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An efficient genomic prediction
method without the direct
inverse of the genomic
relationship matrix

Hailan Liu * , Chao Xia and Hai Lan

Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
GBLUP, the most widely used genomic prediction (GP) method, consumes large

and increasing amounts of computational resources as the training population

size increases due to the inverse of the genomic relationship matrix (GRM).

Therefore, in this study, we developed a new genomic prediction method

(RHEPCG) that avoids the direct inverse of the GRM by combining randomized

Haseman–Elston (HE) regression (RHE-reg) and a preconditioned conjugate

gradient (PCG). The simulation results demonstrate that RHEPCG, in most cases,

not only achieves similar predictive accuracy with GBLUP but also significantly

reduces computational time. As for the real data, RHEPCG shows similar or

better predictive accuracy for seven traits of the Arabidopsis thaliana F2

population and four traits of the Sorghum bicolor RIL population compared

with GBLUP. This indicates that RHEPCG is a practical alternative to GBLUP and

has better computational efficiency.

KEYWORDS

genomic prediction, GBLUP, genomic relationshipmatrix, randomizedHaseman–Elston
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Introduction

Currently, genomic prediction (GP) has been widely applied to many species, such as

dairy cattle, dairy sheep, maize, and wheat (Pszczola et al., 2011; Duchemin et al., 2012;

Crossa et al., 2014). For example, significant achievements have been made in the genetic

improvement of dairy cattle via GP in many countries, such as the United States,

Australia, Canada, New Zealand, and France (Hayes et al., 2009; Winkelman et al., 2015;

Garcıá-Ruiz et al., 2016; Weller et al., 2017). Moreover, GP helps to optimize the breeding

procedure when used with many other breeding technologies. For example, it can

accelerate the selection of superior pure lines from the large numbers of those generated

by doubled haploid (DH) technology, which is otherwise a significant problem in terms

of the consumption of time and money (Wang et al., 2020). Additionally, GP can rapidly
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increase the frequencies of favorable alleles when combined with

genome editing (GE) (Jenko et al., 2015; Bastiaansen et al., 2018).

Many computational methods of GP have been proposed

and GBLUP is the most widely used (Meuwissen et al., 2001;

Daetwyler et al., 2013; Mouresan et al., 2019). For conventional

GBLUP, restricted maximum likelihood (REML) is often used to

estimate heritability, and its computational complexity is cubic

of the training population size (Xu et al., 2014). The fact that the

inverse of the genomic relationship matrix (GRM) is essential

when estimating the heritability in REML and calculating the

best linear unbiased prediction (BLUP) contributes to the

decrease of the computational efficiency of GBLUP when

the size of the training population increases. To improve

computational efficiency, methods such as IBS-based HE

regression, algorithm for proven and young (APY), updating

the inverse, recursive algorithm, spectral decomposition, and the

preconditioned conjugate gradient (PCG) algorithm are

employed (Kang et al., 2008; Legarra and Misztal, 2008;

Misztal et al., 2009; Endelman, 2011; Faux et al., 2012; Meyer

et al., 2013; Chen, 2014; Misztal, 2016; Liu and Chen, 2017;

Masuda et al., 2017; Vandenplas et al., 2018; Vandenplas et al.,

2020). In particular, PCG solves mixed model equations

(MMEs) via iteration instead of by directly inversing the

GRM. Recently, we proposed a fast GP method (SHEAPY)

combining randomized Haseman–Elston regression (RHE-reg)

and a modified APY (Liu and Chen, 2022). In the SHEAPY,

RHE-reg is used to estimate heritability because of its high

computational speed. In this study, we continue to combine it

with PCG, calculating marker values to develop a new GP

method (RHEPCG), which can significantly improve

computational efficiency without the direct inverse of GRM.
Materials and methods

Genetic model and the linear system
of MMEs

Herein, we only focus on additive effects, and the basic

model is described as:

y = Xq + Zu + e ; (1)

in which y is the n×1 vector of the standardized phenotypic

values; q is a fixed effect; X is the n×1 vector of the incidence; Z is

the n×m matrix of the standardized genotypic values; u is the

m×1 vector of SNP marker effects; and e is the n × 1 vector of the

residual error.

On the basis of the above genetic model of additive effect, the

linear system of MMEs was as follows:

XTX XTZ

ZTX ZTZ + I s2
e

s2
g

24 35 q̂

û

" #
=

XTy

ZTy

" #
; (2)
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in which I is the identity matrix, s 2
g is the variance of SNP

marker effects, and s 2
e is the residual variance.

To solve MMEs, randomized HE-reg based on IBS was used

to estimate heritability, which was then introduced into

Equation 2 with residual variance. Then, PCG was used to

solve Equation 2 to obtain marker values.
Estimating heritability via randomized
HE-reg based on IBS

IBS-based RHE regression is a method of moment that can

reduce computational time and memory toO( nmk
max (log(n)3 log(m)

3 )
+ nm)

and O(nm) , respectively ( n , m , and k represent the number of

samples, the number of markers, and the length of random vector,

respectively) (Wu and Sankararaman, 2018; Liu and Chen, 2022).

Here, it was used to estimate the heritability:

yiyi = b0 + b1wij + e (3)

inwhich yi and yj represent the phenotypic values of individuals i

and. from the training population; b0 is the intercept; b1 is the

regressioncoefficient; is thegenetic relatedness (wij =
ZiZj }
m )betweena

pair of individuals i and j; zi and zj are the genotype vector of

individuals i and j; and is residual error. For a trait, its phenotypic

variance is ŝ 2
y = on

i=1
y2i −n�y

2

n−1 , its additive genetic variance is ŝ 2
g = b̂ 1,

and its error variance is ŝ 2
e = ŝ 2

y − ŝ 2
g . The computational equation

of ŝ 2
g and ŝ 2

e is described as:

tr w2
� �

tr w½ �
tr w½ � n

" #
ŝ 2

g

ŝ 2
e

" #
=

yTwy

yTy

" #
, (4)

in which w = ZZ0
m corresponds to the genomic related matrix

between individuals and ^tr½w� = n. To accelerate computational

efficiency, ^tr½w2� was calculated via a randomized estimation.

The equation is as below:

dtr w2½ � = 1
s

1
m2o

S

s=1
(w

0
sZZ

T ) ZZTws

� �
: (5)

In the equation, S represents the rounds of randomization

implemented, and was set as 5 throughout the study; each entry

of ws comes from a standard normal distribution N (0,1).
Preconditioned conjugate gradient
(PCG) algorithm

When the MMEs are described as Ax = b, in which A is the

coefficient matrix, x is the vector of solutions, and b is the right-

hand side, the PCG is used to solve the linear system of MMEs

and compute marker effects. As it does not need to invert GRM

like conventional methods, a much higher efficiency can be

achieved (Vandenplas et al., 2019). Its code is as follows

(Tsuruta et al., 2001; Vandenplas et al., 2018):
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When n = 0,

x0=1 ; e0=0 ; a0=1 ( 1 is a vector of containing 1.);

r0 = b − Ax0 ;

p0 = M−1r0 ;

When n=1, 2…..,

wn = M−1pn−1 ;

an = p
0
n−1wn ;

bn =
an

an−1

�
;

an−1 = an ;

en = wn + en−1bn ;

qn = Aen ;

ϵn =
p
0
n−1wn

e
0
nqn

.
;

xn = xn−1 + enϵn ;

rn = rn−1 − ϵnqn

Until convergence.

End.

Here, A = ½
XTX XTZ

ZTX ZTZ + I s 2
e

s 2
g

�,M is the preconditionermatrix, andM=diag

(A); r , p , andw are vectors, x = ½
q̂

û
�, and b = ½

XTy

ZTy
�. To solveMMEs, ŝ 2

g via

RHE regression based on IBS and ŝ 2
e are introduced intoAmatrix.
Simulated data

The F2 population was simulated to evaluate the performance

and cost time of GBLUP and RHEPCG. We simulated a

chromosome with a length of 2,000 cM (the recombination rate

was c between the ith and (i+1)th markers), and all markers in this

chromosome were defined as QTL, the effects of which followed a

standard normal distribution. A series of different training

population sizes (1,000, 1,200, 2,000, 6,000, 10,000, 15,000, and

20,000), candidate population sizes (100, 200, 300, and 400), and

heritability (0.2, 0.4, 0.6, 0.65, and 0.8) were simulated. Each

simulation scenario included 10 replications.
Real data

Two sets of data (Arabidopsis thaliana and Sorghum bicolor)

were used to evaluate the predictive accuracy of GBLUP and

RHEPCG. (1) An A. thaliana F2 population (P15) with 434
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individuals derived from a cross between Br-0 and C24 was

obtained from the study by Salomé et al. It consisted of a total of

233 SNP markers and seven traits, including DTF1 (days until

visible flower buds in the center of the rosette), DTF2 (days until

inflorescence stem reached 1 cm in height), DTF3 (days until

first open flower), RLN (rosette leaf number), CLN (cauline leaf

number), TLN (total leaf number: sum of RLN and CLN), and

LIR1 (leaf initiation rate [RLN/DTF1]) (Salomé et al., 2011). (2)

A S. bicolor RIL population with 399 individuals derived from a

cross between S. bicolor BTx623 and S. bicolor IS3620C was

obtained from the study by Kong et al. It consisted of a total of

381 bins and five traits, including PH (plant height), BTF (base

to flag length), FTR (flag to rachis length), ND (number of

nodes), and FL (days to flowering). The phenotype data were

obtained from the University of Georgia Plant Science Farm,

Watkinsville, GA, USA on May 10, 2011 (Kong et al., 2018).
Implementation and computations

The GBLUP and RHEPCG were written in R language (R

Core Team, 2017) and run on a server of the CentOS Linux

operating system (Intel (R) Xeon (R) CPU E7-4870 @2.40GHz)

with 80 CPUs and 755G memory. The RHEPCG program is

available from the authors. The squared correlation coefficient

(r2) between the phenotypes and the predicted genotypic values

were defined as the prediction accuracy.
Results and discussion

Comparison of GBLUP and RHEPCG in
simulated F2 population studies

A series of simulations of the F2 population at different levels

of parameters, including training population size, candidate

population size, and heritability were used to assess the

estimated heritability, predictive accuracy, and consumption

time of GBLUP and RHEPCG.

Table 1 shows the predictive accuracy and computational time

of the GBLUP and RHEPCG at different training population sizes

(1,000, 2,000, 6,000, 10,000, 15,000, and 20,000). As the training

population size increased, both methods demonstrated an obvious

uptrend of predictive accuracy. When the training population size

was 1,000, RHEPCG was slightly better than GBLUP in predictive

accuracy ( r2RHEPCG = 0:597 ± 0:007 vs r2GBLUP = 0:541 ± 0:027),

but when the training population size was 10,000, an opposite

result was achieved (r2GBLUP = 0:640 ± 0:014 vs r2RHEPCG = 0:607 ±

0:023). In other conditions, bothmethods performed similarly (for

example, when a training population size was 20,000 r2GBLUP =

0:653 ± 0:017 vs. r2RHEPCG = 0:648 ± 0:021). With the enlargement

of the training population, the predictive accuracy approximated

the true heritability, which as some studies have demonstrated, is
frontiersin.org
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the upper bound of predictive accuracy (de los Campos et al., 2013;

Liu and Chen, 2018). Meanwhile, RHEPCG was significantly

faster than GBLUP (for example, when a training population

size was 20,000 TGBLUP=53666s vs TRHEPCG=1237s ). When the

training population size was 1,000, 2,000, 6,000, 10,000, 15,000,

and 20,000, the computational time of GBLUP was 4, 8, 9, 15, 28,

and 43 times that of RHEPCG, respectively. In other words, the

larger the training population size, the more obvious the advantage

of the computational efficiency of RHEPCG becomes.

In Table 2, the predictive accuracy of both methods was

similar at different candidate population sizes (100, 200, 300, and

400), which means the latter has no significant impact on the

former. Table 3 shows that the predictive accuracy of GBLUP

and RHEPCG increased when heritability varied from 0.2 to 0.4,

0.6, and 0.8. According to further analysis, the correlation

between the estimated heritability and the predictive accuracy

was 0.999 for both GBLUP and RHEPCG (PTwo−tailed=0.001 ),
Frontiers in Plant Science 04
and our results are consistent with Daetwyler et al. (2008) in that

heritability can significantly influence predictive accuracy.

Currently, IBS-based RHE regression is used to estimate

gene-environmental heritability and multi-trait genetic

correlation (Kerin and Marchini, 2020; Wu et al., 2022).

Therefore, RHEPCG can also be applied to such data via the

incorporation of these effects into the model in the future.
Comparison of GBLUP and RHEPCG in
studies of the A. thaliana F2 and S.
bicolor RIL populations

A comparison of GBLUP and RHEPCG based on seven

traits of the A. thaliana F2 population was performed in this

study. Table 4 shows a significant difference between the

estimated heritability via GBLUP and that via RHEPCG in
TABLE 1 Comparison of the estimated heritability, predictive accuracy, and computational time of GBLUP and RHEPCG at the different training
population sizes based on 10 simulations in the Arabidopsis thaliana F2 population.

Training
size

GBLUP RHEPCG

ĥ 2
GBLUP r2GBLUP Average time of each simulation

(s)
ĥ2
RHEPCG r2RHEPCG Average time of each simulation

(s)

1,000 0.718
±0.055

0.541
±0.027

135 0.637
±0.042

0.597
±0.007

31

2,000 0.648
±0.029

0.576
±0.011

465 0.625
±0.051

0.570
±0.010

58

6,000 0.668
±0.052

0.615
±0.011

1,580 0.621
±0.055

0.594
±0.013

179

10,000 0.680
±0.042

0.640
±0.014

7,932 0.600
±0.043

0.607
±0.023

526

15,000 0.650
±0.038

0.651
±0.013

22,576 0.724
±0.059

0.643
±0.024

820

20,000 0.698
±0.042

0.653
±0.017

53,666 0.728
±0.043

0.648
±0.021

1,237

The training population sizes were 1,000, 2,000, 6,000, 10,000, 15,000, and 20,000; the candidate population size was 100; the length of the chromosome was 2,000; heritability (h2) was set as

0.65; the recombination rate © was set as 0.01. ĥ 2
GBLUP and ĥ 2

RHEPCG represent the estimated heritability via GBLUP and RHEPCG, respectively; r2GBLUP and r2RHEPCG represent the squared
correlation coefficient between the phenotypes and the predicted genotypic values and are defined as the prediction accuracy; the values after ± represent the corresponding standard error.
TABLE 2 Comparison of the predictive accuracy of GBLUP and RHEPCG at the different candidate population sizes based on 10 simulations in
the Arabidopsis thaliana F2 population.

Candidate population r2GBLUP r2RHEPCG

100 0.581 ± 0.022 0.560 ± 0.016

200 0.561 ± 0.015 0.568 ± 0.016

300 0.561 ± 0.014 0.578 ± 0.008

400 0.580 ± 0.008 0.571 ± 0.011

The training population sizes was 1,200; the candidate population sizes were 100, 200, 300, and 400; the length of the chromosome was 2,000; heritability (h2) was set as 0.65; the

recombination rate (c) was set as 0.01. r2GBLUP and r
2
RHEPCG represent the squared correlation coefficient between the phenotypes and the predicted genotypic values and are defined as the

prediction accuracy; the values after ± represent the corresponding standard error.
f
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seven traits of A. thaliana F2 (P15). Meanwhile, the seven traits

were used to evaluate the predictive accuracy of GBLUP and

RHEPCG (Table 4). The two methods showed similar predictive

accuracy in six traits: DTF1, DTF2, DTF3, CLN, TLN and LIR1

(for example, the predictive accuracies of DTF1 were r2GBLUP =

0:383 ± 0:017 and r2RHEPCG = 0:368 ± 0:024). RHEPCG was
Frontiers in Plant Science 05
significantly better than GBLUP for RLN (the predictive

accuracies of RLN were r2GBLUP = 0:555 ± 0:046 and r2RHEPCG =

0:640 ± 0:015).

In addition, the predictive accuracy of GBLUP and RHEPCG

was evaluated based on five traits of the S. bicolor RIL population

(Table 5). The estimated heritability of PH, BTF, FTR, and ND
TABLE 4 Comparison of the predictive accuracy between GBLUP and RHEPCG in seven traits from the Arabidopsis thaliana F2 (P15) population
based on 10 simulations.

Trait Training Candidate GBLUP RHEPCG

ĥ 2
GBLUP r2GBLUP ĥ 2

RHEPCG r2RHEPCG

DTF1 300 133 0.731 ± 0.025 0.383 ± 0.017 0.323 ± 0.034 0.368 ± 0.024

DTF2 300 134 0.604 ± 0.035 0.406 ± 0.024 0.389 ± 0.029 0.401 ± 0.023

DTF3 300 134 0.645 ± 0.033 0.351 ± 0.024 0.311 ± 0.030 0.321 ± 0.025

RLN 300 131 0.923 ± 0.025 0.555 ± 0.046 0.524 ± 0.030 0.640 ± 0.015

CLN 300 130 0.570 ± 0.017 0.350 ± 0.017 0.282 ± 0.019 0.342 ± 0.018

TLN 300 130 0.910 ± 0.022 0.572 ± 0.029 0.421 ± 0.028 0.619 ± 0.011

LIR1 300 131 0.449 ± 0.033 0.208 ± 0.012 0.162 ± 0.011 0.197 ± 0.017

ĥ 2
GBLUP and ĥ 2

RHEPCG represent the estimated heritability via GBLUP and RHEPCG, respectively; r2GBLUP and r2RHEPCG represent the squared correlation coefficient between the
phenotypes and the predicted genotypic values and are defined as the prediction accuracy; the values after ± represent the corresponding standard error.
f

TABLE 3 Comparison of the estimated heritability and predictive accuracy of GBLUP and RHEPCG at different levels of heritability based on 10
simulations in the Arabidopsis thaliana F2 population.

h2 GBLUP RHEPCG

ĥ 2
GBLUP r2GBLUP ĥ2

RHEPCG ĥ 2
GBLUP

0.2 0.220 ± 0.014 0.165 ± 0.021 0.203 ± 0.009 0.127 ± 0.017

0.4 0.460 ± 0.021 0.346 ± 0.027 0.406 ± 0.014 0.304 ± 0.018

0.6 0.708 ± 0.032 0.535 ± 0.025 0.611 ± 0.019 0.506 ± 0.016

0.8 0.910 ± 0.034 0.667 ± 0.032 0.817 ± 0.024 0.726 ± 0.012

The training population sizes was 1,200; the candidate population size was 100; the length of the chromosome was 2,000; heritability (h2) was set as 0.2, 0.4, 0.6, and 0.8; the recombination rate

(c) was set as 0.01. ĥ 2
GBLUP and ĥ

2
RHEPCG represent the estimated heritability via GBLUP and RHEPCG, respectively; r2GBLUP and r2RHEPCG represent the squared correlation coefficient between

the phenotypes and the predicted genotypic values and are defined as the prediction accuracy; the values after ± represent the corresponding standard error.
TABLE 5 Comparison of the predictive accuracy between GBLUP and RHEPCG in five traits from the Sorghum bicolor RIL population based on
10 simulations.

Trait Training Candidate GBLUP RHEPCG

ĥ 2
GBLUP r̂ 2GBLUP ĥ 2

RHEPCG r̂ 2RHEPCG

PH 300 88 0.653 ± 0.013 0.289 ± 0.011 0.331 ± 0.038 0.257 ± 0.016

BTF 300 88 0.619 ± 0.011 0.335 ± 0.019 0.436 ± 0.047 0.302 ± 0.017

FTR 300 88 0.337 ± 0.008 0.182 ± 0.018 0.493 ± 0.056 0.155 ± 0.026

ND 300 88 0.490 ± 0.011 0.306 ± 0.015 0.747 ± 0.065 0.197 ± 0.039

FL 300 93 0.629 ± 0.014 0.371 ± 0.014 0.622 ± 0.043 0.393 ± 0.031

ĥ 2
GBLUP and ĥ 2

RHEPCG represent the estimated heritability via GBLUP and RHEPCG, respectively; r̂ 2GBLUP andr̂ 2RHEPCG represent the squared correlation coefficient between the
phenotypes and the predicted genotypic values and are defined as the prediction accuracy; the values after ± represent the corresponding standard error.
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via GBLUP differed significantly from that via RHEPCG, and

the two methods had similar predictive accuracy for PH, BTF,

FTR, and FL (for example, the predictive accuracies of PH were

r2GBLUP = 0:289 ± 0:011 and r2RHEPCG = 0:257 ± 0:016), and the

predictive accuracy of GBLUP was significantly superior to

that of RHEPCG for ND (the predictive accuracies of ND

were r2GBLUP = 0:306 ± 0:015 and r2RHEPCG = 0:197 ± 0:039).

These results show that GBLUP and RHEPCG have different

estimated heritability in some traits of A. thaliana and S. bicolor.

According to Chen (2016), strong selection can lead to

differences in the estimated heritability via LMM and HE, and

therefore, these traits are very likely to have undergone strong

selection. In the future, we will investigate the influence of strong

selection on predictive accuracy.
Conclusion

We present a new computing method of genomic prediction

(RHEPCG) that does not require direct inversion of the GRM.

Compared with GBLUP, it can significantly reduce

computational time while maintaining predictive accuracy.
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