight of the lettuce cotyledon

sample and V is the specific volume created by adding 80%

acetone to the ground cotyledons.
2.4 Uptake of PS MPs by lettuce seeds
and seedlings

Surface-disinfected lettuce seeds were immersed in DI water for

24 h, after which 100 of these seeds were selected and exposed to 1

mg/L fluorescent PS MPs. The seeds were cultured with fluorescent

PS MPs (total volume of 7 mL) for seed germination. After 3 d of

exposure in the dark at 25°C, the lettuce seed and seedling samples

were washed three times with DI water to exclude fluorescent PS

MPs adsorbed on the root surface. Then, the uptake of fluorescent

PS MPs by the lettuce seeds and seedlings was examined using

fluorescence microscopy (Nikon SMZ1500, Japan) with a

photomicrography system (Nikon DS-Fi1c, Japan). The excitation
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wavelength of the fluorescence microscope was 488 nm, and the

emission wavelength was 518 nm.
2.5 Cu accumulation in lettuce seeds
and seedlings

Ten of lettuce seeds (at 3 d) and seedlings (at 7 d) samples were

taken and washed with EDTA-2Na (0.1 mM; pH 6.0) to exclude

extracellular Cu2+ or Cu(OH)2 on the seed and seedling surfaces.

Then, the sample tissues were washed three times with DI water and

oven-dried to constant weight for digestion (by adding 4 mL of a

mixture (1:3) of H2O2 and HNO3 and heating at 80 °C for 2 h and

then at 160°C for 4 h) and Cu accumulation quantification (by

inductively coupled plasma−mass spectrometry).
2.6 Statistical analysis

The experimental data were for four replicates were analyzed

with SigmaPlot 12.5. The data are presented as the means ±

standard deviations. These data were normally distributed and

were evaluated with a t test and/or one-way ANOVA to explore

any significant differences between treatment groups. Significant

differences are marked with asterisks (* (p< 0.05) and ** (p<

0.01), denoting statistically significant and highly statistically

significant differences, respectively).
3 Results and discussion

3.1 Characterization of Cu(OH)2
nanowires and PS MPs

The PS MPs exhibited a spherical shape with quite a smooth

surface and had an average size of ~ 100 nm (Figure 1A). They
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were stable in ultrapure water (1 mg/L) according to their

average hydrodynamic diameter of 182.46 (± 74.34) and zeta

potential of –13.33 (± 0.61) mV. The Cu(OH)2 nanowires

exhibited a typical wire shape with a nanosized diameter (40-

80 nm) and a microsized length (1-2 μm) (Figure 1B). According

to the dynamic light scattering (DLS) results, the Cu(OH)2
nanowires tended to aggregate slightly in ultrapure water (1

mg/L), based on their average hydrodynamic diameter of

1584.97 (± 674.29) nm and on their average zeta potential of –

21.58 (± 1.81) mV. Interestingly, the Cu(OH)2 nanowires (1 mg/

L) with PS MPs (1 mg/L) presented a large hydrodynamic

diameter of 2365.25 (± 856.37) nm and a low zeta potential of

–35.12 (± 5.47) mV and tended to aggregate in ultrapure water.
3.2 Effects of Cu(OH)2 nanowires and
Cu2+ on lettuce seed germination and
seedling growth

Based on the seed germination period (3 d) data, the Cu

(OH)2 nanowires and Cu
2+ stress had no significant effect on the

germination energy or the germination rate of the lettuce seeds

(p > 0.05; Figures 2A, B). It is possible that the seed husks

protected the lettuce seeds from the Cu(OH)2 nanowires and

Cu2+ stress during seed germination. Indeed, Cu ions hardly

accumulated during the 3 d seed germination period (p > 0.05;

Figure 2C). Nevertheless, compared with the radicle length of

germinants in the water treatment groups, the radicle length was

visibly shorter in the germinants of the Cu(OH)2 nanowire and

Cu2+ treatment groups (Figures 2G(I)). Moreover, the

antioxidant defence system and the MDA content in seedlings

were significantly modified under Cu stress, as reflected by the

significant increase in SOD activity and the (highly) significant

decrease in CAT and POD activities in the 10 mg/L Cu(OH)2
nanowire and Cu2+ treatments (p< 0.01 or 0.05; Figures 3A–C),

respectively. It has been proposed that the release of Cu2+ may be
FIGURE 1

SEM images of the PS MPs (A) and Cu(OH)2 nanowires (B).
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the underlying mechanism by which Cu(OH)2 nanowires induce

toxic effects in plants (Zhao et al., 2017c). In this study, the 10

mg/L Cu2+ stress treatment induced adverse effects comparable

to those induced by the 10 mg/L Cu(OH)2 nanowire stress

treatment, suggesting that released Cu ions played a critical role

in the toxicity effects induced by Cu(OH)2 nanowires.

Based on the seedling growth period (7 d) data, the Cu(OH)2
nanowire and Cu2+ treatments (highly) significantly inhibited
Frontiers in Plant Science 05
the average root length (p< 0.01; Figure 2E) and weight (p< 0.05

or p< 0.01; Figure 2F). Correspondingly, the Cu(OH)2 nanowire

and Cu2+ treatments greatly decreased the vitality of the lettuce

seedlings (p< 0.01; Figure 2H). This inhibition by the Cu(OH)2
nanowires showed a dose‐dependent effect (Figures 2E, F, H),

which has implications for the health risk posed by Cu(OH)2
nanowires in the environment. Notably, the 10 mg/L Cu2+ and

Cu(OH)2 nanowire treatments displayed similar effects, (highly)
FIGURE 2

(A): Germination energy of lettuce seeds under different treatments; (B): germination rate of lettuce seeds under different treatments; (C): accumulation
of Cu in lettuce seeds (3 d) and seedling leaves and roots (7 d) under different treatments; (D): chlorophyll content in seedling leaves (7 d) under different
treatments; (E): average length of roots and leaves (7 d) under different treatments; (F): average weight of roots and leaves (7 d) under different
treatments; (G): lettuce seed germination at 3 days (I) and lettuce seedling growth at 7 days (II). The letters a, b, c, and d denote the control, 1 mg/L Cu
(OH)2, 10 mg/L Cu(OH)2, and 10 mg/L Cu2+ treatment groups, respectively; and (H) vigor index of lettuce seeds (7 d) under different treatments. The
data are presented as the mean ± SD from at least four replicates. ** means extremely significant difference.
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significantly inhibiting the average root length and weight, as

well as adversely affecting the vitality of the lettuce seedlings,

which again emphasizes the important role of Cu2+ release in the

hazardous effects induced by Cu(OH)2 nanowires. Additionally,

the antioxidant defence system and MDA content were

significantly modified under Cu stress at 7 d of lettuce seedling

growth. For example, compared with the SOD activity and MDA

levels in seedling roots or leaves from the water treatment

groups, those in the 10 mg/L Cu(OH)2 nanowire or Cu2+

treatments were (highly) significantly increased (p< 0.01 or

0.05; Figures 3A, C). Furthermore, compared to the CAT and

POD activities in seedling roots or leaves in the water treatment

groups, those in the 10 mg/L Cu(OH)2 nanowire or Cu2+

treatment groups were (highly) significantly decreased (p< 0.01

or 0.05; Figures 3B, C). Compared with the effect of Cu stress on

seedling roots, Cu stress did not induce serious adverse effects on

seedling leaves, as reflected by the chlorophyll a and b levels (p >

0.05; Figure 2D), leaf length (p > 0.05; Figure 2E) and leaf weight

(p > 0.05; Figure 2F), which were not significantly modified

under Cu stress. In contrast, other studies have detected biomass

and chlorophyll content decrease, antioxidant-related enzyme

modifications, metabolite profile alterations and antioxidant or

defence-associated metabolite reductions in different plant
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leaves after Cu(OH)2 nanopesticide or Cu2+ exposure through

foliar spraying (Zhao et al., 2017a; Zhao et al., 2017b; Zhao et al.,

2017c). It seems that the hazardous effects Cu stress induces in

plants are strongly dependent on the exposure pathways. Indeed,

in this study, the seedling roots were directly exposed to Cu(OH)

2 nanowires or Cu2+ solution, and thus, Cu significantly

accumulated in seedling roots (p< 0.05; Figure 2C) rather than

in seedling leaves. Notably, it has been proposed that the free

Cu2+ released from Cu(OH)2 nanopesticides may be a

nonnegligible toxicity mechanism of the nanopesticides.

Comparably, Cu was shown to predominantly accumulate in

plant leaves but not in roots when a Cu(OH)2 nanopesticide was

applied through foliar spraying (Zhao et al., 2016b; Tan

et al., 2018).
3.3 PS MPs (1 mg/L) stimulate lettuce
seedling growth

PS MPs at an environmental concentration of 1 mg/L

stimulated the seed germination and seedling growth of

lettuce. To elaborate, lettuce seed germination was noticeably

increased by the 1 mg/L PS MPs treatment [Figure 4G(I)],
A B

DC

FIGURE 3

Effect of Cu(OH)2 nanowire or Cu2+ stress on the activities of SOD (A), CAT (B) and POD (C) and level of MDA (D) in lettuce seed (3d) and in
lettuce seedling leaves and roots (7d). The data are shown as the mean ± SD from the four replicates and were analyzed with a t test to explore
any significant differences between treatment groups; asterisks * (p< 0.05) and ** (p< 0.01) denote statistical significance and high statistical
significance, respectively.
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although the germination energy and rate were hardly affected (p

> 0.05; Figures 4A, B). Moreover, the PS MPs treatment (highly)

significantly increased the root and leaf length of the lettuce

seedlings (Figure 4E) and significantly increased the seed vigor

index (p< 0.05; Figure 4H). Similarly, a significant increase in

root length in response to PS MPs (0.01 to 1 mg/L) and polyester

microfiber treatments has also been observed in other plants
Frontiers in Plant Science 07
(Lian et al., 2020; Lozano and Rillig, 2020; Liu et al., 2022; Zeb

et al., 2022). The root length enhancements in response to MPs

treatment could be interpreted as both PS MPs and cellulose cell

walls are highly hydrophobic which makes PS MPs adsorb on

the surface of the roots (Nel et al., 2009; Dovidat et al., 2019),

increasing carbon and nitrogen levels in the plant (Lian et al.,

2020; Liu et al., 2022) and improving the aeration and
FIGURE 4

(A): Germination energy of lettuce seeds under different treatments; (B): germination rates of lettuce seeds under different treatments; (C): accumulation
of Cu in lettuce seeds (3 d) and in seedling leaves and roots (7 d) under different treatments; (D): chlorophyll content in seedling leaves (7 d) under
different treatments; (E): average length of roots and leaves (7 d) under different treatments; (F): average weights of roots and leaves (7 d) under different
treatments; (G): lettuce seed germination at 3 d (I) and lettuce seedling growth at 7 d (II). The letters a, b, c, and d denote the control, 1 mg/L Cu(OH)2,
10 mg/L Cu(OH)2, and 10 mg/L Cu2+ treatment groups, respectively; and (H): vigor index of lettuce seedlings (7 d) under different treatments. The data
are shown as the mean ± SD from the four replicates and were analyzed with a t test to explore any significant differences between treatment groups;
the asterisks * (p< 0.05) and ** (p< 0.01) denote statistical significance and high statistical significance, respectively.
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penetration of roots (Lozano and Rillig, 2020). In this study, the

PS MPs had no significant effect on the levels of chlorophyll a or

b in lettuce leaves (p > 0.05; Figure 4D). In contrast, PE MPs and

polyester microfibers have been found to increase the amount of

chlorophyll in other plants (Wang et al., 2020; Liu et al., 2021;

Zeb et al., 2022). Similarly, 1% PE MPs promoted carotenoids to

reach the highest value in wheat leaves (Liu et al., 2021) and

increased the total chlorophyll concentration in maize leaves

(Wang et al., 2020). Accordingly, photosynthesis system

stimulation by PE MPs could partially explain the plant

growth increase (e.g., root length). In addition, the activities of

SOD, CAT, and POD and the level of MDA in the lettuce leaves

was hardly affected by the PS MPs (Figure 5), implying that the

root, rather than the leaf, was the target organ of the PS MPs in

this research. Furthermore, the adsorption of PS MPs on the

middle root surface, but not on the root tips, was confirmed, as

shown in Figure 6.This could partially explain why the PS MPs

tended to affect the lettuce during the seedling growth stage

rather than during the seed germination period (Figures 4A, B).

However, significant PE MPs stimulation of SOD, CAT and

POD activities (P< 0.05) and bottom-to-top transportation of PS

MPs have been confirmed in wheat roots (Lian et al., 2020; Liu

et al., 2021). It is possible that the different MPs types (PS vs. PE),
Frontiers in Plant Science 08
sizes (nm vs. mm) and concentrations (low vs. high) are the

causes of these inconsistent results.
3.4 Combined effects of PS MPs (1 mg/L)
and Cu(OH)2 nanowires or Cu2+ on
lettuce seed germination and
seedling growth

In this study, the 1 mg/L PS MPs treatment significantly

suppressed the hazardous effects induced by Cu(OH)2 nanowires

or Cu2+ stress. Based on the seed germination period data (3 d),

the PS MPs treatment helped SOD and CAT activities return to

the control level (p > 0.05), and these activities were the dominant

mechanisms for protection of lettuce seed germination against Cu

(OH)2 nanowire or Cu2+ stress (as mentioned in Section 3.2).

Furthermore, when PS MPs were present, the highly decreased

vigor index that was induced by the 1 mg/L Cu(OH)2 nanowire

treatment was reversed, and the vigor index returned to the

control level (p > 0.05; Figure 4H). However, PS MPs treatment

hardly affected the germination energy, the germination rate

(Figures 4A, B), and Cu accumulation of the lettuce seeds

(Figure 4C) in the Cu(OH)2 nanowire or Cu
2+ treatments.
A B

DC

FIGURE 5

Effect of 1 mg/L PS MPs with or without Cu(OH)2 nanowire or Cu2+ stress on the activities of SOD (A), CAT (B) and POD (C) and the MDA levels
(D) in lettuce seeds (3d) and in lettuce seedling leaves and roots (7d). The data were from four replicates and were analyzed with a t test to
explore any significant differences between treatment groups; the asterisks * (p < 0.05) and ** (p < 0.01) denote statistical significance and high
statistical significance, respectively.
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Based on the seedling growth data (7 d), the decrease in

lettuce seedling root length caused by the 1 mg/L Cu(OH)2
nanowire treatment was significantly restrained by PS MPs

treatment, as shown in Figures 4E, G(II). Moreover, the PS

MP treatment partially suppressed the hazardous effects of the

10 mg/L Cu(OH)2 nanowire or Cu
2+ treatments on seedling root

growth, although the average seedling root length in these

treatment groups was still much shorter than that in the water

treatment groups (p< 0.01; Figure 4E). As mentioned in Section

3.2, the dominant mechanisms of the decrease in seedling root

length caused by Cu stresses were alterations of the antioxidant

defence system, changes in MDA content and the accumulation

of Cu. Compared with the SOD, CAT and POD activities in

seedling roots or leaves in the single 10 mg/L Cu(OH)2 nanowire

or Cu2+ treatment groups, respectively, the activities in the

treatment groups with 10 mg/L Cu(OH)2 nanowires and Cu2+

with PS MPs were (highly) significantly decreased. Furthermore,

the MDA level in the 10 mg/L Cu(OH)2 nanowire treatment

group was significantly decreased by the presence of PS MPs,

although it was still much higher than that in the control

(Figure 5D). Compared to the overall Cu levels in the single

Cu(OH)2 nanowire or Cu2+ treatment groups, the Cu level in

seedling roots was also highly significantly decreased (P< 0.01)

by the 1 mg/L PS MPs treatment. For example, the Cu

concentration from the Cu(OH)2 nanowire (1 mg/L) treatment
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decreased from 0.093 (± 0.017) to 0.023 (± 0.008) mg/g with PS

MPs + Cu(OH)2 nanowire (1 mg/L) treatment, and thus, Cu2+

bioavailability was decreased by PS MPs treatment in this study.

Furthermore, the PS MPs were likely adsorbed on the surface of

the middle root section (Figures 6C, D) rather than on the root

tips (Figures 6A, B) and in turn decreased Cu2+ bioavailability.

Notably, the uptake of nanosized MPs into plant roots has been

determined previously (Jiang et al., 2019; Lian et al., 2020; Liu

et al., 2021), and it has been shown that PS MPs vehicle effects on

the biotic uptake of heavy metals (such as Zn2+ and Ag+) are

possible (Tong et al., 2022a; Tong et al., 2022b). However, in this

study, the PS MPs bound to the lettuce root surface (Figure 6)

rather than becoming embedded in the root. Thus, PS MPs

treatment did not promote Cu accumulation in lettuce roots or

leaves during the seedling growth period (Figure 4C). In

contrast, the PS MPs might have prevented the Cu(OH)2
nanowires or Cu2+ from entering the lettuce by binding to the

lettuce root surface.

The protective effects of the MPs treatment on other plants

have also been previously confirmed. For example, the presence

of PE MPs reduced the accumulation of phenanthrene in wheat

roots and leaves (Liu et al., 2021), decreased the dibutyl phthalate

content in lettuce roots and leaves (Gao et al., 2021) and reduced

Cu2+ toxicity on macrophyte growth (Zhou et al., 2022). PS MPs

have been found to reduce the negative effects of As(III) on rice
FIGURE 6

Seedling roots with 1 mg/L fluorescent PS MPs (0.1 mm) after 3 d of exposure. (A): Root tip under normal light. (B): Fluorescent signal in the
same root tip shown in (A, C) Middle segment of a root under normal light. (D): Fluorescent signal in the middle segment of the same root
shown in (C).
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(Dong et al., 2020) and to mitigate the toxic effects of Cu on

wheat seedlings (Zong et al., 2021). The underlying mechanisms

that enable MPs to mitigate the hazardous effects of these

environmental pollutants on plants are I) the reduction in

environmental pollutant concentrations in water or soil

through the adsorption of environmental pollutants on the

MPs surface and II) the inhibition of environmental pollutant

uptake into plants by MPs binding on the root surface (Dong

et al., 2020; Zong et al., 2021; Zhou et al., 2022). It is possible that

the different MPs types (PS vs. PE), MPs sizes (nm vs. mm), MPs

exposure concentrations (low vs. high) and treatment durations

(hour vs. day), as well as the plant species involved (wheat vs.

lettuce), could explain why our study was inconsistent with

results in previous research. In summary, Cu(OH)2 nanowires

greatly affected the vigor of lettuce seeds, the root length of

lettuce seedlings and the lettuce antioxidant defence system and

MDA content. Expectedly, released Cu2+ played a critical role in

the toxicity mechanism of Cu(OH)2 nanowires in lettuce

seedlings. Interestingly, PS MPs (1 mg/L) stimulated lettuce

seedling growth. Notably, treatment with PS MPs (1 mg/L)

strongly hindered Cu accumulation in lettuce roots and thus

neutralized the hazardous effects of the 1 mg/L Cu(OH)2
nanowire treatment on lettuce growth. Therefore, PS MPs in

the environment could protect lettuce from the hazardous effects

of Cu(OH)2 nanopesticides and decrease Cu risk in the

food chain.
4 Conclusions

In this study, the hazardous effects of Cu(OH)2 nanowires on

lettuce seed germination and seedling growth were confirmed.

These effects were highly related to the lettuce antioxidant

defence system and MDA content. Released Cu2+ was a

nonnegligible toxicity mechanism for the hazardous effects of

Cu(OH)2 nanowires on lettuce. PS MPs (1 mg/L) increased the

lettuce seed vigor index and stimulated lettuce seedling growth.

Furthermore, the PS MPs treatment (1 mg/L) partially

suppressed the hazardous effects of Cu(OH)2 nanowires on

lettuce growth. This study provides new insights into the

toxicity and toxicity mechanisms of Cu(OH)2 nanowires and/

or PS MPs to plants.
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