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The widespread adoption of genetically modified (GM) dicamba-tolerant (DT)

soybean was followed by numerous reports of off-target dicamba damage and

yield losses across most soybean-producing states. In this study, a subset of the

USDA Soybean Germplasm Collection consisting of 382 genetically diverse

soybean accessions originating from 15 countries was used to identify genomic

regions associated with soybean response to off-target dicamba exposure.

Accessions were genotyped with the SoySNP50K BeadChip and visually

screened for damage in environments with prolonged exposure to off-target

dicamba. Two models were implemented to detect significant marker-trait

associations: the Bayesian-information and Linkage-disequilibrium Iteratively

Nested Keyway (BLINK) and a model that allows the inclusion of population

structure in interaction with the environment (G×E) to account for variable

patterns of genotype responses in different environments. Most accessions

(84%) showed a moderate response, either moderately tolerant or moderately

susceptible, with approximately 8% showing tolerance and susceptibility. No

differences in off-target dicamba damage were observed across maturity

groups and centers of origin. Both models identified significant associations

in regions of chromosomes 10 and 19. The BLINK model identified additional

significant marker-trait associations on chromosomes 11, 14, and 18, while the

G×E model identified another significant marker-trait association on

chromosome 15. The significant SNPs identified by both models are located

within candidate genes possessing annotated functions involving different

phases of herbicide detoxification in plants. These results entertain the

possibility of developing non-GM soybean cultivars with improved tolerance

to off-target dicamba exposure and potentially other synthetic auxin

herbicides. Identification of genetic sources of tolerance and genomic
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regions conferring higher tolerance to off-target dicamba may sustain and

improve the production of other non-DT herbicide soybean production

systems, including the growing niche markets of organic and

conventional soybean.
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Introduction

Soybean [Glycine max (L.) Merr.] plays a multifaceted role in

the global agricultural trade, economy, and food security due to

its unique seed composition (Gale et al., 2019; Liu et al., 2020;

Vieira and Chen, 2021). As a major source of protein and

vegetable oil, soybean is widely used in the food, feed, and

biofuel industries (Hartman et al., 2011; Vogel et al., 2021). In

the United States, approximately 95% of the soybean acreage is

grown with genetically-engineered herbicide-tolerant cultivars,

of which nearly 55% are grown using the dicamba-tolerance trait

(DT, 3,6-dichloro-2-methoxybenzoic acid) (Bayer CropScience

LLC, 2021; USDA Economic Research Service, 2022). Dicamba

is a synthetic auxin (Group 4 herbicide) that triggers rapid and

uncontrolled growth of the stems, petioles, and leaves, often

leading to plant death in sensitive dicots (Environmental

Protection Agency, 2006; Grossmann, 2010). A distinguished

characteristic of Group 4 herbicides is their high vapor pressure.

Dicamba in specific has a vapor pressure of 2.0×10-5 mm HG at

25 C, which significantly increases the occurrence of off-target

movement to adjacent fields (Behrens and Lueschen, 1979; Egan

and Mortensen, 2012; Werle et al., 2018; Wechsler et al., 2019;

Chism et al., 2020; Wagman et al., 2020). By comparison,

glyphosate (N-(phosphonomethyl)glycine) has high water

solubility and vapor pressure of 1.9×10−7 mm HG at 25°C

(Battaglin et al., 2005).

The widespread adoption of DT cropping systems led to

numerous cases of off-target damage to non-DT soybean as well

as several other dicots plant species (Bradley, 2017; Bradley,

2018; Wechsler et al., 2019; Chism et al., 2020; Wagman et al.,

2020). Between 2017 and 2021, the Environmental Protection

Agency (EPA) received over 10,500 reports of dicamba-related

injuries in various non-DT vegetations in 29 of the 34 states

where the use of dicamba on DT crops is authorized (Echeverria,

2020; Tindall et al., 2021). Soybean is naturally sensitive to

dicamba, and symptoms include crinkling and cupping of

immature leaves, epinasty, plant height reduction, chlorosis,

death of apical meristem, malformed pods, and ultimately

yield reduction (Weidenhamer et al., 1989; Andersen et al.,
02
2004; Grossmann, 2010; Kniss, 2018; Canella Vieira et al.,

2022b). The severity of the symptoms and yield loss differ

based on the timing of exposure (growth stage), dosage,

frequency, and duration of exposure. It is well known that the

expression of a phenotype is a function of the genotype (G), the

environment (E), and the differential phenotypic response of

genotypes to different environments (G×E) (de Leon et al.,

2016). However, information is lacking regarding the effect of

different genetic backgrounds and identification of genomic

regions affecting the severity of symptoms and yield loss

caused by off-target dicamba in soybean.

With the advances in the availability of high-dimensional

genomic data (Song et al., 2013; Song et al., 2020) and

comprehensive statistical models (Zhang et al., 2010; Liu et al.,

2016; Huang et al., 2019), genome-wide association studies

(GWAS) have been largely used as a common approach to help

reveal the underlying genetic basis of a trait of interest during the

past decade. With several thousand to millions of single

nucleotide polymorphisms (SNPs), GWAS captures significant

associations between the trait of interest and molecular markers

using a broad range of linear or logistic regression models as well

as machine and deep learning algorithms. In soybean, GWAS has

unveiled the genetic architecture of multiple economic-

important traits, including tolerance to biotic (Vuong et al.,

2015; Chang et al., 2016; Canella Vieira et al., 2022c) and

abiotic (Valliyodan et al., 2016; Zeng et al., 2017; Wu et al.,

2020) stressors, seed composition (Hwang et al., 2014; Bandillo

et al., 2015), agronomic (Sonah et al., 2015; Zhang et al., 2015),

physiology-efficient (Lopez et al., 2022), as well as yield

(Yoosefzadeh-Najafabadi et al., 2021) and domestication-

related traits (Han et al., 2016; Wang et al., 2016b). To date,

GWAS has not been conducted to identify genomic regions

associated with soybean tolerance to dicamba or other

herbicides. Therefore, the objective of this study was to identify

significant marker-trait associations regulating the response of

genetically diverse soybean accessions to off-target dicamba

grown under prolonged exposure to dicamba under field

conditions. Natural tolerance to off-target dicamba may sustain

and improve the production of other non-DT herbicide soybean
frontiersin.org
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production systems, including the growing niche markets of

organic and conventional soybean.
Materials and methods

Plant materials and data collection

A total of 382 genetically diverse soybean accessions with

maturity groups (MG) ranging fromMG 3 to 5 were used in this

study. These comprise a subset of the USDA Soybean

Germplasm Collection and originated from 15 countries,

including Algeria (2), China (226), Costa Rica (1), Georgia (2),

Indonesia (1), Japan (38), Nepal (1), North Korea (20), Russia

(5), South Africa (1), South Korea (32), Taiwan (3), United

States (40), and Vietnam (5). Five accessions have unknown

origins. The USDA Soybean Germplasm Collection was

genotyped with the SoySNP50K BeadChip (Song et al., 2013)

and the data has been made available by the authors (Song et al.,

2015) at SoyBase Genetics and Genomics Database (http://

soybase.org/snps/download.php). SNPs were converted to

numerical format (0, 1, and 2 for the homozygous minor

allele, heterozygous, and homozygous major allele,

respectively), and were excluded based on minor allele

frequency (MAF)< 0.05 resulting in 31,957 SNPs. The across-

genome SNP density on a chromosome basis was 1,598, ranging

from 1,186 (Chr. 11) to 2,619 (Chr. 18).

Field trials were conducted in three environments for two

years (2020-2021) using a two-replicate randomized complete

block design at the Lee Farm in Portageville, MO (36°23’44.2”N

lat; 89°36’52.3”W long) and Rhodes Farm in Clarkton, MO (36°

29′14.8″N lat; 89°57′39.0″W long). Each plot consisted of a

single 2.13 m long row spaced 0.76 m apart. The Lee Farm and

Rhodes Farm have been exposed to prolonged and

homogeneously distributed off-target dicamba damage since

2017, where significant yield losses due to off-target dicamba

exposure have been reported between non-DT and DT soybean

genotypes (Canella Vieira et al., 2022a; Chen et al., 2022; Canella

Vieira et al, 2022b). Off-target dicamba exposure was a result of

dicamba volatilization from nearby cropping systems consisting

of DT soybean and cotton.

Each year, genotypes were visually assessed for off-target

dicamba damage once in the early reproductive stage between

R1 to R3 (approximately 100 to 130 DAP) (Fehr et al., 1971).

Lines were rated on a 1 to 5 scale with 0.5 increments following

the criteria described by Canella Vieira et al. (2022b). In

summary, a rating of 1 showed none to minimal visual

dicamba damage symptoms, including the typical crinkling

and cupping of the newly-developing leaves, reduced canopy

coverage, and plant stunting; a rating of 2 showed moderate

tolerance with limited cupping of the newly-developing leaves

and no visual impact on canopy coverage and vegetative growth;

a 3 rating showed accentuated cupping of the newly-developing
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leaves and moderate reduction in canopy area and vegetative

growth; a 4 rating showed severe cupping of the newly-

developing leaves and pronounced reduction in canopy area

and vegetative growth, and a rating of 5 showed extreme

dicamba damage symptoms including severe cupping of the

newly-developing leaves and intense reduction in canopy

coverage and vegetative growth.

Adjusted means across environments were calculated using

the function ‘ls_means’ of the R (R Core Team, 2022) package

‘lmerTest’ (Kuznetsova et al., 2017) based on a mixed-effects

linear model conducted with the package ‘lme4’ (Bates et al.,

2015). The model included the fixed effect of genotype, the

random interaction between genotype and environment (G×E),

the random effect of environment, and the nested random effect

of replication within the environment. To measure the

consistency and inter-relatedness of the damage ratings across

environments, Cronbach’s alpha (a) score (Cronbach, 1951) was
calculated each year using the R package ‘psych’ (Revelle, 2021)

based on Eq. 1.

a =  
k  �  �c

�v + k − 1ð Þ�c Eq: 1

Where k represents the number of observations of off-target

dicamba damage; �c is the average inter-item covariance of off-

target dicamba damage scores between each pair of

environments averaged for all pairs of environments; and �v is

the average variance of off-target dicamba damage scores across

all environments.
Genome-wide association study

Two models have been implemented to detect significant

marker-trait associations. The Bayesian-information and

Linkage-disequilibrium Iteratively Nested Keyway (BLINK)

model (Huang et al., 2019) was conducted using the adjusted

means across environments as phenotypic input in the R

package ‘GAPIT’ (Lipka et al., 2012). It is an enhanced

methodology based on the Fixed and Random Model

Circulating Probability Unification (FarmCPU) (Liu et al.,

2016). In summary, FarmCPU conducts two fixed-effect

models iteratively and a filtering process to select a set of

pseudo-SNPs that are not in linkage disequilibrium with each

other as covariates. The first model tests one SNP at a time with

multiple associated markers fitted as covariates to account for

population stratification. The main goal is to control false

positives and reduce false negatives, as well as calculate the p-

values for all testing SNPs. The second model selects the

covariate markers to directly control false associations instead

of kinship. BLINK eliminates the requirement that genes

underlying a trait are equally distributed across the genome,

and also replaces the Restricted Maximum Likelihood (REML)

with Bayesian Information Content (BIC) in a fixed-effect model
frontiersin.org
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to boost computing speed. The detailed methodology can be

found in Huang et al. (2019).

To account for the variable patterns of genotype responses to

off-target dicamba in different environments, a model that allows

the inclusion of the population structure in interaction with

environments was considered. The model was fitted with

ASREML‐R (VSN‐International, England). Considering that

yijk represents the kth (k=1,2) response of the ith (i=1,2,

…,382) genotype in the jth (j=1,…,3) environment, the GWAS

was conducted using the following linear mixed model in

matrix form:

y = E + R : E + PC1 : 10 + E � PC1 +   E � PC2 +… + E

� PC10 + xk + L + e Eq: 2

Where E corresponds to the main effect of the environments;

R:E represents the effect of the replicates nested within

environments; PC1:10 are the first 10 principal components

(PC) derived from decomposing the G matrix using a

principal component analysis (PCA) and are included in the

model for correcting for population structure; the interactions

between the first 10 components PC1:10 and environments were

also included with the E×PCj term; the xk term corresponds to

the kth molecular marker associated with bk (marker effect). All

of the previous model terms were considered fixed terms. The

random effect L is associated with the main effect of the
Frontiers in Plant Science 04
genotypes, and e corresponds to the error term which captures

the unexplained variability.

To control the comparison-wise error rate, the method

proposed by Li and Ji (2015) was implemented. The effective

number of independent tests (Meff) was derived by considering

the eigenvalue decomposition of the matrix of correlations

between markers. The resulting test was adjusted using the

Meff with the following correction (Sidak, 1967):

ap = 1 − 1 − aeð Þ−Meff ;

Where ap is the comparison-wise error rate and ae

corresponds to the experiment error-wise (ae=0.05) .
Results

Phenotypic distribution

Across the three testing environments, the frequency of off-

target dicamba damage scores was consistent and normally

distributed with over 45% of the observations between scores

of 2 and 3 (moderately tolerant) and 39% between 3 and 3.5

(moderately susceptible) (Figure 1). Roughly 8% of the

observations were either under the score of 2 (highly tolerant)

or above the score of 4 (highly susceptible).
FIGURE 1

Distribution of off-target dicamba damage scores at each testing environment and across environments.
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Across environments, scores were consistent with an overall

Cronbach’s alpha (a) score of 0.89 (C.I 0.87 to 0.91). Within

environments, scores ranged from 0.85 (2021-Clarkton) to 0.89

(2021-LeeFarm), indicating minor error variance and

discrepancy across replications (Table 1). Cronbach’s a can be

interpreted as the correlation of the test with itself, of which the

error variance can be obtained by subtracting the squared a
from 1.00 (Tavakol and Dennick, 2011). The error variance

ranged from 0.21 to 0.26 which indicates consistency and inter-

relatedness of the damage scores across and within

environments. Scores above 0.70 (error variance of 0.51) are

often considered acceptable (Bland and Altman, 1997; Bosma

et al., 1997; McKinley et al., 1997; Kline, 1999; Amirrudin et al.,

2020; Canella Vieira et al., 2022b). In plant breeding, reliability

refers to multiple measurements across different environments

that are independent of each other and may be explored as a new

measurement of the influence of genetic versus nongenetic

effects as opposed to heritability (Bernardo, 2020).
Significant marker-trait associations

The calculated effective number of independent tests (Meff) was

575, which returned a threshold of marker-trait association

significance of logarithm of odds (LOD) of approximately 4.0.

Using the proposed model that allows the inclusion of the

population structure in interaction with environments (Eq. 2),

three significant marker-trait associations were detected in

chromosomes 10 (LG O), 15 (LG E), and 19 (LG L) (Figure 2).

The SNP ss715622838 located at 5,457,236 bp of chromosome 15

(Genome assembly version Wm82.a2) had the highest LOD (4.5)

with a favorable allele frequency of 13.9%. This SNP is located

within the gene Glyma15g07710 which encodes a copper-

containing oxidoreductase enzyme, tyrosinase. These copper

containing enzymes can oxidize a wide range of aromatic

compounds, including the oxidation of o-diphenols to their

corresponding o-quinones (Bijelic et al., 2015; Sullivan, 2015; Min

et al., 2019). Phase I of herbicide detoxification in plants involves

oxidation by cytochrome P450s or hydrolysis by carboxylesterases

(Kreuz et al., 1996; Barrett, 2000). Given the structural similarities

between dicamba and o-diphenols, tyrosinase may also be involved

in the hydroxylation of dicamba in soybean. The SNP ss715605561
Frontiers in Plant Science 05
located at 1,227,933 bp of chromosome 10 (Genome assembly

version Wm82.a2) had the second-highest LOD (4.2) with a

favorable allele frequency of 8.0%. It is located within the gene

Glyma10g01700 which encodes a multidrug resistance protein

(MRP). MRPs are essential in phase III of plant herbicide

detoxification by facilitating the transport of glucose- or

glutathione-herbicide conjugates into the vacuole (Riechers et al.,

2010). Lastly, the SNP ss715635349 located at 44,580,800 bp of

chromosome 19 (Genome assembly version Wm82.a2) had a LOD

of 4.1 with a favorable allele frequency of 28.3% (Table 2).

Interestingly, ss715635349 is located within the gene

Glyma19g37108, a uridine diphosphate (UDP)-dependent

glycosyltransferase gene. This genomic region contains additional

five UDP-glycosyltransferase genes. The conjugation of Phase I-

hydroxylated herbicides to endogenous sugar molecules such as

glucose is catalyzed by UDP-dependent glycosyltransferases and

represents an important phase II reaction of plant herbicide

detoxification (Riechers et al., 2010).

Four significant marker-trait associations were detected in

chromosomes 10 (LG O), 11 (LG B1), 18 (LG G), and 19 (LG L)

using the BLINKmodel (Figure 2). The SNP ss715635349 located at

44,580,800 bp of chromosome 19 had the highest LOD (6.4)

followed by the SNP ss715605561 located at 1,227,933 bp of

chromosome 10 (LOD of 6.1). The SNP ss715609879 had a LOD

of 4.8 with a favorable allele frequency of 24.0%. It is positioned at

15,740,804 bp of chromosome 11 (Genome assembly version

Wm82.a2) and is located within Glyma11g29391, a lipid

phosphate phosphatase gene. Lastly, the SNP ss715632413 located

at 57,025,570 bp of chromosome 18 (Genome assembly version

Wm82.a2) had a LOD of 4.4 with a favorable allele frequency of

19.4% (Table 2). Two genes with detoxification-related annotations

(Glyma18g291800 and Glyma18g291700) are located within 50-kb

of ss715632413 (Genome Browser, www.soybase.org).
Marker effect on observed phenotype

To assess the effect of significant SNPs on the observed

phenotype, genotypes were classified according to the allelic

combination of the significant SNPs ss715605561 (Chr. 10),

ss715635349 (Chr. 19), and ss715632413 (Chr. 18). Favorable

alleles were represented as 1 whereas unfavorable alleles were
TABLE 1 Summary of Cronbach’s alpha (a) across testing environments.

Environment Alpha (a)1 C.I (95%)2 Error3 Correlation4 Mean5 S.D6

Overall 0.89 0.87 0.91 0.21 0.62 2.70 0.59

2020-Clarkton 0.86 0.84 0.88 0.26 0.61 2.70 0.66

2021-Clarkton 0.86 0.85 0.87 0.26 0.61 2.80 0.72

2021-LeeFarm 0.89 0.87 0.91 0.21 0.64 2.60 0.69
frontiers
1Standardized alpha (a) based upon the correlations. 2Confidence interval (95%) of standardized alpha (a) score. 3Estimated error variance was obtained by subtracting the squared a from
1.00. 4Inter-item average Pearson’s correlation. 5Average of off-target dicamba damage scores in each environment. 6Standard deviation of the observed scores in each year.
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represented as 0. For instance, SNP: 0,0,0 represents the allelic

combination where ss715605561, ss715635349, and ss715632413

are unfavorable, and SNP: 1,1,1 represents all favorable alleles.

The mean score of dicamba damage in genotypes carrying all

three favorable alleles was 1.58, whereas the mean score of

genotypes carrying all three unfavorable alleles was 2.90

(Figure 3). The presence of the favorable allele of ss715605561
Frontiers in Plant Science 06
(SNP: 1,0,0; SNP: 1,1,0, and SNP: 1,1,1) and ss715635349 (SNP:

0,1,0; SNP: 0,1,1; SNP: 1,1,1) significantly reduced the overall

damage from off-target dicamba as compared to all non-

favorable alleles, while genotypes carrying only the favorable

allele for ss715632413 (SNP: 0,0,1) did not show significant

differences to the genotypes carrying only unfavorable

alleles (Figure 3).
FIGURE 2

Manhattan plot highlighting significant marker-trait associations using the model that allows the inclusion of the population structure in
interaction with environments (G×E) and BLINK. Threshold of marker-trait association significance of approximately 4.0.
TABLE 2 Summary of significant marker-trait associations identified using the G×E model and BLINK.

SNP Chromosome Position (bp)1 MAF (%)2 LOD3

G×E Model BLINK

ss715635349 19 (LG L) 44,580,800 28.3 4.1 6.4

ss715605561 10 (LG O) 1,227,933 8.0 4.2 6.1

ss715609879 11 (LG B1) 15,740,804 24.0 3.5 4.8

ss715632413 18 (LG G) 57,025,570 19.4 3.2 4.4

ss715622838 15 (LG E) 5,457,236 13.9 4.5 2.6

ss715619759 14 (LG B2) 6,460,927 19.9 1.7 4.0

ss715590768 5 (LG A1) 32,594,828 9.0 3.9 3.8

ss715592527 5 (LG A1) 2,516,484 3.3 2.3 3.7

ss715632432 18 (LG G) 57,206,151 43.6 3.0 3.7

ss715632412 18 (LG G) 57,013,050 26.7 3.0 3.6
fronti
1Position in the genome reported as base pairs (Genome assembly versionWm82.a2). 2Minor allele frequency reported in percentage. 3LOD, the logarithm of odds calculated as the negative
logarithm of the observed p-value for each model. The G×E model is described in Eq. 2 and BLINK is described in Huang et al. (2019).
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In addition, to assess the potential of differentiating response

classes using the significant SNPs, genotypes were classified as

tolerant (score<= 2.5), moderate (2.5< score =< 3.5), and

susceptible (score > 3.5). The classification distribution based

on the allelic combination of these SNPs showed a substantial

reduction in the susceptible class with the inclusion of the

favorable alleles of ss715605561 and ss715635349 (Figure 4).

On the other hand, the combination SNP: 0,0,0 had the highest

concentration of susceptible (27%) and moderate (60%)
Frontiers in Plant Science 07
genotypes and the lowest concentration of tolerant genotypes

(12%) (Figure 4). Interestingly, no susceptible genotypes were

observed in combinations SNP: 0,1,1, SNP: 1,0,0, SNP: 1,1,0, and

SNP: 1,1,1, indicating that the selected SNPs can accurately

select genotypes with higher tolerance response to off-target

dicamba exposure.
Discussion

Soybean tolerant to postemergence applications of dicamba

was developed under the premise of overcoming weeds resistant

to glyphosate as well as allowing rotation and/or mixtures of

herbicides to preserve biotechnology-based weed management

strategies and maximize its efficacy (Behrens et al., 2007). The

insertion of the bacterial gene dicamba monooxygenase (DMO)

from Pseudomonas maltophilia (Strain DI-6) encoding the

enzyme dicamba O-demethylase allows DT plants to

metabolize dicamba to 3,6-dichlorosalicylic acid (DCSA),

inactivating its herbicidal activity before it accumulates to

toxic levels when expressed from either the nuclear genome or

chloroplast genome of genetically engineered plants (Herman

et al., 2005; Behrens et al., 2007; Wang et al., 2016a). In 2016, the

first commercial dicamba-tolerant soybean cultivar was released

in the United States and rapidly took over nearly 55% of the

soybean acreage. As the incidents of off-target damage widely

spread across soybean-growing states, many reports in the

literature investigated the relationship between damage and
FIGURE 3

Distribution of off-target dicamba damage scores based on the allelic combination of SNPs ss715605561 (Chr. 10), ss715635349 (Chr. 19), and
ss715632413 (Chr. 18). Favorable alleles were represented as 1 whereas unfavorable alleles were represented as 0.
FIGURE 4

Classification of genotypes based on the allelic combination of
SNPs ss715605561 (Chr. 10), ss715635349 (Chr. 19), and
ss715632413 (Chr. 18). Favorable alleles were represented as 1
whereas unfavorable alleles were represented as 0.
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potential yield losses. Soybean is two to six times more sensitive

to dicamba when exposed at the early reproductive stage as

compared to the vegetative stage (Kelley et al., 2005; Griffin et al.,

2013; Robinson et al., 2013; Egan et al., 2014; Solomon and

Bradley, 2014; Soltani et al., 2016; Kniss, 2018). Canella Vieira

et al. (2022b) estimated yield losses caused by prolonged off-

target dicamba exposure in 553 soybean breeding lines derived

from 239 unique bi-parental populations. The study reported

yield losses of 8.8% for every increment in damage score on a 1–

4 scale with losses as high as 40%. Interestingly, certain genetic

backgrounds consistently showed natural tolerance to off-target

dicamba exposure with minimal symptoms and yield losses.

In this research, a total of 382 genetically diverse soybean

accessions ranging fromMG 3 to 5 were phenotypically screened

based on the severity of damage across three environments

subjected to prolonged off-target dicamba exposure. Although

each field showed homogenous off-target dicamba distribution,

it is practically impossible to assess the total dosage of dicamba

received by each experimental plot in specific growth stages and

throughout the season. Therefore, controlled dose-response

experiments in the absence of off-target dicamba exposure

should be conducted to precisely identify the threshold of

which the identified genomic regions can sustain tolerance

responses. Most accessions showed a moderate response,

either moderately tolerant or moderately susceptible, with

approximately 8% showing high tolerance (scores< 2) and

susceptibility (scores > 4). No differences in off-target dicamba

damage were observed across MG (Supplementary Table 1, MG

3: average damage of 2.8, MG 4: average damage of 2.7, MG 5:

average damage of 2.5). Late-maturing soybean genotypes are

associated with lower off-target dicamba damage due to a longer

window to detoxify from low rates of dicamba between planting

and flowering compared with early-maturing genotypes (Wax

et al., 1969; Weidenhamer et al., 1989; McCown et al., 2018).

Tolerant soybean accessions were identified across all MG,

confirming that natural tolerance to off-target dicamba may be

caused by physiological mechanisms other than the length of

time for recovery (Canella Vieira et al., 2022b). In addition, no

substantial geographical effects have been identified across

continents, although accessions derived from Asia (average

damage of 2.6) had on average lower off-target dicamba

damage as compared to accessions derived from the Americas

(average damage of 3.0). Specifically, South Korea (average

damage of 2.5), Japan (average damage of 2.6), and China

(average damage of 2.7) had on average lower off-target

dicamba damage as compared to accessions derived from the

United States (average damage of 2.3) and Costa Rica (average

damage of 3.1), although the number of accessions was highly

unbalanced across countries (Supplementary Table 1).

Plant introduction (PI) 424005 (average damage of 1.2,

South Korea), PI 424038-B (average damage of 1.3, South

Korea), PI 561701 (G88-20092, average damage of 1.4, United
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States), PI 603497 (average damage of 1.4, China), and PI 342434

(average damage of 1.5, Japan) were the five most tolerant

accessions (Supplementary Table 1). On the other hand,

PI 547862 (L83-570, average damage of 4.1, United States),

PI 552538 (Dunbar, average damage of 4.2, United States), PI

598124 (Maverick, average damage of 4.3, United States), PI

603675 (average damage of 4.5, China), and PI 597387 (Pana,

average damage of 4.5, United States) were the five most

susceptible (Supplementary Table 1). Interestingly, four out of

the five most susceptible accessions are genetically related to

cultivars that widely contributed to the genetic basis of modern

soybean cultivars in the United States (Gizlice et al., 1993; Gizlice

et al., 1994; Carter et al., 2004; Hyten et al., 2006; Vieira and

Chen, 2021). For instance, Maverick and Pana are derived from

LN86-4668, which is a progeny of Fayette (PI 518674, direct

progeny of PI 88788). PI 88788, which has been widely used as a

genetic source of resistance to soybean cyst nematode

(Heterodera glycine Ichinohe), is susceptible to off-target

dicamba (average damage of 3.5). In general, soybean [Glycine

max (L.) Merr.] shows a moderate response to off-target

dicamba, and yield losses are expected when prolonged

exposure occurs (Canella Vieira et al., 2022b). Furthermore,

genetic variation conferring higher tolerance to off-target

dicamba appears to be rare in landraces, highlighting the value

of the USDA Soybean Germplasm Collection to restore

economic-important alleles lost during domestication and

intensive breeding (Gizlice et al., 1993; Gizlice et al., 1994;

Carter et al., 2004; Hyten et al., 2006; Vieira and Chen, 2021).

This has been the case in multiple economically important traits,

including resistance to soybean cyst nematode (Anand et al.,

1988; Young, 1990), root-knot nematodes (Meloidogyne spp.)

(Luzzi et al., 1987), foliar feeding insects (van Duyn et al., 1971),

and brow stem rot (Phialophora gregata) (Chamberlain and

Bernard, 1968).

Two models were used to identify marker-trait associations

regulating the response of soybean to off-target dicamba. BLINK

minimizes false-positive associations and greatly improve

computational efficiency in larger datasets (Huang et al., 2019).

To account for possible underlying population structures

affecting the observed response to off-target dicamba in

different environments, a model including the first 10

principal components (PC) derived from decomposing the G

matrix as well as the interaction between each PC and the

environment was developed. In addition, this model allows the

inclusion of all observed phenotypes (three environments × two

replications per genotype) as opposed to only one adjusted mean

per genotype, substantial ly reducing the ‘Curse of

Dimensionality’ where the number of independent variables is

far higher than the number of samples that are often seen in

genomic studies (Nicholls et al., 2020). We observed that both

models identified significant associations between ss715635349

(Chr. 19) and ss715605561 (Chr. 10) and the response to off-
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target dicamba. The BLINK model identified additional

significant marker-trait associations on Chrs. 11 (ss715609879),

14 (ss715619759), and 18 (ss715632413), while the G×E Model

identified an additional significant marker-trait association on

Chr. 15 (ss715622838). The significant SNPs identified by both

models are located within candidate genes with annotated

functions involved with different phases of herbicide

detoxification in herbicides.

Phase I typically involves oxidation by cytochrome P450s or

hydrolysis by carboxylesterases. These reactions introduce a

reactive functional group suitable for subsequent metabolism and

detoxification since this initial oxidation step may not lead to

complete detoxification (Kreuz et al., 1996; Barrett, 2000). Phase

II detoxification reactions involve the conjugation of herbicides

with reduced glutathione or glucose and are catalyzed by

glutathione S-transferases or UDP-dependent glycosyltransferases

(Riechers et al., 2010). The SNP ss715635349 is located within the

gene Glyma19g37108, a uridine diphosphate (UDP)-dependent

glycosyltransferase gene. Within a 30-kb window from

ss715635349 (44,550,000 to 44,610,000 bp) there are another five

UDP-dependent glycosyltransferases genes (Genome Browser,

www.soybase.org ). Given the frequency of the favorable allele of

ss715635349, we hypothesize that the ability to complete phase II

detoxification of dicamba is relatively common (28.3%) and may

explain the overall moderate response of soybean to off-target

dicamba. Phase III of herbicide detoxification involves the active

transport (ATP-dependent) of non-phytotoxic herbicide

conjugates into the vacuole by proteins in the multidrug

resistance-associated protein (MRP) family or by other transport

mechanisms (Kreuz et al., 1996; Riechers et al., 2010). The SNP

ss715605561 is located within the MRP gene Glyma10g01700. The

low favorable allele frequency (8.0%) could explain the rare

occurrence of highly dicamba-tolerant soybean phenotypes.

Based on these results, we hypothesize that most soybean

genotypes conduct phase I ring hydroxylation and phase II

detoxification of dicamba with glucose but have a rate-limiting

step in the final phase III transport of non-phytotoxic dicamba-

glucose conjugates into the vacuole. However, further metabolite

profiling and subcellular transport studies are warranted to test this

hypothesis directly.

Although the response to off-target dicamba appears to be a

highly complex trait regulated by multiple genes involved in

several biochemical pathways, the combination of ss715605561

(Chr. 10), ss715635349 (Chr. 19), and ss715632413 (Chr. 18) can

accurately distinguish among tolerant to susceptible genotypes.

Accessions carrying the favorable alleles for these SNPs showed

the lowest average off-target dicamba damage and the highest

frequency of tolerant and moderate classes. Future plant

breeding research will utilize and apply these alleles in marker-

assisted selection programs targeting identification and

development of genotypes with higher tolerance to off-target
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dicamba. Additionally, molecular physiology research is

currently underway to investigate expression patterns and

functional roles of the alleles and encoded proteins identified

by our GWAS analysis.
Conclusions

Widespread adoption of DT production systems has

frequently resulted in yield losses in non-DT soybean

genotypes from off-target dicamba exposure. Identification of

genetic sources of tolerance and genomic regions conferring

higher tolerance to off-target dicamba in non-DT soybean

genotypes may sustain and improve other non-DT soybean

production systems, including the growing niche markets of

organic and conventional soybean. Herein, we report several

genetically diverse accessions that can be used as genetic sources

for improved tolerance to off-target dicamba. Two genomic

regions on Chrs. 10 and 19 were identified that may be

directly associated with the ability of soybean to detoxify

dicamba and/or transport non-phytotoxic dicamba metabolites

into the vacuole. Three significant SNPs accurately distinguished

between tolerant and susceptible genotypes. Intensive breeding

that targeted single economically important traits may have

caused selective sweeps where alleles conferring tolerance to

off-target dicamba were lost after many breeding cycles. With

the advancements in targeted gene-editing techniques, our

results may facilitate identifying and developing conventional

soybean cultivars with improved tolerance to off-target dicamba

as well as other synthetic auxin herbicides. Further research

investigating the physiological mechanisms underlying natural

tolerance to dicamba in soybean and dose-response studies in

controlled environments can help to determine the threshold at

which tolerant genotypes maintain minimal symptomology

following off-target dicamba exposure.
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