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YOLOv5 network for real-time
detection of crop and weed in
the field
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Introduction: Development of weed and crop detection algorithms provides

theoretical support for weed control and becomes an effective tool for the site-

specific weed management. For weed and crop object detection tasks in the

field, there is often a large difference between the number of weed and crop,

resulting in an unbalanced distribution of samples and further posing difficulties

for the detection task. In addition, most developed models tend to miss the

small weed objects, leading to unsatisfied detection results. To overcome these

issues, we proposed a pixel-level synthesization data augmentation method

and a TIA-YOLOv5 network for weed and crop detection in the complex field

environment.

Methods: The pixel-level synthesization data augmentation method generated

synthetic images by pasting weed pixels into original images. In the TIA-

YOLOv5, a transformer encoder block was added to the backbone to

improve the sensitivity of the model to weeds, a channel feature fusion with

involution (CFFI) strategy was proposed for channel feature fusion while

reducing information loss, and adaptive spatial feature fusion (ASFF) was

introduced for feature fusion of different scales in the prediction head.

Results: Test results with a publicly available sugarbeet dataset showed that the

proposed TIA-YOLOv5 network yielded an F1-scoreweed, APweed and

mAP@0.5 of 70.0%, 80.8% and 90.0%, respectively, which was 11.8%, 11.3%

and 5.9% higher than the baseline YOLOv5 model. And the detection speed

reached 20.8 FPS.
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Discussion: In this paper, a fast and accurate workflow including a pixel-level

synthesization data augmentation method and a TIA-YOLOv5 network was

proposed for real-time weed and crop detection in the field. The proposed

method improved the detection accuracy and speed, providing very promising

detection results.
KEYWORDS

weed detection, deep learning, object detection, YOLO, precision agriculture, site-
specific weed management
1 Introduction

During the process of crop growth, weeds appear randomly

in the field and compete with crops for water, nutrients and

sunlight, leading to a negative effect on crop yield and quality

(Zhang, 2003; Lee et al., 2010). Research shows that weed

competition may cause crop yield loss as high as 34%

(McCarthy et al., 2010; Gao et al., 2018). Weed control has

become one of the most important tasks in modern agricultural.

Chemical and mechanical weeding campaigns are the two main

means adopted at present. However, the overuse of herbicides by

chemical weeding operations has resulted in serious

environmental pollution problems. Mechanical weeding

operations by tillage or cultivation of soil have been widely

used for crops planted in rows, but they could hardly remove

intra-row weed without assistance from a target detection

module and may cause severe crop damage. In order to solve

these problems, the concept of site-specific weed management

(SSWM) was introduced, which could provide accurate target

information for both the herbicide spraying system and

mechanical weeding equipment (Lottes et al., 2018).

The key of SSWM is the rapid and accurate detection of

target. For chemical weeding, the detection target is weeds, while

for mechanical weeding, the detection target is crops for

reducing crop damage rate. Therefore, rapid and accurate

detection of both crops and weeds is very important for

SSWM operations. At present, visible-near infrared (Vis-NIR)

spectroscopy and machine vision are two main techniques used

for crop and weed detection in the field. The Vis-NIR

spectroscopy technique shows absolute advantage in detection

speed, but it could hardly distinguish the weak spectral difference

between crops and weeds in complicated outdoor environment.

In addition, the detection region of Vis-NIR detector is limited,

making this technique not suitable for crop and weed

discrimination in the field (Wang et al., 2019). Compared with

the Vis-NIR spectroscopy, machine vision could acquire

information in a large area and provide accurate location

information in the field of view. The image processing
02
methods for machine vision can be grouped into conventional

hand-crafted feature-based method and deep learning-based

method. The conventional image processing method trains

machine learning models based on color, texture, shape and

other hand-crafted features. It has a simple model training

process, but the model generalization ability and adaptability

are low, hindering its practical applications under different

circumstances. Moreover, the image preprocessing of the

conventional method is cumbersome (Wang et al., 2022c). In

recent years, with the rapid development of convolutional neural

network (CNN) for image and video processing, deep learning-

based image processing method has been widely studied and

applied in the field of agricultural engineering (Wang et al.,

2020a; Hasan et al., 2021). Deep learning-based object detector

shows great advantages in target recognition, positioning and

category determination. Jiang et al. (2020) established a grap

convolutional network (GCN) map by extracting weed feature

map and Euclidean distance through a CNN network, and

enriched image features by using the GCN map. The

recognition accuracy of GCN-ResNet-101 model on four weed

datasets reached 97.80%, 99.37%, 98.93% and 96.51%,

respectively, but the model convergence process was slow, and

the model training was difficult. Furthermore, the network

structure cannot be set too deep due to the limitation of the

GCN network, otherwise it would cause the vanishing gradient

problem. Kim and Park (2022) trained a multi-task semantic

segmentation-convolutional neural network (MTS-CNN) model

based on U-Net for the semantic segmentation of weeds and

crops. Considering the large difference in the loss function

between crops and weeds, they designed the cross-entropy loss

and dice loss models between weeds, crops and both (weeds and

crops) in the loss function stage to increase the stability of the

network. The mean intersection over union (MIoU) trained on

three public datasets was 91.61%, 83.72% and 82.60%,

respectively. However, the model improvement was not based

on the characteristics of specific objects (crops and weeds),

resulting in poor generalization of the model. Peng et al.

(2022) proposed an improved RetinaNet model to detect
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weeds among rice crops. The convolution structure was

modified to reduce the loss of semantic information, the

Efficient Retina Head (Lin et al., 2017) was designed in the

head network to reduce memory consumption and inference

time, and the regression loss function was designed by

combining the Smooth loss (Girshick, 2015) and generalized

intersection over union (GIoU) loss (Rezatofighi et al., 2019).

Results showed that the average weed recognition accuracy of

the model was 94.1%, which was 5.5% and 9.9% higher than the

average recognition accuracy of the baseline network RetinaNet

and YOLOv3, respectively. Although the model had some

improvements in the prediction head, it did not make full use

of the rich semantic information extracted from the backbone

network, which cut the correlation between the feature maps. As

a result, it was unfavorable for the practical application of

the model.

Therefore, the overall objective of this work was to develop a

fast and accurate model for weed and crop object detection in the

field. Specifically, a pixel-level synthesization data augmentation

method was proposed to deal with the problem of unbalanced

sample distribution of weed and crop. An improved YOLOv5

network named the TIA-YOLOv5 was proposed, in which a

transformer encoder block was added to the backbone to

improve the sensitivity of the model to weeds, a channel feature

fusion with involution (CFFI) strategy was proposed for channel

feature fusion while reducing information loss, and adaptive

spatial feature fusion (ASFF) was introduced for feature fusion

of different scales in the prediction head. Lastly, the effectiveness of

the proposed pixel-level synthesization data augmentation

method and TIA-YOLOv5 network was tested with a publicly

available sugarbeet dataset for sugarbeet and weed detection.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Proposed method

YOLO series networks have been widely used in the field of

agriculture for object detection (Wang et al., 2022b; Wang et al.,

2022e). By now, the YOLO series models have developed into

the seventh version, in which YOLOv5 is the most widely used

for object detection. YOLOv5 is mainly composed of a (Cross-

stage-Partial-connections) CSP-Darknet53 (Bochkovskiy et al.,

2020) as the backbone, a path aggregation network (PANet) as

the neck and a YOLO as the prediction head (Glenn, 2020). To

improve the detection accuracy of crop and weed in the field, the

YOLOv5s was selected as the baseline network in this work. The

YOLOv5s is a light object detector with high performance,

making it suitable for real-time object detection and easy to

deploy on an edge computing platform in the field.

The architecture of the proposed TIA-YOLOv5 model is

depicted in Figure 1. The model includes a backbone, a neck and

a prediction head. To deal with the problems caused by

occlusion, high density and sharp scale change in the current

weed object detection scenario, the TIA-YOLOv5 network has

three improvements compared with the baseline YOLOv5

model. Firstly, a transformer encoder block (Zhu et al., 2021)

was added into the backbone to increase the feature extraction

capability of the backbone network. Secondly, a channel feature

fusion with involution (Li et al., 2021a) (CFFI) module was

designed to reduce the loss of semantic information caused by

convolution operations in the feature fusion stage and make full

use of the rich information of the feature map at the end of the

backbone. And thirdly, adaptively spatial feature fusion
FIGURE 1

Architecture of the proposed TIA-YOLOv5 network. (* means multiply).
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(Liu et al., 2019) (ASFF) was introduced to enhance the

sensitivity of the prediction head to crops and weeds.

2.1.1 Transformer encoder
As the backbone of YOLOv5s, the CSP-Darknet53 is

mainly composed of CSP bottleneck blocks, which is based

on residual mechanism. The combination of transformer

(Dosovitskiy et al., 2020) and CSP module is getting more

attention by researchers recently due to its strong feature

extraction capability. In the backbone, the transformer

encoder block was deployed to replace the bottleneck of CSP-

Darknet53. The transformer encoder block can get small target

information better in the global information through self-

attention mechanism, and has better detection performance

in high-density crop images. The structure of the transformer

encoder block is shown in Figure 2. It is mainly composed of a

multi-head attention sub-layer and a multilayer perceptron

(MLP) feed-forward neural network sub-layer with residual

connections between them. In this work, the transformer

encoder block was placed at the backend of the backbone,

because the output of the backbone network is a low-resolution

feature map, which will reduce the computational load of the

transformer encoder block (Zhu et al., 2021).
Frontiers in Plant Science 04
2.1.2 Channel feature fusion with involution
(CFFI)

Path aggregation network (PANet) (Liu et al., 2018), which

pools features from pyramid levels and fuses features of different

scales, is widely used in object detection networks including

YOLOv5. As the high-level feature map of the backbone, feature

{C5} contains rich semantic information. To integrate with the

mapping of the feature {C4} in the backbone, 1 × 1 convolution

layers were adopted to reduce the channel number of feature

{C5}, through which the calculation efficiency was significantly

improved. However, the reduction of channel number would

inevitably result in serious information loss (Luo et al., 2022). To

reduce this information loss, the CFFI was added between the

backbone and feature pyramid, which enabled the semantic

information to be fully utilized. Based on this concept, in

order to take full advantage of the rich features in the high-

level channels of the backbone and improve the performance of

the PANet, involution operation (Li et al., 2021a) was adopted.

Involution is characterized by light weight, high efficiency and

flexibility, and has achieved good results in various visual tasks.

Different from convolution operation, involution has channel

invariance and spatial specificity, enabling it to overcome the

difficulty of modeling long-range interactions (Li et al., 2021a).
FIGURE 2

Structure of transformer encoder block (Zhu et al., 2021).
FIGURE 3

Schematic illustration of involution (Li et al., 2021a).
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The formula of the involution kernel isHi,j∈RK×K×1 , whereHi,j

generates according to the function F at a pixel (i, j), K is the

kernel size of involution. The structure of involution is shown in

Figure 3. In involution, the size of the input feature map directly

determines the size of involution kernel, therefore the size of the

kernel and the input feature map automatically aligns in the

spatial dimension. The advantage of this is that the involution

kernel can adaptively allocate the weights over different positions

(Li et al., 2021a).

It was observed that the channel number of the feature map

{C5} can maximize the performance of involution. Therefore,

the CFFI was introduced to directly reuse the rich semantical

information of the feature {C5} (Luo et al., 2022). Firstly, a 1 × 1

convolution with channel number of 768 was used to reduce the

channel number of the feature {C5}. Then an involution with

kernel size of 1 × 1 and channel number of 768 was used to

aggregate spatial information. Finally, a concat operation was

conducted to connect the resulted feature maps of convolution

and involution, as shown in Figure 4. Through these operations

of CFFI, the channel number of feature maps was reduced, as

well as the loss of semantic information caused by direct

convolution. Therefore, the CFFI functioned as a bridge

between the backbone and neck, which enhanced the

representation ability of the feature pyramid.

2.1.3 Multiscale feature fusion
YOLOv5 is a single-stage detector. The main problem of

YOLOv5 is the inconsistency between feature maps of different

scales (Liu et al., 2019). For weed detection task, there are large

scale differences between crops and weeds, resulting in

inaccurate positioning and identification of objects. In order to

make full use of the multi-layer features output from the neck,

the adaptively spatial feature fusion (ASFF) (Liu et al., 2019) was

introduced. Unlike the bi-directional cross-scale connections

and weighted feature fusion (BIFPN) and learning scalable

feature pyramid architecture (NAS-FPN) that use cascaded

multi-level feature fusion, features of different scales were

rescaled and adaptively fused in ASFF to filter out the

inconsistency during training. The structure of the ASFF is

shown in Figure 5.

There are three resolutions of feature maps in YOLOv5, P2,
P3, and P4. For feature map of Pi(i∈{2, 3, 4}) , the resolution of
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other Pn(n≠i) feature maps was adjusted so that all feature maps

have the same size. The ASFF modifies the upsampling and

downsampling strategies for the three feature maps. For up-

sampling, the 1 × 1 convolution was used to reduce the channel

number of feature maps, then interpolation was conducted to

improve the resolution of feature maps. Two downsampling

strategies were used; For the feature map of 1/2 scale, the 3 × 3

convolution with a stride of 2 was used to modify the channel

size and resolution simultaneously, and for the feature map of 1/

4 scale, the maximum pooling with a stride of 2 was added before

the convolution layers with a stride of 2. The last step of ASFF

was to adaptively learn the spatial weights of feature map fusion

under multiple scales for adaptive fusion (Liu et al., 2019). The

formula of ASFF is as Eq. (1).

ylij = a l
ij · x

1!l
ij + b l

ij · x
2!l
ij + g l

ij · x
3!l
ij (1)

Where ylij is the (i,j)-th vetor of the output feature map yl

between channels, and xn!l
ij represents the feature vector at the

position (i, j) on the feature map adjusted from the n level to the

level. a l
ij, b l

ij, g l
ij, are the spatial weights corresponding to the

three levels of feature maps, which were obtained by network

adaptive learning. a l
ij, b l

ij and g l
ij are subjected to the Eq. (2).

a l
ij + b l

ij + g l
ij = 1

a l
ij, b l

ij, g l
ij ∈   0, 1½ � (2)

a l
ij =

el
l
aij

el
l
aij + e

ll
bij + e

ll
gij

By adopting this strategy, adaptive fusion was carried out on

each feature scale, which greatly reduced the instability of the

model caused by the scale changes between crops and weeds.
2.2 Dataset preparation

2.2.1 Image dataset
In this work, a publicly available sugarbeet image dataset

(Chebrolu et al., 2017) was used. The images were captured with

a readily available agricultural robotic platform, BoniRob, on a
FIGURE 4

Channel feature fusion with involution.
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sugar beet farm near Bonn in Germany in spring 2016. All

images are in RGB format and the resolution is 1296 pixel × 966

pixel. The dataset includes images of sugar beet at seedling and

growth stages as well as weeds in the field (Chebrolu et al., 2017).

In this study, a total of 4500 images were selected as our raw

dataset. LabelImg (https://github.com/tzutalin/labelImg) was

used to label crop and weeds in the images and provide

corresponding label files for model training.

2.2.2 Image preprocessing
The balance of samples determines the robustness of the

trained models. During the process of labeling the sample data, it

was found that the sample number of weeds and sugarbeet in the

public image dataset was seriously unbalanced, with the ratio of

sugarbeet to weeds was about 17:3. To increase the number of

weed samples, a pixel-level synthesization data augmentation

method was designed. Six kinds of weeds with different sizes and

shapes were extracted from original images, then these weed
Frontiers in Plant Science 06
pixels were inserted randomly into images to synthesize new

images containing more weed objects. The data augmentation

process is shown in Figure 6. Sub-images (Figure 6A) that only

contained weeds and background were cropped from the

original images. The background and weeds in the sub-image

were then segmented using the region growth method (Angelina

et al., 2012). The extracted weed pixels are shown in Figure 6B.

These extracted weed pixels were merged into original images

randomly to obtain new images (Figure 6C) containing more

weed objects. After data augmentation, the number of total

images reached 5536, and the sample ratio of sugarbeet to

weeds was 17:9.

The enhanced dataset containing 4100 original images and

1436 synthetic images was divided into a training set, a

validation set and a test set with a ratio of 8:1:1. Since the

pixel-level synthesization data enhancement method is a process

of data expansion based on the original images, to avoid the

repetition of weeds and crops in the training set and test set, the
B CA

FIGURE 6

Image augmentation process for increasing the number of weed objects. (A) Sub-image containing only weeds and background, (B) Extracted
weed pixels, (C) Synthetic new images containing more weed objects.
FIGURE 5

Schematic diagram of adaptively spatial feature fusion (ASFF).
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obtained synthetic images and corresponding original images

that were used for date augmentation were only used for model

training. As a result, the resulting training, validation and test set

contained 4395, 500 and 641 images, respectively.
2.3 Experiment design

The model training and testing tasks in this work were

conducted on a PC equipped with a 11th Gen Intel i9-11900K

CPU and a NVIDIA GTX3080Ti GPU. Pytorch 1.10.2

framework was used to build the networks. For parameter

settings, the pretrained weights of YOLOv5s on the COCO

dataset was loaded as initial weights. The input image size was

1296 × 966, the training epochs was set to 100, and the batch size

was set to 8. To verify the effect of the data augmentation method

on the proposed TIA-YOLOv5, conventional data augmentation

method including random translation, rotation and scaling was

also used for comparison. Six groups of ablation experiments

were conducted to analyze the effects of each module of the TIA-

YOLOv5 network. Finally, the TIA-YOLOv5 were also

compared with state-of-the-art object detection models

including SSD (Liu et al., 2016), Faster RCNN (Girshick,

2015), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 and

YOLOv7 (Wang et al., 2022a) networks.
2.4 Evaluation metrics

Precision, recall, average precision (AP), mean average

recognition accuracy (mAP@0.5 and mAP@0.5:0.95), F1-score

and processing speed in terms of frame per second (FPS) were

used to evaluate the model performance. The mAP is the average

of the AP calculated for all the classes, where N is the number of

categories. The mAP@0.5 means that the mAP calculated at

intersection over union (IoU) threshold of 0.5. The mAP@

0.5:0.95 means the average mAP over IoU thresholds from 0.5

to 0.95 with an interval of 0.05. The formulas for precision,

recall, F1-score, AP and mAP are as follows.

Precision =
True   Positive

True   Positive + False   Positive
� 100% (3)

Recall =
True   Positive

rue   Positive + False  Negative
� 100% (4)

F1 − score = 2� Percision� Recall
Percision + Recall

� 100% (5)

AP =

Z 1

0

Percision Recallð Þd Recallð Þ � 100% (6)
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mAP =
oN

1

Z 1

0

Percision Recallð Þd Recallð Þ

N
� 100% (7)
3 Results and discussion

3.1 Performance of dataset
augmentation

To evaluate the performance of the proposed pixel-level

synthesization dataset augmentation method, commonly used

conventional dataset augmentation methods including random

translation, rotation and scaling were used for comparison. The

number of samples in the training, validation and test set for

each method was set the same. The results are shown in Figure 7.

Because the precision, recall, F1-score, and AP values for

detecting sugarbeet were all above 90% for all models, they

were not listed and discussed as performance indicators. The

YOLOv5 model without data augmentation performed slightly

better than the ‘YOLOv5+conventional augmentation method’

model. This is because the ‘YOLOv5+conventional

augmentation method’ replaced 1436 original images with

corresponding processed images by the conventional data

augmentation method to keep the same number of samples in

the training set. The proposed pixel-level synthesization method

were superior to the conventional method in terms of all the six

indicators. The conventional data augmentation method could

enhance the dataset to some extent, however, the lack of weed

samples that results in the unbalanced data distribution is the

key problem in this work, which cannot be solved by the

conventional augmentation method. The pixel-level

synthesization method was designed to increase the number of
FIGURE 7

Performance of data augmentation methods.
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weed samples in the dataset, further to alleviate the unbalanced

phenomenon of data distribution. From Figure 7 it can be

observed that the F1-scoreweed, APweed and mAP@0.5 were

improved to 61.0%, 77.7% and 88.4%, with 4.7%, 14.3% and

5.0% absolute increase compared with the conventional data

augmentation method, respectively, validating the effect of the

pixel-level synthesization method.
3.2 Ablation study

Ablation study was conducted to evaluate the effect of

different modules of the proposed TIA-YOLOv5 network. The

results of ablation study are shown in Table 1, from which it can

be seen that the Recallweed, F1-scoreweed, APweed, mAP@0.5 and

mAP@0.5:0.95 of the ‘YOLOv5+Transformer’ model increased

by 11.3%, 3.6%, 8.3%, 4.4% and 5.9%, respectively, compared

with the baseline YOLOv5 network. These improvements

indicate that the transformer encoder block could improve the

sensing ability of the YOLOv5 network for weeds, making it

easier to capture the weed objects from the complicated context

information. In addition, the calculation cost of the transformer

encoder block was less than that of the original bottleneck

module of the YOLOv5 network, which improved the FPS of

the model. The combination of the pixel-level synthesization

augmentation method and transformer encoder block reduced

the additional computer resource consumption caused by the

increase of samples. Although adding the CFFI module alone

cannot improve the model performance on identifying crops

and weeds significantly, the Recallweed, F1-scoreweed, APweed and

mAP@0.5 of the ‘YOLOv5+Transformer+CFFI’ model reached

86.0%, 62.5%, 79.8% and 89.4%, with an absolute increase of

10.3%, 4.3%, 10.3% and 5.3% compared with the baseline

network, when combining the transformer encoder block with

the CFFI module. This is because the CFFI module could make

full use of the rich context information captured by the

transformer encoder block, realizing the reuse of the

information extracted from the backbone network and further

providing rich front-end information for feature fusion layers in

the neck (Zhu et al., 2021). The ASFF module could further

optimize the network by applying multi-scale feature fusion in

the prediction head. In this work, the feature maps of were fused
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to reduce the instability of the model caused by the scale

difference of feature maps (Liu et al., 2019). With the

combination of the transformer encoder block, CFFI and

ASFF modules, the proposed TIA-YOLOv5 provided the best

performance among the compared networks, with the Recallweed,

F1-scoreweed, APweed and mAP@0.5 of 90.0%, 70.0%, 80.8% and

90.0%, respectively. Comparing the TIA-YOLOv5 with the

baseline network, the improvement of mAP values is not very

evident. This is because the mAP is determined by the detection

accuracy of both crop and weed, and the APcrop is already 99.2%

for the baseline network. With respect to the F1-scoreweed,

APweed, the absolute improvement by the TIA-YOLOv5 is

11.8% and 11.3% compared with the baseline network, which

is a promising result for weed object detection in the field. In

general, the TIA-YOLOv5 network could provide higher weed

detection accuracy and remain comparable processing speed

relative to the YOLOv5 network.
3.3 Comparison with other object
detection networks

The proposed TIA-YOLOv5 was compared with the SSD,

Faster RCNN, YOLOv3, YOLOv4 and YOLOv7 networks in

terms of Recallweed, Precisionweed, F1-scoreweed, mAP@0.5 and

FPS to verify its effectiveness. The results are shown in Table 2.

The Faster RCNN is a two-stage object detector that consists of a

region of interest (ROI) generation step and a feature extraction

step. It has been applied in agriculture for object detection tasks

(Li et al., 2021b; Zhao et al., 2022). For the weed and crop

detection task in this work, the Faster RCNN yielded an F1-

scoreweed of 60.7%, an mAP of 86.6% and an FPS of 5.8. The

detection accuracy is competitive, however, the detection speed

is too slow, which should be caused by the separated regression

and classification networks of the Faster RCNN (Wang and Liu,

2021), making this model hardly to be used in the field for real-

time weed detection. The SSD is a one-stage object detector, and

is significantly faster than the Faster RCNN in FPS. However, the

SSD did not perform well for small target detection, with the F1-

scoreweed 14% and the mAP 8.6% lower than the TIA-YOLOv5,

because it tended to use the low-level feature maps for small

target detection. The YOLOv3 (Redmon and Farhadi, 2018) is
TABLE 1 Ablation study on the effect of different modules of the proposed TIA-YOLOv5 network.

Model Recallweed Precisionweed F1-scoreweed APweed mAP@0.5 mAP@0.5:0.95 FPS

YOLOv5 0.757 0.474 0.582 0.695 0.841 0.520 21.5

YOLOv5+Transformer 0.870 0.481 0.619 0.778 0.885 0.579 21.7

YOLOv5+CFFI 0.840 0.480 0.610 0.779 0.885 0.581 19.1

YOLOv5+Transformer+CFFI 0.860 0.492 0.625 0.798 0.894 0.586 20.2

YOLOv5+Transformer+CFFI+ASFF 0.900 0.573 0.700 0.808 0.900 0.580 20.8
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the most classical network in the YOLO series, and the baseline

YOLOv5 in this work was developed from YOLOv3. The

YOLOv3 with squeeze-and-excitation networks (SE-YOLOv3)

(Hu et al., 2018) uses feature pyramid networks (FPN) to fuse

feature maps of different levels. The FPN has a relatively simple

architecture and does not need much computing resource,

enabling the SE-YOLOv3 has an absolute superiority in

detection speed while maintaining acceptable detection

accuracy (Wang et al., 2020b). With the appearance of PANet,

the combination of the FPN and PANet has significantly

improved the model performance on the cross-scale fusion

(Wang et al., 2022d). The YOLOv4 network also uses this

strategy. Compared with the SE-YOLOv3 and YOLOv4

models, although our proposed TIA-YOLOv5 network

performed slightly inferior in FPS, the mAP@0.5 increased by

6.4% and 3.7%, respectively. The newly emerged YOLOv7

network adopts the extended efficient layer aggregation

networks (E-ELAN), yielding an F1-scoreweed of 60.4% and an

mAP of 87.2%. It was superior to all the compared networks

expect the TIA-YOLOv5. With respect to processing speed,
Frontiers in Plant Science 09
when deployed on a Jetson NX (NVIDIA, US) computing

platform, the TIA-YOLOv5 model could yield an FPS of about

70 after optimization by the TensorRT SDK (https://github.com/

NVIDIA/TensorRT) provided by NVIDIA, which can meet the

requirement of real-time application in the field. Overall, our

proposed TIA-YOLOv5 provided the best performance for

sugarbeet and weed detection among the five compared models.

Several images were selected from the test set for visualizing

the detection performance of the TIA-YOLOv5 network, as

shown in Figure 8. The yellow boxes in Figures 8 a1 and a2

are the weeds that were missed by the baseline YOLOv5 network

but detected by our TIA-YOLOv5. The yellow box in Figure 8 a3

is the region where weed was detected repeatedly by the

YOLOv5 while the TIA-YOLOv5 detected them correctly.

From this visualization comparison between the YOLOv5 and

TIA-YOLOv5, it can be observed that the detection of small

object is a challenging task and the YOLOv5 tends to miss these

small objects. By adding the transformer encoder block, CFFI

and ASFF, the TIA-YOLOv5 has stronger ability for sensing

small objects and could effectively avoid problems such as
B1

A1

B2

A2

B3

A3

FIGURE 8

Visualization of YOLO5 (Figures a) and TIA-YOLOv5 (Figures b) for detecting sugarbeet and weed.
TABLE 2 Performance comparison of five networks for sugarbeet and weed detection.

Network Recallweed Precisionweed F1-scoreweed mAP@0.5 FPS

Faster RCNN 0.810 0.486 0.607 0.866 5.8

SSD 0.740 0.451 0.560 0.814 12.4

SE-YOLOv3 0.800 0.481 0.600 0.836 24.3

YOLOv4 0.835 0.472 0.603 0.863 21.2

YOLOv7 0.780 0.493 0.604 0.872 19.2

TIA-YOLOv5 0.900 0.573 0.700 0.900 20.8
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missed, false and repeated detection, making this model suitable

for real-time detection of weeds and crops in the field.
4 Conclusion

In this work, a fast and accurate workflow was proposed for

weed and crop object detection in the field. Specifically, a pixel-

level synthesization data augmentation method that generated

synthetic images by pasting weed pixels into original images was

proposed to deal with the problem of unbalanced data

distribution of weed and crop. An improved YOLOv5 network

named the TIA-YOLOv5 was developed for weed and crop

objection detection. In the backbone of the TIA-YOLOv5, a

transformer encoder block was used to improve the sensitivity to

small weed objects. In the neck, the CFFI was proposed for

channel feature fusion and reducing information loss. In the

prediction head, the ASFF was introduced for feature fusion of

different scales. Test results with a publicly available sugarbeet

dataset showed that the proposed TIA-YOLOv5 network yielded

an F1-scoreweed, APweed and mAP@0.5 of 70.0% 80.8% and

90.0%, respectively, which was 11.8%, 11.3% and 5.9% higher

than the baseline YOLOv5 model. And the detection speed

reached 20.8 FPS. When deployed on a Jetson NX computing

platform, the TIA-YOLOv5 model could yield an FPS of about

70 after optimization by the TensorRT SDK, which is very

promising for real-time weed and crop detection in the field.

Future work will be focused on developing an SSWM system

incorporating the trained weed detection model.
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