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Introduction: Intercropping has a potential to reduce the CO2 emission from

farmlands. Limited information is available on the underlying reasons.

Methods: This study investigated the effect of milk vetch (Astragalus sinicus L.)

(MV), rapeseed (Brassica napus L.) monoculture (RS) and intercropping

(Intercrop) on soil CO2 emissions, moisture and temperature in a bucket

experiment during 210 days from October 2015 to May 2016 on Chongqing,

China.

Results: The results showed that soil CO2 efflux of MV, RS and Intercrop was

1.44, 1.55 and 2.08 mmol·m-2·s-1 during seedling and stem elongation stages

and 3.08, 1.59 and 1.95 mmol·m-2·s-1 during flowering and podding stages. At

seeding and stem elongation stages Intercrop had 1.4 times higher soil CO2

efflux than themean of MV and RS. In contrast, MVhad 1.6 times higher soil CO2

efflux than Intercrop thereafter, which shows it was inhibited if milk vetch

presents as Intercrop only. Decreased sensitivity of soil respiration to

temperature in 1.4 times and lower soil moisture by Intercrop were found

compared to MV. Intercrop decreased soil moisture, especially at the seedling

and stem elongation stages, compared to the monoculture. The fluctuation on

soil respiration in RS and Intercrop was slight with changes in soil moisture.
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Conclusion: Thus, milk vetch-rapeseed system has a potential to decrease CO2

emission from farmland, however soil moisture should be regulated properly.
KEYWORDS

legume-brassica intercrops, greenhouse gas emission, soil temperature, soil moisture,
SOM balance
1 Introduction

The CO2 production from agriculture accounts for 23% of

anthropogenic greenhouse gas emissions (Smith et al., 2007). If

intercropping with legumes or cereals is introduced (Hu et al.,

2016; Cui et al., 2019), this emission can be substantially reduced

(Gan et al., 2011), because such systems have a high potential to

sequester soil organic carbon (SOC) by reducing soil respiration

(Chai et al., 2014; Hu et al., 2015). Namely, pea - maize or wheat

- maize intercropping reduces soil respiration from maize strips

during the growing season (Li et al., 2001; Qin et al., 2013); pea -

oat intercropping reduces CO2 emission during the period with

higher precipitation; barley - pea intercropping also results in

10% higher soil C sequestration than barley monoculture

(Chapagain and Riseman, 2014).

Agricultural ecosystems increase SOC sequestration up to

4% if intercropping with legumes or cereals is introduced

compared to crop monoculture (Cong et al., 2015). This is

associated with: i) regulation of crop growth by intercropping,

and thus, reduction of root exudates and following CO2 efflux

(Dyer et al., 2012; Qin et al., 2013); ii) changes in the

composition of microbial community structure and decrease

in biomass and functional diversity under one of the species

(Zhou et al., 2019b) or stimulation of soil microbial biomass

growth under intercropping (Latati et al., 2017), and iii) the

regulation of soil CO2 efflux by plant species composition, which

may be suppressed by reduce of net primary production because

of water availability shortage (Zhou et al., 2019a). Therefore,

various intercropping systems (e.g., rapeseed (pea) - maize,

wheat-soybean (maize)) can have the potential to reduce the

soil CO2 efflux from farmland (Li et al., 2001; Chai et al., 2014).

Soil hydrothermal factors play an important role in CO2

efflux from farmland (Hursh et al., 2017). Temperature is the

most important factor affecting soil respiration, and there is a

positive relationship between them (Hursh et al., 2017). Plant

community composition affects soil respiration's temperature

sensitivity. The temperature sensitivity of soil respiration is

affected by plant community composition (Mauritz and

Lipson, 2021). Higher temperatures are generally expected to

enhance soil C losses due to increased soil decomposition

(Crowther et al., 2016; Bond-Lamberty et al., 2018). The
02
sensitivity of respiration to temperature changes with the soil

water content, substrate availability, and species composition

(Geist and Lambin, 2004). The combined factors of soil

temperature and moisture would better predict soil respiration

(Feng et al., 2018). Soil moisture also strongly affects the changes

in SOM (Jassal et al., 2008; Wang et al., 2014), respiration

(Bouma et al., 1997), and microbial activity (Hallett and

Young, 1999; Drenovsky et al., 2004), and the synergistic

relationship between soil respiration and moisture can greatly

increase or decrease the decomposition rate of SOM, depending

on the direction of moisture change (Sierra et al., 2015).

However, it is not yet clear how hydrothermal factors will be

changed in the intercropping of the legume with brassica and

what the response of CO2 emission will be.

Milk vetch (Astragalus sinicus L.) intercropping with

rapeseed (Brassica napus L.) can enhance farmland

productivity (Zhou et al., 2018), change the microbial

community structure and decrease microbial biomass and

functional activity in the rapeseed rhizosphere (Zhou et al.,

2019b). To verify the potential of intercropping to reduce the

CO2 emission, the soil respiration from milk vetch - rapeseed

system was monitored together with the temperature and

moisture for the entire development of crops and compared to

the monoculture. Considering that intercropping can improve

water use efficiency (Ren et al., 2017), and can decrease soil

temperature (Gong et al., 2019) because of the large soil surface

cover, it was hypothesized that soil CO2 efflux would be lower

compared to the monocultures. The objective of the experiment

was to explore the effects of intercropping on soil respiration and

to determine the relationship between soil respiration and

hydrothermal factors.
2 Materials and methods

2.1 Experimental site

The study was conducted from October 2015 to May 2016

on Southwest University experimental farm (29°81′N, 106°41′
E), Beibei, Chongqing, China, which belonged to humid

subtropical monsoon climate zone (Figure 1). Soils (0-15 cm)
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were classified as dystric Regosols with a pH of 6.30, the total C

content of 8.6 g kg-1 and total nitrogen content of 0.97 g kg-1.
2.2 Experimental design

The experiment was conducted in buckets (0.7 m in height,

0.4 m diameter at the bottom, and 0.57 m at the top. V = 0.12

m3), that were installed outside. Soil for the experiment was

collected at 0-15 cm depth from the Southwest University

experimental farm. All soil was well-mixed after being air-

dried. Each pot contained 50 kg of dry soil in which the

fertilizers (0.10 g N kg-1, 0.10 g P2O5 kg
-1 and 0.10 g K2O kg-1

dry soil) was mixed before sowing. Make sure all soil was

compacted into the buckets so that the density was equal to

reduce the effect on soil respiration.

Three cropping systems were designed: a) monoculture milk

vetch (MV): Leping variety sown by broadcasting with 1.0 g

seeds in each bucket; b) monoculture rapeseed (RS): 94005

variety was sown in holes with 2 plants left after seedling

emergence; c) milk vetch intercropping with rapeseed
Frontiers in Plant Science 03
(Intercrop): rapeseed was sown in holes with 2 plants after

seedling emergence and milk vetch was sown by broadcasting on

both sides (0.5 g on each side) (Figure 2). Crops were sown in

October 2015 and were harvested in May 2016. The experiment

had a randomized complete block design with six replicates.
2.3 Soil respiration: Soil CO2 flux

Soil respiration was quantified using an infrared gas analyzer

(Li-Cor 6400xt photosynthesis system installed a 6400-09 soil

CO2 flux chamber, LI-COR Inc., Lincoln, USA). Cylindrical

PVC collars (height, 0.05 m; diameter, 0.11 m) were placed at the

core of buckets and inserted one day before measurement to

reduce the disturbance of the soil. Each bucket had its own PVC

collar. Soil respiration measurements were conducted once per

15 days from 1 November 2015 to 1 May 2016. Each treatment

was measured in six replications, and 3 cycles were measured at

every turn for each PVC collar. To minimize the influence of the

diurnal variation on soil respiration, the measurements were

carried out from 9:00 to 11:00 a.m.
FIGURE 2

Schematic diagram of the plant cultivation.
FIGURE 1

Mean monthly temperature and precipitation during the experiment.
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2.4 Soil hydrothermal factors

Soil temperature (°C) outside the flux chamber at a depth of

5 cm was monitored simultaneously with soil respiration by the

infrared gas analyzer. Soil moisture (m3 m-3) outside the flux

chamber at a depth of 5 cm was measured with a handheld

multifunction reader (ProCheck connected GS3 sensor,

Decagon Inc., USA). The final soil moisture value of each

experimental unit was the average of five values taken from

the same unit. Each experimental unit's final soil moisture value

was the average of five values taken from the same unit.
2.5 Statistical analysis

Statistical analysis of all experimental data was conducted

using SPSS 17.0, Microsoft EXCEL 2010, and CANOCO 5. Soil

respiration data were averaged for each growth stage and were

evaluated with two-way ANOVA (two factors of crop system and

growth stage). The residuals of the model were checked for

normality and homogeneity by Shapiro and Leven’s tests,

respectively. If conditions were met, the Tukey test was

performed at P<0.05. Principal component analysis (PCA) was

performed on the soil respiration of crop systems. Detrended

correspondence analysis (DCA) and redundancy analysis (RDA)

were performed on soil respiration and soil hydrothermal factors.

The heterogeneity in soil respiration was tested with a DCA. Due

to the gradient length<3.0, a RDA (linear method) was applied.
Frontiers in Plant Science 04
3 Results

3.1 Soil CO2 efflux
Soil CO2 efflux ranged between 0.53 and 4.15 mmol·m-2·s-1

during the growing period of crops (Figure 3). The turning point

of respiration was observed at the lowest temperature during the

stem elongation stage, and the pattern of respiration were also

depended on the crop system. Soil CO2 efflux of MV, RS and

Intercrop was 1.44, 1.55, and 2.08 mmol·m-2·s-1 during seedling

and stem elongation stages and 3.08, 1.59, and 1.95 mmol·m-2·s-1

during flowering and podding stages (Figure 3). Soil CO2 efflux

from Intercrop was 1.4 times higher than from mean of MV and

RS at seedling and stem elongation stages, however soil CO2 efflux

from MV was 1.6 times higher than Intercrop thereafter. The RS

and Intercrop had similar CO2 efflux rates after the seedling stage,

whereas maximum values were found under MV (Figure 3).

The first two PC explained together more than 80% of the

soil respiration variation (Figure 4A). The MV was separated

from Intercrop along PC1 and PC2 and only along PC1 from RS.

In contrast, RS and Intercrop were only weakly separated along

the PC2, and no separation along PC1 were found. Soil

respiration in three crop systems could be classified into two

types (Figure 4B). The separation along the PC1 was due to the

CO2 efflux during the flowering to the podding stage, whereas

separation along the PC2 was because CO2 efflux during the

seedling and the stem elongation stages. Therefore, the difference
FIGURE 3

Effects of crop systems on soil respiration. Means are n=24 (seedling and stem elongation stages), n=18 (flowering stage) n=12 (podding stage)
(these differences in replicates are because of the length of every growth stage was different) and standard deviations of each growth stage are
show. Letters indicate significant differences among crop systems at P<0.05.
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in soil respiration between milk vetch and rapeseed was mainly

determined by the later period of crop growth.
3.2 Soil respiration and hydrothermal
factor

According to the DCA, soil respiration in MV, RS and

Intercrop was found to be heterogeneous (gradient

length<3.0). RDA showed that soil respiration was positively

correlated with soil temperature and negatively with moisture

(Figure 5). However, differences between crop systems were
Frontiers in Plant Science 05
still observed. Firstly, MV had the closest correlation between

soil respiration and hydrothermal factors, followed by Intercrop

and RS. Secondly, the correlation between soil respiration

and the temperature was more substantial than with soil

moisture in the case of MV and RS; in the case of Intercrop,

the correlation between soil respiration and moisture was

stronger than that with temperature (Figure 5). This indicated

that Intercrop changed the responses of soil respiration to

hydrothermal factors.

The Q10 values were 2.03, 1.39, and 1.45 in MV, RS, and

Intercrop, respectively. Sensitivity of soil respiration to the

temperature was lower in Intercrop than in MV and was
FIGURE 5

DCA and RDA of soil respiration and hydrothermal factors under various crop systems. DCA was perforemed on soil CO2 efflux (mmol m-2 s-1). RDA
was performed on soil CO2 efflux (mmol m-2 s-1), soil temperature (°C), and soil moisture (m3 m-3). RMV, RRS, and RIntercrop indicate soil respiration
under MV, RS and Intercrop, respectively; TMV, TRS, and TIntercrop indicate soil temperature; MMV, MRS and MIntercrop indicate soil moisture.
A B

FIGURE 4

PCA scores (A) and corresponding loading values (B) for soil respiration (mmol·m-2·s-1) under various crop systems.
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independent on temperature changes, namely, although there

was the same high temperature at the flowering and podding

stages, the CO2 emission rates from Intercrop and RS were lower

than fromMV (Figure 6). Intercrop also decreased soil moisture,

especially at the seedling and stem elongation stages, compared

to the monoculture; soil CO2 efflux was smaller in RS and

Intercrop than in MV when soil moisture was low. The CO2

efflux from RS and Intercrop was more constant under the

moisture fluctuations compared with MV (Figure 6), which

indicates that both RS and Intercrop reduced the response of

soil respiration to moisture.
4 Discussion

The high CO2 efflux from Intercrop at the early growth

stages are explained by low competition for the soil resources

between species (Mushagalusa et al., 2008), and intensive plant

growth. Intercropping with RS may decrease the impact of MV

on soil respiration at the later stage (Figure 3) i) due to inhibition

of MV growth (Zhou et al., 2018), thus, decreasing the release of

root exudates from MV into the soil (Liu et al., 2013) and ii) due
Frontiers in Plant Science 06
to suppress microbial biomass and activity in the RS rhizosphere

in the presence of MV (Zhou et al., 2019b), and thus, reducing

rhizosphere respiration (Blaise et al., 2021; Yang et al., 2021).

The RS and Intercrop had similar CO2 efflux rates after the

seedling stage, whereas maximum values were found from MV

(Figure 3). This is explained by higher root exudation under N2

fixing plant species (Zúñiga-Feest et al., 2018) and thus, higher

rhizosphere respiration (Becker and Holz, 2021). This showed

the positive effect of intercropping on the SOM accumulation

because the CO2 efflux was reduced compared to N-fixing

plant monoculture.

Seasonal and interannual variations of CO2 emission are

related to the soil temperature and moisture (Suseela et al., 2012)

because these parameters directly regulate microbial biomass

and activity (Zhou et al., 2019b). Sensitivity of soil respiration to

temperature was lower in Intercrop than in MV and was

independent of temperature changes (Figure 6). Intercrop also

decreased soil moisture, especially at the seedling and stem

elongation stages, compared to the monoculture (Figure 6).

This explains why in the Intercrop the growth of MV was

suppressed (Zhou et al., 2018). High CO2 emission rate under

MV observed at the flowering and podding stages can be
FIGURE 6

Soil respiration and hydrothermal factor under various crop systems and plant growth stages. Data shows means and standard errors. Q10 value
is the sensitivity of soil respiration to temperature change, which was calculated as y=aebx, Q10 = e10b, where y is the soil respirartion, and x is
temperature, a and b are fiited parameters.
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explained more by the high soil moisture at the initial plant

growth stages, then by the temperature. In contrast, the

decreased CO2 efflux rate under Intercrop at later stages can

be directly affected by variations in moisture or temperature, and

probably other factors, such as changes in the composition of

microbial communities (Zhou et al., 2019b), a decrease of

rhizosphere C flux (Suseela and Dukes, 2013) and plant

species-species interactions (Dijkstra et al., 2010).

The similar trends in CO2 efflux and temperature suggested

that soil temperature was still the most important factor affecting

soil respiration (Supplementary Figure 1). Soil respiration was

positively correlated with soil temperature, and a negative

correlation of soil respiration to soil moisture was also found,

especially in Intercrop (Figure 5). It illustrated that the effect of

soil moisture on soil respiration is more important in

intercropping systems than in monoculture. Soil respiration

responses to increases in temperature are constrained by soil

moisture (Conant et al., 2004). If the soil moisture is often lower

than the soil water holding capacity, the soil respiration cannot

be high enough to reach the limiting point due to reduced

oxygen diffusion into the soil and inhibited substrate

decomposition (Tang et al. , 2006; Hu et al. , 2017).

Furthermore, as microbial respiration is linearly related to soil

water content and log-linearly related to water potential (Cook

and Orchard, 2008), the decreased soil moisture will directly lead

to the decrease of soil microbial biomass and functional activity

(Zhou et al., 2019b). Thus, the variation in soil moisture can be

the real reason for inhibited soil respiration by milk vetch

intercropping with rapeseed.
5 Conclusions

Soil CO2 efflux from Intercrop was 1.4 times higher than

frommean of MV and RS at seedling and stem elongation stages,

however, soil CO2 efflux from MV was 1.6 times higher than

Intercrop after that. Cultivation of legume in monoculture,

although there is a positive contribution to soil N balance, can

promote SOM losses compared to Brassica. In contrast,

intercropping of Legume with Brassica is a beneficial

agricultural practice to reduce the rate of CO2 efflux, which is

related to the flowering and podding stages of plant growth. The

sensitivity of soil respiration to temperature decreased in

Intercrop, in which the variation of soil moisture was the

primary factor to inhibit soil respiration. Therefore, milk

vetch-rapeseed intercropping could be a potential approach to

produce low CO2 emissions from farmland, however soil

moisture should be adequately regulated so that agricultural

intercropping systems can be well adaptable in the face of

frequent global droughts.
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