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Identification of multiple
novel genetic mechanisms
that regulate chilling
tolerance in Arabidopsis
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Introduction: Cold stress adversely affects the growth and development of

plants and limits the geographical distribution of many plant species.

Accumulation of spontaneous mutations shapes the adaptation of plant

species to diverse climatic conditions.

Methods: The genome-wide association study of the phenotypic variation

gathered by a newly designed phenomic platform with the over six millions

single nucleotide polymorphic (SNP) loci distributed across the genomes of 417

Arabidopsis natural variants collected from various geographical regions

revealed 33 candidate cold responsive genes.

Results: Investigation of at least two independent insertion mutants for 29

genes identified 16 chilling tolerance genes governing diverse genetic

mechanisms. Five of these genes encode novel leucine-rich repeat domain-

containing proteins including three nucleotide-binding site-leucine-rich

repeat (NBS-LRR) proteins. Among the 16 identified chilling tolerance genes,

ADS2 and ACD6 are the only two chilling tolerance genes identified earlier.

Discussion: The 12.5% overlap between the genes identified in this genome-

wide association study (GWAS) of natural variants with those discovered

previously through forward and reverse genetic approaches suggests that

chilling tolerance is a complex physiological process governed by a large

number of genetic mechanisms.
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Introduction

Globally, 13.4 billion hectares, or one-third of the total land

area, is potentially suitable for arable agriculture. Unfortunately,

because of abiotic stresses, only approximately one-ninth of the

potentially arable land is ideal for crop production (Bruinsma,

2003). Severe weather conditions such as extreme cold,

substantial and extended precipitation (Rosenzweig et al.,

2002; Li et al., 2019b), hailstorms (Sánchez et al., 1996), and

heatwaves and droughts (Ciais et al., 2005; van der Velde et al.,

2010) limit agricultural productivity worldwide. Abiotic stresses

affect the farming of existing crop species and act as a significant

barrier to the introduction of new crops. A change in the

expression levels of many genes allows the adaption of plant

species to unique geographical regions. For example, an

investigation of Arabidopsis ecotypes collected from broad

geographical regions has revealed genes essential for

adaptation (Fournier-Level et al., 2011; Hancock et al., 2011).

Cold stress adversely affects plant growth and development

and restricts the geographical distribution of many plant species.

Plants are classified as either chilling (0-15°C) or freezing (< 0°C)

tolerant. These two classes are not mutually exclusive, as chilling-

tolerant plants in a temperate climate can induce their freezing

resilience after exposure to chilling or non-freezing temperatures

during cold acclimation (Lyons and Breidenbach, 1981). Cold

acclimation in plants is linked to biochemical and physiological

changes resulting from altered gene expression, bio-membrane

lipid composition, and accumulation of small molecules

(Thomashow, 1998; Yamaguchi-Shinozaki and Shinozaki, 2006;

S. Sanghera et al., 2011). Cold tolerance is a multifaceted trait

linked to numerous cell compartments and metabolic pathways

regulated by reprogrammed gene expression (Hannah et al.,

2005). Plants from tropical and subtropical regions lack cold

acclimation machinery and are sensitive to chilling stress. The

molecular basis of cold acclimation and acquired freezing

tolerance has been investigated extensively in plants like

Arabidopsis and winter cereals. The forward and reverse

genetics studies in Arabidopsis have identified several players

involved in cold tolerance (Hannah et al., 2006; Guo et al., 2021).

Many candidate genes and genetic loci have been identified in

cereals through genome-wide association studies (GWAS)

(Rathan et al., 2022). This study was undertaken to complement

the effort of ongoing cold tolerance studies in plants and identify

any possible novel genetic cold tolerance mechanisms by

conducting GWAS of natural variants and insertion mutant

analyses in Arabidopsis.

Arabidopsis is an ideal model plant for dissecting genetic

pathways involved in combating environmental stresses.

The 1,001 Arabidopsis Genomes Project initiative led to the

resequencing of 1,135 natural inbred lines collected from the
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native Eurasian/North African range and the recently colonized

North America (Alonso-Blanco et al., 2016). Genome-wide

association studies (GWAS) of these natural variants adapted

to three diverse ecological environments are expected to

facilitate the identification of genetic mechanisms for adapting

Arabidopsis to distinct climatic conditions. Earlier, GWAS in a

limited number of natural variants of Arabidopsis revealed

candidate genetic loci for adaptation (Fournier-Level et al.,

2011; Hancock et al., 2011). GWAS of natural Arabidopsis

variants can identify candidate genes for physiological

functions. The function of such candidate genes can then be

validated by studying knockout mutants for these genes. There

are over 260,000 individual mutant lines in the Arabidopsis

community allowing identification of knockout and knockdown

mutants for most of the 29,454 predicted protein-coding

Arabidopsis genes (Alonso et al., 2003; O’Malley and Ecker,

2010; O’Malley et al., 2015). Recently, digital photo-based

objective phenotyping for this model plant has also been

established for high-throughput phenomics studies

(Manacorda and Asurmendi, 2018; Vasseur et al., 2018).

In this study, we have (i) developed a high-throughput

digital photo-based objective phenotyping method for rosette

leaves of Arabidopsis seedlings; (ii) collected responses of 417

resequenced diverse Arabidopsis natural variants to prolonged

chilling temperature using this phenotyping system; (iii)

conducted GWAS to identify candidate chilling tolerance

genes; and (iv) validated the functions of individual candidate

chilling tolerance genes by studying at least two independent

Arabidopsis insertion mutants for each of the genes.

We identified 33 candidate genes involved in chilling

tolerance. Investigation of at least two insertion mutants for

each of 25 of these genes revealed 16 chilling tolerance genes.

Surprisingly only two of these genes, ADS2 encoding an acyl-

lipid desaturase and ACD6 encoding a novel ankyrin protein

termed accelerated cell death 6, were previously identified as the

cold tolerance genes (Lu et al., 2009; Chen and Thelen, 2013).

Five LRR domain-containing genes were also identified,

including three novel NB-LRR genes with no similarity to

previously identified NB-LRR cold-stress-related genes. The

identified genes include the ones involved in (i) lipid

metabolism (ADS2), (ii) biotic stress-related genes (NB-ARC

LRR, TIR-NB-LRR, AtRLP39, PER72, LRR protein kinase), (iii)

ubiquitin and autophagy-dependent degradation pathway, (iv)

proteolysis (EDA41), (v) vesicle transport and protein targeting

pathway (AtSYP112), (vi) transcriptional regulation (HMGB6,

stress-associated protein 7), and (vii) an abiotic stress-related

heat stress gene (DNAJ heat shock N-terminal domain-

containing protein). Our results suggest that chilling tolerance

is a complex physiological process governed by many

genetic mechanisms.
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Materials and methods

Analyses of phenotypes

Seeds of 417 Arabidopsis (Arabidopsis thaliana) accessions

(Alonso-Blanco et al., 2016) (Table S1) originating from diverse

ecological regions (Figure S1A) were obtained from the

Arabidopsis Biological Research Center (ABRC), Ohio State

University, Columbus, OH, USA. To facilitate sowing of a

similar number of seeds among replications, we compared two

types of agaroses (standard agarose and low melting NuSieve

agarose) at several concentrations (0.6%, 0.45%, 0.3%, 0.15%,

and 0.1%); and 0.1% (w/v) NuSieve Agarose was found to be the

best medium for keeping the seeds suspended for an extended

period of time. Seeds were surface sterilized with 95% ethanol

prior to sowing. To break the seed dormancy, the seeds were

stratified in the agarose medium at 4°C in the dark for five days.

After stratification, approximately 15 seeds from each ecotype

were sown in individual cells of Plug Tray-288 (Growers Supply,

IA, USA) filled with soil (Sungro Horticulture Professional

Growing Mix, Hummert International, MO, USA).

Seeds of T-DNA and transposon insertion mutants for

candidate cold stress-related genes identified by GWAS were

obtained from the Arabidopsis Biological Resource Center

(https://abrc.osu.edu) (Table S1) and propagated directly

under optimal greenhouse conditions to obtain sufficient seeds

for this study. Homozygous insertion mutants were identified by

investigating ten progenies from each of the knockout mutants

by conducting polymerase chain termination reaction (PCR)

(describe in a separate section below). At least two homozygous

knockout mutants were investigated for each candidate gene.

The knockout mutants and wild-type Col-0 ecotype were

phenotyped under control and prolonged cold-stress conditions.
Genome-wide association studies

The GWAS was conducted for the average trait value

(changes in the rosette area under extended cold stress) of the

accessions under each biological replicate. The GWAS was

performed in the easyGWAS web interface (Grimm et al.,

2017) using two popular genome-wide association tools, the

linear regression (LR) model or Efficient Mixed-Model

Association eXpedited (EMMAX). The EMMAX model (Kang

et al., 2010) allows for correcting false correlations due to

population structure, and the LR model finds genetic variants

linked with continuous traits in GWAS (Wang et al., 2018).

Quantile-quantile plots (QQ plots) providing information

regarding the genomic control factor on the easyGWAS

platform were utilized to evaluate the performance of the

EMMAX or LR model in controlling for the p-value inflation
Frontiers in Plant Science 03
caused by population structure. The 1001 Genomes collection

(Alonso-Blanco et al., 2016) was utilized in the easyGWAS

platform (Grimm et al., 2017), which gives an exceptional

opportunity to comprehend how genetic variation translates

into phenotypic variation and to explore the numerous ways

in which plants respond to environmental challenges. A total of

6,973,565 SNPs with a minor allele frequency >0.05 were used.

Major SNP linkage disequilibrium plots were also generated on

the easyGWAS platform (Grimm et al., 2017). When a strongly

linked SNP was found to co-localize with the exon/intron or

promoter (2-kb upstream) regions of a gene, the gene is

considered as a candidate chilling tolerance gene.
Identification of homozygous T-DNA and
transposon insertion mutants

We studied at least two independent T-DNA insertion

mutants for each candidate gene to validate the chilling-

tolerance function of the putative genes identified by GWAS.

The information about primer sequences, insertion locations, and

the estimated T-DNA confirmation product size was obtained

from the T-DNA Primer Design site (http://signal.salk.edu/

tdnaprimers.2.html). The homozygous plants for any T-DNA

insert from individual segregants were identified essentially by a

two-step PCR genotyping assay (O’Malley et al., 2015).

A gene/genome-specific primer (GSP: LP, RP - Left, right

genomic primer) pair spanning the predicted T-DNA insertion

site was used for the first PCR reaction to detect the presence of a

wild-type copy (WT copy) of the gene in the wild type or

heterozygous individuals. However, no band was amplified for a

homozygous plant because both copies of the gene contain the

T-DNA insert, whose large size precludes PCR amplification.

The lack of a wild-type gene-specific PCR provided strong

evidence that the line is homozygous for the insert. The

second PCR reaction was used to validate the homozygosity

for a T-DNA insert in the gene. In Col-0, we failed to amplify the

T-DNA inserted genomic region in the second PCR, while a T-

DNA and target insertion site-specific PCR product was

amplified in the heterozygous and homozygous T-DNA

insertion mutants. The homozygous lines showed a lack of the

gene-specific and presence of T-DNA insertion site-specific PCR

amplification. The heterozygotes showed amplification of both

types of PCR products, i.e., gene-specific and T-DNA insertion

site-specific. The T-DNA insertion site was selectively amplified

using a combination of a left border primer (LB - the left T-DNA

border primer) and the correctly oriented GSP primer (LP or

RP) specific to the target insertion site.

The only transposon insertion CS26712 line carrying a unique

insertion of an enhancer trap (ET) transposable Ds element

disrupting the AT2G18260 gene function was screened using

primers specific to the flanking sequences of the insertion site.
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AT2G18260-specific primers together with the insertion site

specific primers were used to identify the homozygous mutants

as in the characterization of T-DNA insertion mutants.
BLAST search and MapMan analyses

Blast2GO was used to determine the function and

localization of the candidate genes. Blast2GO is a widely used

annotation platform that uses homology searches to associate
Frontiers in Plant Science 04
sequences with Gene Ontology (GO) terms and other functional

annotations (Conesa et al., 2005; BioBam Bioinformatics, 2019;

Sahoo et al., 2022). Blast2GO generated Gene Ontology

annotations based on (a) Biological process, (b) Molecular

Function, and (c) Cellular Component.

To display cold stress-responsive genes onto pathways, the

MapMan (Usadel et al., 2009) was used to analyze the 16 chilling

tolerance genes (Table 1) and nine strong candidate chilling

tolerance genes (Table 2) that are either induced or suppressed

in response to cold stress.
TABLE 1 The 16 identified Arabidopsis genes involved in the expression of chilling tolerance.

Sl. No. Gene ID Protein ID 1Expression Mutant 2Phenotype 3Algorithm

1 AT4G14400 Accelerated cell death 6 (ACD6) 0.06
SALK_059132 1.73

Linear Regression
SALK_116079 1.46

2 AT5G02360 Domain C1 containing protein 0.09
SALK_004531 1.75

Linear Regression
SALK_004524 2.46

3 AT2G18260 AtSYP112 0.14

SALK_037621 2.47

EMMAX & Linear RegressionCS26712 2.21

CS868715 1.87

4 AT1G61310 NB-ARC LRR 0.43
SALK_125189 2.66

EMMAX & Linear Regression
SALK_029306 1.56

5 AT2G19110 Heavy metal ATPase 4 0.5
SALK_042898 2.1

EMMAX
SALK_093482 3.65

6 AT5G41750 TIR-NB-LRR 0.53
SALK_066101 1.34

EMMAX & Linear Regression
SALK_085020 1.64

7 AT5G23420 High-mobility group box 6 0.62
SALK_138632 2.12

Linear Regression
SALK_044693 1.56

8 AT5G52460 F-box leucine-rich repeat protein 0.71
SALK_013776 2.77

EMMAX
SALK_031583 0.39

9 AT3G61600 LRB2; POZ/BTB containing G-protein 1 0.76
SALK_100118 2.36

Linear Regression
SALK_128387 2.78

10 AT3G24900 Receptor-like protein 39 1.31
CS868997 0.74

EMMAX
SALK_126504 0.6

11 AT1G31870 Bud site-selection protein 13 1.52
SALK_018219 1.77

EMMAX & Linear Regression
SALK_096851 1.58

12 AT2G19060 SGNH hydrolase-type esterase 1.68

SALK_061864 2.47

EMMAX & Linear RegressionSALK_117794 1.72

SALK_115819 1.86

13 AT2G04300 Leucine-rich repeat protein kinase 4.37
SALK_003316 2.3

EMMAX & Linear Regression
SALK_003328 1.85

(Continued)
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TABLE 1 Continued

Sl. No. Gene ID Protein ID 1Expression Mutant 2Phenotype 3Algorithm

14 AT4G12040 Stress-associated protein 7 5.97
SALK_071408 -1.03

Linear Regression
SALK_071504 0.58

15 AT4G12000 SNARE associated Golgi protein 10.37
SALK_021373 0.51

EMMAX
SALK_204172 0.67

16 AT2G31360 16:0 delta 9 desaturase 2 26.04
SALK_079963 0.05

EMMAX
SALK_016783 -0.49

1The expression ratio indicates the proportion between the average transcript levels under low versus normal growing temperature conditions. The averages were calculated from the
data presented in Figure S3.
2Proportion of pixilated growth data of mutant versus wild-type Col-0 ecotype under cold stress at 4 °C for 30 days. Data are taken from Figures 2, 3, and Figure S5.
3EMMAX and Linear Regression models representing possible population structures were used in GWAS. Both models were used in multiple GWAS. Models that identified the genes
are shown.
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TABLE 2 The nine strong candidate genes involved in adapting Arabidopsis to cold stress.

Sl.
No. Gene ID Protein ID Mutant

1Mutant Pheno-
type

2Expression
Level

3Algorithm

1 AT3G61480 Quinoprotein amine dehydrogenase
*SALK_017426 1.49 0.84

LinearSALK_099827 0.96 0.84

2 AT1G31640 Agamous-like 92
*SALK_030847C 1.79 0.85

EMMAX
SALK_035114C 1.17 0.85

3 AT2G27120 DNA polymerase epsilon catalytic subunit
*SALK_025607 2.52 0.92

LinearSALK_056503 0.81 0.92

4 AT3G53520 UDP-glucuronic acid decarboxylase 1
*SALK_068865 1.36 1.07

EMMAX &
LinearSALK_152673 1.25 1.07

5 AT2G39840
Type 1 phosphoprotein Ser/Thr
phosphatase

SALK_090980 0.97 1.34

EMMAX &
Linear

SALK_090981 1.22 1.34

*CS375515 -0.73 1.34

6 AT4G12350 AtMYBb42
*SALK_003422 1.28 1.37

EMMAX
SALK_032016 0.86 1.37

7 AT5G54960 Pyruvate decarboxylase-2 *SALK_053107 0.48 2.43 EMMAX

8 AT3G43148 Myosin heavy chain-like protein
*SALK_151592 0.55 n/a

EMMAX
SALK_076725 0.96 n/a

9 AT5G39500 Endoplasmic reticulum morphology 1
*SALK_020371 0.57 n/a

EMMAX
SALK_091078 1.21 n/a

1The expression ratio indicates the proportion between the average transcript levels under low versus normal growing temperature conditions. The averages were calculated from the
data presented in Table S5.
2Proportion of pixilated growth data of mutant versus wild-type Col-0 ecotype under cold stress at 4°C for 30 days. Data are taken from Figures 2, 3, and Figure S5.
3EMMAX and Linear Regression models representing possible population structures were used in GWAS. Both models were used in multiple GWAS. Models that identified the genes
are shown. n/a, data not available.
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Statistical analysis

Using package R program version 1.6.1 (Ihaka and

Gentleman, 1996), the Student’s t-test was performed to

determine the significant differences in the comparative

growth rates of mutants to Col-0 under control and prolonged

cold-stress conditions; whereas, one-way ANOVA (Analysis of

Variance) was performed to determine growth rate differences

between the ecotypes.
Results

A high-throughput digital image-based
two-dimensional (2D) phenotyping
platform for rosette leaves of
Arabidopsis seedlings

We resuspended the surface sterilized seeds in 0.1% (w/v)

NuSieve Agarose (see Materials and Methods for details)

(Figure 1A). The accessions were randomized within each of the

three blocks in a randomized block design. The day of sowing the

seeds was counted as “Day 0”. The plants were grown in AR-22L

Arabidopsis chambers (Percival, IA, USA) (Figure 1C). Four days

after germination, seedlings were either thinned for a group of ten

plants or transplanted to obtain one plant per cell. Plants were

grown under 16 h day with light intensity 100 mmol m−2 s−1, 22°C

temperature, 50% relative humidity (RH), and 8 h night with 18°C
Frontiers in Plant Science 06
temperature and 60% RH. The plants were watered once a week.

OnDay 7, in the “cold-stress” group, the temperature was reduced

to 4°C as the day and night temperature for 30 days, while plants

in the “control group” continued to grow with no changes in

growing conditions for seven additional days.

In the mutant studies, each tray contained the cold-tolerant

accession PYL-6, the cold-sensitive accession Stepn-2, and

Columbia-0 (Col-0) and overlapping mutant lines to facilitate

comparisons across an experimental group or between

independent experiments to assure reproducibility. For each

genotype, three experiments were conducted. In each

experiment, ten seedlings were planted in each of 20 random

cells in the “group of plants study.” Thus, each phenotypic

observation represented datum collected from a group of ten

plants of a cell; and for each genotype, data were collected from

60 cells (n = 60 from three experiments).

Two-dimensional (2D) images of the rosette leaves of a

single or group of plants were captured by CropScore cameras

(Computomics GmbH, Tübingen, Germany) during the day

(Figure 1D) and stored in the CropScore server (http://www.

cropscore.com/en/home.html) for further analysis.
Image analyses of the 2D images using
the Matlab GUI software

A user-friendly software programMatlab GUI was written in

Matlab to (i) capture and store a large dataset of high-resolution
B C

DE F

A

FIGURE 1

Schematic representation of the steps in identifying genes involved in cold stress using a high-throughput phenotyping platform. After suspending
in low melting agarose (A), seeds were stratified, and sown (B), and grown in the Arabidopsis growth chambers fitted with digital cameras (C). Two-
dimensional images of the rosette leaves of individual genotypes were captured and analyzed using Matlab GUI software (Method S2) (D). The digital
images were converted to pixel data for easyGWAS to identify putative cold-stress-related genes. The candidate cold-stress-related genes were
validated by studying knockout mutants. Homozygous knockout mutants were identified (E). SALK_104944, knockout T-DNA insertion mutant for
AT1G68320; HM, homozygous line; HZ, heterozygous line; WT (Col-0 ecotype), wild-type with no insertion. Knockout mutants were phenotyped to
determine if any of the 33 putative cold-stress-related genes play a role in chilling tolerance (F).
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2-dimensional (2D) digital images of aerial views of Arabidopsis

rosette leaves in growth chambers over a period of time until

leaves of the adjacent single or clusters of plants start to overlap;

(ii) automatically crop, register and segment high-resolution

images into sub-images corresponding to individual accessions

based on a sequence of computer vision techniques (Method S1);

(iii) extract important cues like rosette color and total rosette

area from each sub-image, and store these cues in spreadsheet

format for downstream statistical analysis (Method S2). Each of

these stages is automatic, with an option included for

manual intervention.

Our image processing workflow (Methods S1-S2) executes

the following six steps: (1) The Arabidopsis growth chambers are

equipped with a network of point-and-shoot four cameras

obtained from CropScore Inc (Computomics GmbH,

Tübingen, Germany). Each Plug Tray-288 is divided into two

halves, and each carrying 144 wells (12 x 12 wells) that are

photographed by a single camera. Images are captured every 12

hours during the light period and transferred to a central server
Frontiers in Plant Science 07
via an Ethernet connection (Figure 1C). This step can be

automated. (2) The images are cropped by detecting the tray

boundaries if the camera is misoriented. This step can be

automated. (3) For each image, the boundaries between

adjacent cells in the grid are automatically detected using a

two-step process (Figure 1D): (i) each image is passed through a

color filter tuned to the tray color, and (ii) edge boundaries,

which are linear features in the filtered image, are estimated

using a Hough transform. This step can be automated. (4) The

2D plane of the tray is estimated by calculating the geometric

intersections of the cell boundaries. A perspective correction is

applied to the original unfiltered image to register it to an

orthographic view with respect to this plane. This step can be

automated. (5) The registered image is now segmented into sub-

images of different cells by simple cropping. This step can be

automatic. (6) Cell images are passed through a second color

filter tuned to the rosette leaves of healthy Arabidopsis. Rosette

areas are then estimated by aggregating adjacent pixels, which

have high responses to this color filter. This step can be made
B

C

D

E

A

FIGURE 2

Phenotypic analyses of the chilling tolerance trait in Arabidopsis. (A) Scatterplots demonstrating the relationships between the shoot surface
area calculated by FIJI (blue) and Top.m (red) programs. The fitted line displays statistically significant correlations (r = 0.99). (B) Relationships
between the digital shoot surface area (sq. mm) calculated by Top.m (blue spot) and fresh weight (g) of shoots. The scatterplot showed a
positive association (r = 0.83) between the digital shoot surface area (sq. mm) calculated by Top.m (blue) and fresh weight (g) of shoots (red
spot) among the 417 ecotypes. (C) Scatterplot demonstrating the positive association (r = 0.96) between the digital shoot surface area (%) from
a group of plants (blue) with that of the corresponding single plant (red) of 76 randomly selected ecotypes. Growth Rate (%) in a-c was
calculated as follows: [(Final Growth – Initial Growth)*100]/Initial Growth. (D) Tolerances of 417 Arabidopsis ecotypes to continuous cold stress.
The growth rate of each ecotype (%) is calculated as = Growth on the 30th day of Cold Treatment X 100/Growth on the 0th Day of Cold
Treatment. The proportionate tolerance of each ecotype is calculated as the growth rate of each ecotype X 100/the summation of the growth
rate of 417 ecotypes (detailed information is in Figure S2). The red arrow shows the proportionate growth of the ecotype Col-0. (E) Relationship
of steady-state expression levels and mutant phenotypes of 16 chilling tolerance genes. All but one knockout mutant of nine genes with
reduced steady-state transcript levels under cold stress showed enhanced growth rates compared to wild-type ecotype Col-0 in response to
prolonged low-temperature exposure (orange dots). Knockout mutants of four genes with enhanced steady-state transcript levels during cold
stress showed reduced growth rates compared to wild-type ecotype Col-0 in response to prolonged cold stress. Grey dots showed log10 of 1
for transcript levels of genes or growth levels of mutants with no change at 4°C compared to wild-type Col-0. The data are from Table 1.
Expression levels of individual genes (blue dots) at 24 h following exposure to cold stress (Figure S3) were used to plot the phenotypes of
mutants identified for that gene.
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automatic. Steps 2 and 3 are the most challenging, and

sometimes the automatic cropping and registration can fail if

the tray boundaries are not detected correctly. If this is the case,

the workflow signals the user to manually crop the image using a

graphical user interface (GUI).

The utility of our software for two-dimensional (2D)

Arabidopsis rosette leaf image analyses was evaluated through

the analysis of a set of random accessions (Figure 2A) as follows.

The images of 144 accessions were processed and analyzed by

both FIJI (Abràmoff et al., 2004; Schindelin et al., 2012) and our

Matlab software GUI (Method S1-S2). The 2D rosette leaf areas

calculated by the two software for 144 accessions showed a

statistically significant positive association (r = 0.99; p <0.01;

Figure 2A). Our Matlab GUI is a user-friendly software;

therefore, we used this software to analyze the images. This

approach’s key benefit is that it minimizes the amount of manual

intervention and reduces data processing times by a factor of at

least 20 compared to that for the existing commercially available

phenotyping software solutions, such as the FIJI software used in

this investigation for evaluating the performance of Matlab GUI

(D.K. Sahoo, C. Hegde and M.K. Bhattacharyya, unpublished).

We investigated if the 2D aerial images of Arabidopsis

rosette leaves correctly predict the leaf growth of individual

accessions. The 2D rosette leaf area of 417 accessions was

determined using our software. The fresh weights (g) of

rosette leaves of the same 417 accessions were also measured.

The correlation coefficient between the 2D leaf area and fresh

leaf weight (g) among the 417 accessions was r = 0.83 (p<0.01;

Figure 2B), suggesting the suitability of the phenotyping system

for the Arabidopsis seedlings.

The growing of single Arabidopsis plants is labor-intensive.

Therefore, we investigated if the 2D leaf area of ~15 plants can

predict the 2D leaf area of a single plant. The association

between the 2D image-based growth of single plants with that

of groups of ~15 plants among 76 accessions was found to be

highly significant (r = 0.96; p <0.01; Figure 2C), suggesting that

investigation of groups of plants instead of single plants should

provide a reliable fresh weight estimate for an accession.
Responses of Arabidopsis ecotypes to
prolonged cold stress

Using our 2D aerial rosette leaf phenotypic system, we

investigated the responses of 417 Arabidopsis accessions,

genomes of which have been resequenced (Alonso-Blanco

et al., 2016), to prolonged cold-stress (4°C). The 417

accessions include accessions studied previously for responses

to non-freezing (Barah et al., 2013) and freezing cold stresses

(Zhen and Ungerer, 2008; Xie et al., 2019). We collected the

estimated 2D aerial rosette leaf areas of the selected 417

accessions under either 22° C (C) or prolonged cold stress at 4
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°C (CS) in square mm (Table S2; Figure S2). A 10-fold difference

in the 2D aerial leaf area was observed between the most

chilling-tolerant accession, PYL-6, and the most chilling-

sensitive accession, Stepn-2 (Figure 2D; Figure S2). The broad-

sense heritability (h2) for the aerial rosette leaf phenotype was

84%, suggesting that the phenotype is less influenced by

environment and therefore reliable.
33 A genome-wide association
study revealed putative chilling
tolerance genes

The 417 lines considered for this study were resequenced

previously, and single nucleotide polymorphisms (SNPs) for the

entire genome were predicted by comparing its genome

sequence with the reference genome sequence of Columbia-0

(Col-0) (Grimm et al., 2017). We conducted a GWAS of the

phenotypic variation of the 417 accessions for leaf responses to

prolonged cold stress with the SNPs distributed across the entire

genome (Grimm et al., 2017). Pixel data of the natural variants

were log-transformed to facilitate reliable parametric tests. The

association of the phenotypic data with SNP data was tested

using both (i) linear regression (LR) or (ii) an efficient mixed-

model association expedited (EMMAX) model (Grimm et al.,

2017). An arbitrary cutoff p-value of –log10 ≥ 4.5 identified 33

genes (Kaler and Purcell, 2019). The GWAS was conducted for

each of the 17 independent experiments (CS; Cold Stress) and

the mean of all data from the 17 experiments (Table S3).

Quantile-quantile (QQ) plots (Figure S1B) suggested that the

data are normally distributed. The frequency distribution of the

417 accessions for proportionate chilling tolerance also exhibited

a normal distribution (Figure S1C). Of the 33 genes, 15 were

identified when the EMMAX model was used, and seven when

the LR model was used. Eleven genes were detected in both LR

and EMMAX models (Table S4).
Expression patterns of the 33 candidate
chilling tolerance genes

A large number of genes are transcriptionally regulated in

response to cold stress (Winter et al., 2007). Therefore, we

investigated the 33 candidate chilling tolerance genes for their

expression levels from the microarray data of leaf samples from

Arabidopsis plants exposed to 4 0C for 24 h. We downloaded the

expression data from the “Electronic Fluorescent Pictograph

(eFP)” database (Winter et al., 2007). To our surprise, 32 of the

33 genes are regulated at the transcriptional level to some extent

in response to cold stress (Figure S3; Table S5). This observation

suggests that at least some of the 33 genes could be involved in

adapting Arabidopsis to prolonged cold stress.
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Analyses of insertion mutants identified
16 genes involved in chilling tolerance

We investigated 64 homozygous T-DNA insertion- and one

transposon-induced mutants for the 33 candidate chilling

tolerance genes. We were able to identify two or more

homozygous insertion mutants for 29 genes, with one mutant

each for the remaining four genes (Figure 1E, F; Figure S4;

Table 1; Table S6, S7). At least two mutants for each of the 16 of

29 genes showed significant differences in rosette leaf growth

from the wild-type Col-0 following exposure to 4°C for 30 days

(Table 1). We termed these 16 genes as chilling tolerance genes.

We were able to observe altered mutant phenotypes in only one

mutant for each of the nine genes (Table 2; Table S7). These nine

genes may govern subtle chilling tolerance phenotypes. It will

require additional studies, including complementation analysis,

to understand their function in chilling tolerance. We consider

these nine genes as strong candidate genes for chilling tolerance.

Both tested mutants failed to show any altered mutant

phenotypes for the remaining four of the 29 genes (Table S7).

We investigated if there was any relationship between levels of

transcripts and responses of the knockout mutants of the

identified 16 chilling tolerance genes to prolonged cold stress.

We hypothesized that knockout mutants of the genes with

reduced transcript levels under cold stress would have enhanced

cold tolerance, while mutants of the genes induced during cold

stress would show enhanced sensitivity to cold stress. Mean

transcript levels for each of the 16 genes were calculated from
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six data points (Table 1; Figure S3). Each of the 16 genes showed

significant up- or down-regulation for at least one of the six data

points (Winter et al., 2007) (Figure S3). We did observe a clear

relationship for thirteen of the 16 genes as expected; knockout

mutants for nine genes with reduced transcript levels under cold

stress showed enhanced chilling tolerance, while mutants of four

genes with increased transcript levels under cold stress exhibited

increased cold sensitivity (Figure 2E; Table 1).
Functions of the identified 16 chilling
tolerance genes

Interestingly only two of the 16 genes identified have

previously been reported as chilling tolerance genes:

AT4G14400, which conditions accelerated cell death 6 (ACD6),

and At2g31360, which encodes an acyl-lipid desaturase 2 (ADS2).

ACD6 (AT4G14400) is downregulated by cold stress, and its loss

of function knockout mutants showed enhanced chilling tolerance

to cold stress (Figure 3; Table 1; Figure S3A). This gene has been

shown to be involved in chilling and freezing tolerance (Chen and

Thelen, 2013). A gain of function acd6mutant shows an increased

accumulation of salicylic acid level and exhibits freezing sensitivity

(Lu et al., 2009; Miura and Ohta, 2010; Chen and Thelen, 2013)

along with enhanced resistance against both bacterial and

oomycete pathogens (Todesco et al., 2010).

ADS2 (At2g31360) is upregulated by cold stress, and the ads2

mutant was shown to display a dwarf and sterile phenotype in
B

A

FIGURE 3

Previously identified two proteins that contribute either negatively or positively to chilling tolerance. (A) AT4G14400 encoding Accelerated cell
death 6 (ACD6) protein negative regulates chilling tolerance. (B) AT2G31360 encoding acyl-lipid desaturase 2 (ADS2) positively regulates chilling
tolerance. On the left, output plot of p-values (−log base 10) in a 5-kb window for association of SNPs with phenotypic variation, obtained from
easyGWAS, is presented. On the right, rosette leaf growth rates of mutants with respect to Col-0 are presented. The relative rosette leaf growth
rate in the mutant compared to wild-type Col-0 is significantly different in control (C) and cold stress (CS) (p < Bonferroni adjusted a)
conditions. Knockout mutation in the ADS2 gene resulted in yellowing and death of plants resulting in a negative growth rate in one T-DNA
insertion mutant at 4°C and as compared to that at 22°C. C, Comparative growth rate of the mutant relative to wild-type Col-0 in control
condition; CS, Comparative growth rate of the mutant relative to wild-type Col-0 in cold stress.
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response to cold stress at 6°C and to show increased sensitivity to

freezing temperature (Chen and Thelen, 2013). Here we also

observed that the mutants of the cold-induced ADS2 gene

showed increased sensitivity to cold stress (Figure 3B; Table 1;

Figure S3B). In ads2 mutant plants, the membrane lipid

composition is altered compared to the wild-type plants.

Reduced levels of 16:1, 16:2, 16:3, and 18:3 lipids and higher

levels of 16:0 and 18:0 fatty acids were detected in the ads2

mutant compared to the wild-type plants. The paralogous acyl-

lipid desaturase 1 and 2 (ADS1 and ADS2) genes are induced in

response to cold stress to facilitate cold acclimation and chilling/

freezing tolerance, respectively (Chen and Thelen, 2013; Chen

and Thelen, 2016). ADS1 encodes a soluble D9-desaturase that is
found primarily in the chloroplast and catalyzes the desaturation

of stearic acid (18:1) of monogalactosyl diacylglycerol (MGDG)

(Barrero-Sicilia et al., 2017; Berestovoy et al., 2020); while ADS2

encodes a 16:0 desaturase for the synthesis of MGDG and

phosphatidylglycerol (Chen and Thelen, 2013). Both genes

affect chloroplast membrane desaturation and have been

shown to be essential for the cold adaptation response in

Arabidopsis (Barrero-Sicilia et al., 2017). The re-identification

of ACD6 and ADS2 cold tolerance genes validates our approach

of identifying chilling tolerance genes using a novel phenotyping

system for Arabidopsis seedlings.

Five of the 14 novel chilling tolerance genes identified in this

study contain LRR domains with unknown functions (Figure 4;

Table 1). AT1G61310 encodes an LRR and NB-ARC domains-

containing disease resistance-like protein, while AT5G41750

encodes a TIR-NBS-LRR-type disease resistance-like protein.

AT5G52460 encodes an F-box leucine-rich repeat protein,

annotated as embryo sac development arrest 41 (EDA41). The

transcript levels of all three genes were suppressed by cold stress

(Figure S3C-E). All knockout mutants except one for these three

genes showed enhanced chilling tolerance compared to the wild-

type Col-0 ecotype; one T-DNA insertion mutant,

SALK_031583, for the AT5G52460 gene showed cold

sensitivity (Figure 4A-C; Table 1). In the SALK_031583

mutant, T-DNA was inserted in the promoter region, which

might have enhanced the transcription of the gene leading to

increased cold sensitivity. AT2G04300 encodes an LRR protein

kinase, and AT3G24900 encodes the receptor-like protein 39

(AtRLP39) containing an LRR domain. The transcript levels of

these two genes are induced during cold stress (Figure 4D, E;

Table 1; Figure S3F-G). Surprisingly, although the AT2G04300

gene is highly induced, the knockout mutants showed increased

growth instead of reduced growth compared to the control wild-

type Col-0 ecotype under prolonged cold stress (Figure 4D;

Table 1; Figure S3F). The knockout mutants of the cold stress-

induced gene AT3G24900 exhibited reduced growth compared

to that in the wild-type Col-0 ecotype under prolonged cold

stress (Figure 4E; Table 1; Figure S3G).

In addition to assigning the function of chilling tolerance to

five unique LRR domain-containing proteins (AT1G61310
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encoding NB-ARC LRR, AT5G41750 encoding TIR-NB-LRR,

AT5G52460 encoding F-box leucine-rich repeat protein,

AT2G04300 for Leucine-rich repeat protein kinase and

AT3G24900 encoding Receptor-like protein 39), we ascribed

the function to nine additional genes. They are: (i) AT1G31870

encoding the bud site-selection protein 13 (AtBUD13), which is

involved in pre-mRNA splicing and embryo development

(Xiong et al., 2019); (ii) At5g02360 encoding DC1 domain-

containing protein, (iii) AT2G18260 encoding syntaxin of

plants 112, (iv) AT2G19110 encoding heavy metal ATPase 4,

(v) AT5G23420 encoding high-mobility group box (HMGB) 6,

(vi) AT3G61600 encoding LRB2; POZ/BTB containing G-

protein 1, (vii) AT2G19060 encoding SGNH hydrolase-type

esterase, (viii) AT4G12040 encoding stress-associated protein

7, and (ix) AT4G12000 encoding SNARE associated Golgi

protein (Table 1).

AT1G31870 encodes the bud site-selection protein 13

(AtBUD13) (Table 1; Figure S3H; Figure S5A), which is

involved in pre-mRNA splicing of 52 genes, of which 22 are

involved in nucleic acid metabolism and embryo development

(Xiong et al., 2019). Cold stress alters the expression and splicing

of serine/arginine-rich (SR) genes that encode splicing factor

proteins required for constitutive and alternative splicing

(Palusa et al., 2007; Leviatan et al., 2013). AtBUD13 could be a

regulatory gene controlling cold-stress-related genes for cold

adaptation through splicing.

Transcription of AT2G18260 gene encoding syntaxin

protein ATSYP112, also suppressed by cold stress loss of

function mutants are chilling tolerant; therefore, we consider

that this protein negatively contributes towards chilling

tolerance in Arabidopsis (Table 1; Figure S3I; Figure S5B).

AT2G19060 encodes an SGNH hydrolase-type esterase

(Table 1; Figure S3J; Figure S5C). The GDSL esterases/lipases

are mainly involved in regulating plant development,

morphogenesis, synthesis of secondary metabolites, and

defense response (Hong et al., 2008; Kwon et al., 2009;

Chepyshko et al., 2012). The GDSL family is further classified

as SGNH hydrolase because of the presence of the strictly

conserved residues Ser-Gly-Asn-His in the conserved blocks I,

II, III, and V (Chepyshko et al., 2012). The role of GDSL family

esterase in cold adaptation was reported in Photobacterium sp.

strain J15 (Shakiba et al., 2016). Here, we reported a SGNH

hydrolase-type esterase as a negative regulator during the cold

stress response.

AT2G19110 encodes the Arabidopsis heavy metal ATPase 4

(AtHMA4) with similarity to Zn ATPase (Meyer et al., 2016;

Lekeux et al., 2018). Transcription of this gene is downregulated

by cold stress, and knockout mutants show enhanced cold

tolerance suggesting a negative role of AtHMA4 in cold

tolerance (Table 1; Figure S3K; Figure S5D). ATHMA4 is

involved in the hyperaccumulation of Zn/Cd (Lekeux et al.,

2019). Presumably, metal ion accumulation may be detrimental

during cold stress. A study in the halophyte four-wing saltbush
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(Atriplex canescens) revealed a heavy metal-associated protein,

AcHMA1, whose expression was strongly downregulated under

NaCl and cold stress (Sun et al., 2014). In Arabidopsis, such a

mechanism might be mediated by ATHMA4, downregulated

under cold stress.
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AT3G61600 encodes the LIGHT-RESPONSE BTB2 (LRB2)

protein, which, together with LRB1, negatively regulates

photomorphogenesis (Christians et al., 2012). This gene is

involved in protein ubiquitylation through interacting with

CULLIN 3 proteins (Gingerich et al., 2005; Christians et al.,
B

C

D

E

A

FIGURE 4

Five leucine-rich repeat domain-containing proteins contribute towards chilling tolerance. (A–E) Each of the five proteins contains LRR domain.
On the left, output plot of p-values (−log base 10) in a 5-kb window for the association of SNPs with phenotypic variation, obtained from
easyGWAS, is presented. On the right, rosette leaf growth rates of mutants with respect to Col-0 are presented. The relative rosette leaf growth
rate in the mutant compared to wild-type Col-0 is significantly different in control (C) and cold stress (CS) (p < Bonferroni adjusted a)
conditions. C, Comparative growth rate of the mutant relative to wild-type Col-0 in control condition; CS, Comparative growth rate of the
mutant relative to wild-type Col-0 in cold stress.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1094462
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sahoo et al. 10.3389/fpls.2022.1094462
2012; Hu et al., 2014). In winter-annual accessions of A.

thaliana, cold stress exposure or vernalization is needed to

commence flowering via FRIGIDA (FRI). FRI acts as a

scaffold protein to recruit numerous chromatin modifiers that

epigenetically modify flowering genes and regulate blooming via

proteasome-mediated degradation of FRI. During vernalization,

FRI directly interacts with the BTB proteins LRB1/2, as well as

the CULLIN3A (CUL3A) ubiquitin-E3 ligase in vitro and in vivo

leading to proteasomal degradation of FRI (Christians et al.,

2012; Hu et al., 2014). Long-term cold stress accelerates the

degradation of FRI and blooming by decreasing FLC

transcription, a mechanism dependent on CUL3A and

associated with long non-coding RNA and chromatin

remodeling (Hu et al., 2014). Here we have shown that the

transcription of LRB2 is suppressed by cold stress and knockout

mutants showed enhanced chilling tolerance suggesting its

negative function for chilling tolerance (Table 1; Figure S3L;

Figure S5E).

The AT4G12000 gene encodes a member of the soluble N-

ethylmaleimide-sensitive factor adaptor receptor (SNARE)-

associated Golgi protein family (Xu et al., 2019). Arabidopsis,

53 genes have been annotated to encode SNARE molecules

(Sanderfoot et al., 2000). SNARE proteins in plants are

involved in various physiological processes, including abscisic

acid-related signaling and osmotic stress tolerance (Uemura

et al., 2004; Bassham and Blatt, 2008), and soluble N-

ethylmaleimide-sensitive factor adaptor protein (SNAP) genes

are induced at low temperature (Bao et al., 2008). The expression

ofOsSNAP32 was dramatically increased in rice seedlings treated

with H2O2, PEG6000, and low temperature or after inoculation

with the rice blast pathogen Megnaporthe oryzae. A gene family

encoding SNAP25-type proteins is induced in rice following

exposure to biotic and abiotic stresses (Bao et al., 2008).

AT4G12000 encoding a SNARE-associated Golgi protein

identified in the present study is also induced under cold

stress, and loss of function mutants for this gene displayed

chilling-sensitive phenotypes suggesting a positive function for

this gene in chilling tolerance (Table 1; Figure S3M; Figure S5F).

AT4G12040 encodes an A20/AN1-like zinc finger family

protein, stress-associated protein 7 (ATSAP7) (Vij and Tyagi,

2006). A20/ANI zinc-finger domain-containing SAPs are

involved in abiotic stress (Mukhopadhyay et al., 2004).

Another SAP, AtSAP10, involves various abiotic stresses such

as heavy metals and metalloids, high and low temperatures, and

treatment with ABA (Dixit and Dhankher, 2011). AtSAP12 is

induced following cold treatment (Ströher et al., 2009).

Expression of both OsiSAP1 and OsiSAP8 is induced in rice in

response to a variety of environmental stresses, including cold,

drought, heavy metals, wounding, and submergence

(Mukhopadhyay et al., 2004; Kanneganti and Gupta, 2008)

and overexpression of OsiSAP8 provides rice with strong

tolerance to cold, salt, and drought (Mukhopadhyay et al.,

2004 ; Kannegant i and Gupta , 2008) . In tobacco ,
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overexpression of ZFP177, a rice zinc-finger A20/AN1 gene,

enhanced tolerance to high and low temperatures (Huang

et al., 2008). Similarly, overexpression of AlSAP, a stress-

associated protein from a halophyte grass Aeluropus littoralis,

in tobacco provides increased tolerance to cold, heat, salt, and

drought stresses (ben Saad et al., 2010). Expression of ATSAP7

(AT4G12040) is induced by cold stress, and both T-DNA

insertion knockout mutants identified for this gene exhibited

reduced growth rate under prolonged cold stress as compared to

that in the wild-type Col-0 ecotype, a positive chilling tolerance

function as observed for other Arabidopsis and rice SAP proteins

containing A20/AN1-like zinc finger domains (Table 1;

Figure 3N; Figure S5G).

At5g02360 encodes a cysteine/histidine-rich divergent C1

(DC1) domain-containing novel protein (Allen et al., 2004);

Figure S5H). The transcription of this gene is suppressed in

response to cold stress (Figure S3O). A cysteine/histidine-rich

DC1 protein has been shown to positively regulate cell death and

plant defenses in pepper (Hwang et al., 2014). Here we have

shown that knockout mutants for At5g02360 are highly tolerant

to cold stress compared to the wild-type control, suggesting a

possible negative function for this gene (Table 1; Figure 3O;

Figure S5H).

AT5G23420 (Table 1; Figure S3P; Figure S5I) encodes a

high-mobility group box 6 (HMGB6) protein (Grasser et al.,

2004; Kwak et al., 2007; Pedersen and Grasser, 2010). HMGB

nuclear proteins are involved in various cellular processes,

including replication, transcription, and nucleosome assembly.

The Arabidopsis genome contains eight genes encoding HMGB

proteins (Grasser et al., 2004; Kwak et al., 2007). Cold treatment

increases the expression of HMGB2, HMGB3, and HMGB4,

whereas the transcript levels of HMGB1 and HMGB5 are not

noticeably affected by cold stress (Kwak et al., 2007). The

expression of AT5G23420 is suppressed by cold stress, and

both T-DNA insertion knockout mutants for AT5G23420

exhibited enhanced chilling tolerance (Table 1), suggesting a

negative function for this protein in chilling tolerance.

Through forward genetic screening, several genes have been

identified as cold stress regulatory and responsive genes. Among

the 16 genes we have identified as chilling tolerance genes, only

ACD6 and ADS2 were previously shown to be freezing-

responsive genes (Chen and Thelen, 2013). AT4G12350 gene

encoding ATMYB42 (Table 2), with a subtle cold stress-related

phenotype, is a homologue of the ATMYB14/15 transcription

factors that have been demonstrated to negatively regulate at

least some cold stress response genes (Agarwal et al., 2006;

Miura et al., 2007; Chen et al., 2013; Dong et al., 2021). It has

been demonstrated that ATMYB42 is a regulator of

phenylalanine and lignin biosynthesis (Geng et al., 2020).

Blast2GO analysis was conducted to understand the

functional annotation of the 16 chilling tolerance genes

(Conesa et al., 2005; BioBam Bioinformatics, 2019) (Figure S6;

Table S8-S10). The 16 genes were grouped into 58 classes based
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on their biological processes, 17 classes according to their

molecular functions, and 13 classes as cellular components or

based on their subcellular locations suggesting that most, if not

all, of the 16 chilling tolerance genes encode multiple functions

(Figure S6; Table S8-S10).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2017; BioBam Bioinformatics, 2019) pathway

analyses of 25 genes, including nine genes with subtle chilling

tolerance phenotypes, revealed that AT2G18260 is involved in

the pantothenate and CoA biosynthesis pathway (EC:2.7.7.3 in

Figure S7), and AT2G31360 in the biosynthesis of unsaturated

fatty acids (EC:1.14.19.1 in Figure S7) (Table 1). The

metabolome of Arabidopsis under temperature stress showed

an increase in a small group of amine-containing metabolites (b‐
alanine and putrescine) (Kaplan et al., 2004), and plants capable

of cold acclimation accumulate polyunsaturates during cold

stress. KEGG pathways analysis revealed that AT2G27120

(Table 2) is involved in DNA replication, base/nucleotide

excision repair, and purine metabolism pathways (EC:2.7.7.7

in Figure S7), AT3G53520 (Table 2) is involved in amino sugar

and nucleotide sugar metabolism pathways (EC:4.1.1.35 in

Figure S7), and AT5G54960 (Table 2) involved in glycolysis/

gluconeogenesis (EC:4.1.1.1 in Figure S7). The connection

between plant DNA damage response and responses to biotic

and abiotic stresses has been reported (Nisa et al., 2019).

Duplication of genes has been observed specifically for those

involved in reproduction, DNA damage repair, and cold

tolerance in the high-altitude plant Eutrema heterophyllum

(Guo et al., 2018).
MapMan analysis of chilling-
responsive genes

The efficacy of the full-genome sequences for important crop

species has been advanced by the development of detailed

ontologies by programs such as MapMan (Usadel et al., 2009;

Schwacke et al., 2019), which has assigned enzymes to over 1,200

groups covering almost all central metabolic pathways. Mapman

facilitates analyses of large transcriptomic and proteomic

datasets (Usadel et al., 2009). Though it was developed initially

for analyses of Arabidopsis datasets (Usadel et al., 2009),

MapMan ontology has been extended to several other species

(Ling et al., 2013), including soybean (Nanjo et al., 2011), cotton

(Christianson et al., 2010), maize (Usadel et al., 2009), potato

(Kondrák et al., 2011), and tomato (Barsan et al., 2010).

MapMan maps transcript profiling data onto pathways and

genetic maps and generates response overlays that simplify the

identification of shared features globally and on a gene-to-gene

basis (Usadel et al., 2009; Pitzschke and Hirt, 2010). We

conducted MapMan analyses of the identified 16 chilling

tolerance genes (Table 1), and nine strong candidate genes

(Table 2) using their transcript profiles (Figures S3 & Table
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S5) and mapped 23 of the 25 genes to metabolism, biotic stress,

cellular response, proteasome, autophagy and cellular function

categories (Figure S8).
Discussion

Genetic pathways regulating the expression of cold stress-

responsive genes have been identified through either forward

(Provart et al., 2016) or reverse genetics (Østergaard and

Yanofsky, 2004; Alonso and Ecker, 2006; Chinnusamy et al.,

2010; Provart et al., 2016). In Arabidopsis, changes in gene

expression in response to cold stress are regulated by the C-

REPEAT BINDING FACTOR (CBF)-mediated cold signaling

pathway (Chinnusamy et al., 2010; Jeon and Kim, 2013). Cold

stress elevates Ca2+ levels transiently and activates protein

kinases, including MAP kinases, for cold acclimation (Lissarre

et al., 2010). In transgenic Arabidopsis, CBF/DREB proteins

overexpression led to desiccation and cold tolerance through

ectopic expression of RD/COR genes (Jaglo-Ottosen et al., 1998;

Kasuga et al., 1999). The transcription factors CBF (C-repeat-

binding factor)/DREB1 (dehydration responsive element

binding1) and ICE1 (inducer of CBF expression 1) have

essential roles in regulating the expression of cold-responsive

(COR) genes (Liu et al., 1998; Chinnusamy et al., 2010; Lissarre

et al., 2010). The CBFs/DREBs induce several hundred genes by

binding to their CRT/DRE elements (Vogel et al., 2005). REIL2

deficiency delays CBF/DREB regulon activation and reduces

CBF/DREB protein accumulation in response to cold stress

(Yu et al., 2020). Overexpression of a ribosomal biogenesis

factor encoded by STCH4/REIL2 enhances chilling and

freezing tolerance in Arabidopsis (Yu et al., 2020). STCH4

presumably induces alterations in the ribosomal composition

and functions at low temperatures to facilitate the translation of

proteins required for plant development and survival under cold

stress (Yu et al., 2020). Likewise, overexpression of genes

encoding ice recrystallization inhibition (IRI) proteins LpIRI-a

or LpIRI-b in Arabidopsis exhibited improved cell membrane

stability in freezing and improved frost tolerance (Zhang et al.,

2010). Open stomata 1 (OST1) protein kinase also plays a central

role in regulating freezing tolerance in Arabidopsis, and its

activity is regulated by a plasma membrane‐localized clade‐E

growth‐regulating 2 (EGR2) phosphatase (Ding et al., 2019).

In this study, we investigated Arabidopsis natural variants

collected from a broad geographical region to identify possible

additional novel genetic mechanisms for chilling tolerance. A

diverse collection of natural variants is a useful resource for

identifying genetic mechanisms involved in various biological

processes through GWAS. Arabidopsis is an ideal model plant

distributed across 15.11 to 62.63 latitudes and -123.21 to 136.31

longitudes that include a diverse ecological range, including its

ancestral Iberian Peninsula habitat to northern latitudes with an

unknown glacial refugium (Alonso-Blanco et al., 2016). The
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1,135 natural Arabidopsis variants collected from the diverse

ecological ranges have been resequenced to facilitate identifying

candidate genes for various traits through GWAS (Alonso-

Blanco et al., 2016). The model plant Arabidopsis is

particularly suitable for this study because of the large

collection of mutants available to validate the candidate genes

identified in GWAS (O’Malley et al., 2015).

The genetic basis of cold tolerance in numerous crops has

been investigated using GWAS. For example, a GWAS for cold

tolerance at the seedling stage among rice landraces discovered a

total of 26 SNPs that were significantly associated with cold

tolerance (Song et al., 2018). Similarly, GWAS and differentially

expressed gene (DEG) analysis among germinating maize seeds

revealed 30 SNPs and two DEGs associated with cold tolerance

(Zhang et al., 2020). A GWAS among 200 cotton accessions

collected from diverse geographical locations revealed an alcohol

dehydrogenase gene (GhSAD1) associated with cold tolerance

(Ge et al., 2021). In canola, GWAS led to the identification of 25

candidate genes that were previously shown to be associated

with freezing tolerance, photosynthesis, or cold responsiveness

in canola or Arabidopsis (Chao et al., 2021).

We developed a high-throughput phenotyping platform and

determined the responses of seedlings of 417 of these ecotypes to

chilling stress at 4 °C for 30 days. The 417 ecotypes showed a 10-

fold difference in growth rate between the most chilling-sensitive

and the most chilling-tolerant ecotypes. Therefore, this

collection of natural variants was ideal for mining chilling

tolerance genes (Figure 2D). To facilitate the identification of

most of the chilling tolerance genes, we (i) phenotyped the

ecotypes for responses to cold stress multiple times; and we used

data from each experiment as well as the mean from all

experiments to conduct GWAS. Two models, Linear

Regression (LR) and EMMAX were assessed to accommodate

population structures. We identified 33 candidate cold-

responsive genes through GWAS (Table S4). Only 11 of the 33

genes were identified in GWAS when either LR or EMMAX

model was used; 15 were identified in analyses with EMMAX

and seven with the LR model (Table 1; Table S4).

Analyses of at least two independent insertion mutants for

29 of these genes identified 16 chilling tolerance genes (Table 1).

Loss of function mutants of nine of the 16 chilling tolerance

genes with reduced transcript levels under cold stress showed

enhanced chilling tolerance, while mutants of four genes induced

during cold stress showed increased sensitivity to prolonged cold

stress (Figure 2E; Table 1). For three genes, an inverse

relationship between the transcript levels and responses of

mutants to cold stress was not observed. The inverse

re la t ionsh ip between the growth of mutants and

corresponding steady-state transcript levels of these 13 genes

suggests that most of the 16 identified chilling tolerance genes

are regulated at the transcriptional level for adapting

Arabidopsis to cold stress. In addition to the 16 chilling

tolerance genes, altered phenotypes for a single mutant of each
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of the nine genes were observed (Table 2). This suggests that

these nine genes may subtly affect chilling tolerance.

Investigation of additional mutants or complementation

analyses of the loss-of-function mutants will establish the role

of these nine putative chilling tolerance genes. As opposed to

other GWAS, in our investigation we studied resequenced

accessions (Alonso-Blanco et al., 2016). Therefore, we were

able to precisely identify 33 strong candidate cold-responsive

genes. Most importantly we further investigated 29 of these

candidate genes for their possible role in cold tolerance through

studying at least two insertion mutants (O’Malley et al., 2015).

We identified 16 chilling tolerance genes based on altered

mutant phenotypes in at least two insertion mutants.

Furthermore, we also identify nine additional genes that may

have subtle roles in chilling tolerance because only one of the

insertion mutants for each of these genes showed altered chilling

tolerance phenotypes. Our results are complementary to the

results previously gathered through forward and reverse

genetics. Only two of the 16 genes were previously identified.

Blast2GO analysis of all 16 chilling tolerance genes revealed

that the 16 genes could be grouped into 58 classes based on the

biological processes they are involved in (Table 1; Figure S4;

Table S8-S10). This showed the complexity of cold tolerance

mechanisms that interplay in adapting Arabidopsis to prolonged

cold stress. We employed MapMan to map the identified 15

chilling-tolerance genes (Table 1) and eight of the nine strong

candidate chilling-tolerance genes (Table 2) showing differential

expression due to cold stress (Figure S3; Table S5) onto

metabolism, biotic stress, cellular response, proteasome,

autophagy and cellular function categories (Figure S8).

MapMan analysis interestingly revealed the involvement of

lipid metabolism (ADS2), biotic stress-related genes (NB-ARC

LRR, TIR-NB-LRR, AtRLP39, PER72, LRR protein kinase), a

protein involved in heat stress (DNAJ heat shock N-terminal

domain-containing protein), ubiquitin and autophagy-

dependent degradation, proteolysis (EDA41), vesicle transport

and protein targeting (AtSYP112) and transcriptional regulation

(HMGB6, stress-associated protein 7; AtMYB42) in response to

cold stress (Figure S8).

Transcription factors are involved in regulating the

expression of cold-responsive genes. For example, C-REPEAT

BINDING FACTOR (CBF)-mediated cold signaling pathway

(Chinnusamy et al., 2010; Jeon and Kim, 2013). The regulation

of CBF genes plays a crucial role in the CBF-COR signaling

pathway (Liu et al., 2019). The promoters of CBFs contain MYB

recognition sequences suggesting MYB-related transcription

factor participation in the cold induction of CBFs

(Chinnusamy et al., 2003). We identified a strong candidate

cold-tolerance gene encoding a MYB transcription factor,

AtMYB42, a homologue of MYB15, which was shown to be

involved in cold tolerance earlier (Table 2). Overexpression of

MYB15 resulted in decreased freezing tolerance, while its knock-

out mutant displayed an improved freezing tolerance (Agarwal
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et al., 2006). In our study, a T-DNA insertion atmyb42 mutant

showed enhanced chilling tolerance (Table 2). MYB15 interacts

physically with ICE1, which regulates the transcription of CBF

genes in response to cold (Chinnusamy et al., 2003).

Overexpression of ICE1 boosts the expression of the CBF

regulon, thus improving freezing tolerance in transgenic plants

(Chinnusamy et al., 2003).

Lipid metabolism plays a key role in response to cold stress

(Barrero-Sicilia et al., 2017). In cold stress, one of the adaptive

responses is re-modeling cell membrane fluidity, which is

achieved by increasing the unsaturated fatty acid composition

of membrane lipids (Upchurch, 2008). Transcriptomics analysis

of amino acid catabolism established a link between cellular

regulation and protein degradation in response to various

environmental stresses, including cold stress (Kazemi-

Shahandashti and Maali-Amiri, 2018). E3 ubiquitin ligases are

involved with biotic and abiotic stresses, including cold stress in

Arabidopsis (Dong et al., 2006; Suh and Kim, 2015) and rice

(Byun et al., 2017; Xu and Xue, 2019). Our findings in the

present study (Figure S8) also corroborate the earlier studies

exhibiting the involvement of lipid metabolism, protein

degradation, and the ubiquitin-proteasome system and DnaJ

proteins in cold stress (Barrero-Sicilia et al., 2017; Kazemi-

Shahandashti and Maali-Amiri, 2018; Xu and Xue, 2019). The

DnaJ proteins are treated as common cellular stress sensors

because of their expression by many factors such as heat, cold,

and drought (Rajan and D’Silva, 2009; Liu and He, 2020).

The common pathways among cold stress and other abiotic

and biotic stress signaling suggest the cross-talks among the

pathways (Solanke and Sharma, 2008). The identification of five

novel genes encoding LRR domain-containing proteins is worth

noting. Temperature affects disease resistance by broadly

influencing plant growth, regulating plant-pathogen

interactions and defense responses mediated by several disease

resistance (R) genes (Garrett et al., 2006). The role of NBS-LRR

genes in freezing tolerance has been established (Huang et al.,

2010; Yang et al., 2010; Zbierzak et al., 2013). NB-LRR receptor

functions are known to be modulated by cold stress by

integrating an alternative H2A.Z histone variant into

nucleosomes (Alcázar and Parker, 2011). NLRs or NLR‐like

proteins act as centers linking low‐temperature stress and

salicylic acid (SA)‐dependent growth inhibition (Zbierzak

et al., 2013). Over-expression of an LHY-CCA1-Like

transcription factor SgRVE6 results in increased expression of

6 NB-LRR encoding genes associated with tobacco cold-

tolerance, and it provides the transgenic tobaccos with higher

tolerance to cold stress (Chen et al., 2020). Constant exposure to

cold or low temperatures might result in the accumulation of SA

and the suppression of development (Chen et al., 2015). The

inactivation of a ubiquitin‐conjugating enzyme, UBC13,

compromises cold‐responsive gene activation and causes

elevated SA concentration and growth inhibition at low

temperature. The phenotypes of the ubc13 mutant are partially
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dependent on an NLR gene, SNC1, implying that UBC13 is

engaged in NLR function during low‐temperature stress (Wang

et al., 2019). The defense regulator genes SAG101, EDS1, and

PAD4 negatively regulate the freezing tolerance in Arabidopsis,

partly by modulating SA and diacylglycerol (DAG) homeostasis

(Chen et al., 2015). The diacylglycerol acyltransferase 1

(DGAT1) is highly cold-responsive, and SA downregulates its

cold-responsive expression (Chen et al., 2015). DGAT1 catalyzes

the final step in the triacylglycerol (TAG) assembly by acyl

transfer from acyl-CoA to DAG. During cold acclimation,

freezing-tolerant plants displayed higher DGAT1 expression,

resulting in increased TAG accumulation in response to

subsequent freezing (Chen et al., 2015). DAG metabolism is

also believed to act downstream of defense regulator genes

SAG101, EDS1, and PAD4 in the SA-associated cold signaling

pathway (Chen et al., 2015). The chilling sensitive (chs) mutants,

chs2 and chs3, of genes encoding R proteins of the TIR-NB-LRR

class exhibited accumulation of high SA levels, specifically under

cold stress (Eremina et al., 2016). None of the three NBS-LRR

genes identified showed any similarity to previously cloned NB-

LRR genes involved in freezing tolerance. AT1G61310 encoding

an NBS-LRR protein has been annotated to be a disease-

resistance-like protein. AT5G41750 encoding a TIR-NB-LRR

protein was previously shown to be a candidate for the DM1

(Dangerous Mix 1) gene involved in autoimmunity and

incompatibility response (Bomblies et al., 2007). It is becoming

evident that NB-LRR proteins, LRR-kinase, and RLP may have a

significant role in signaling cold tolerance pathways in plants.

Several studies have indicated that abiotic stress signaling

pathways overlap with the disease resistance signaling

pathways (Lee and Yeom, 2015). Some of the NB-LRR-type R

genes serve as non-immune receptors and are involved in

signaling for plant development. When grown below 16°C, the

Arabidopsis chilling-sensitive 2 (chs2) mutant demonstrated

temperature-sensitive growth abnormalities comparable to

those detected during defense responses (Huang et al., 2010).

A gain-of-function mutant allele of the RPP4 gene was detected

in the chs2 mutant. The mutant allele increases chilling

sensitivity and expression of pathogenesis-related (PR) genes,

the production of hydrogen peroxide, and SA when the mutant

is cultured at 16°C (Huang et al., 2010). The Arabidopsis chs3

mutant exhibiting induction of defense responses showed

stunted growth and chlorosis at 16°C (Yang et al., 2010).

CHS3 encodes a TNL-LIM-type NB-LRR R gene that regulates

the freezing tolerance.

The assignment of chilling tolerance function to 14 of the 16

identified genes is surprising. The overlap between the chilling

tolerance-related genes in the prior and this study was observed

just for two genes. One possible explanation could be that chilling

tolerance is regulated by a very complex process, and all

components of this process are yet to be identified. We looked at

the mutations that resulted in the mutant alleles for 16 genes

involved in adapting the natural variants to the temperate climate
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of the northern hemisphere. For none of the genes, we observed a

nonsense mutation. One possible reason is that the genes may have

vital and multiple functions, as we have seen for many of the genes

identified in this study. Natural selection shapes the expression

levels or structure of the involved proteins or enzymes without

compromising the other functions encoded by the genes during the

generation of new functions for adapting plants to new

environments or growing conditions. We observed that SNPs

identified by GWAS were localized to 5’-UTRs of three genes, 3’-

UTR of one, and introns of three genes (Table 1; Table S4). A

synonymous mutation was detected in AT4G12000, which encodes

a SNARE-associated Golgi protein. This gene is highly expressed

during cold stress, and two knockout mutants for this gene clearly

showed super-sensitivity to cold stress (Table 1; Figure S3M; Figure

S5F). It is possible that the synonymous mutation could impact the

transcription of this gene if it is localized to an unidentified cis-

acting element for transcription. Transcriptional regulation

through cis-elements localized to UTRs is well established

(Srivastava et al., 2018; Rose, 2019). Introns can contain splicing-

regulatory sequences to autoregulate alternate splicing and

transcription regulation (Thomas et al., 2012). Synonymous

mutations in the open reading frames may also cause structural

changes in mRNAs leading to changes in protein translation

efficiency (Li et al., 2019a).
Conclusion

The GWAS, together with insertion mutant analyses, revealed

16 chilling tolerance genes and nine strong candidate chilling

tolerance genes. It was surprising that only two of the 16

identified genes were previously identified. The 14 novel chilling

tolerance genes identified in this investigation indicated that

multiple genetic mechanisms are involved in manifesting chilling

tolerance in Arabidopsis. Thus, chilling tolerance is a complex trait

and is governed by many genetic mechanisms. In this natural

variant study, it was evident that none of the polymorphisms

assisting the identification of 16 chilling tolerance genes cause

either knockout or nonsynonymous mutations affecting loss or

altered gene function. These mutations presumably altered gene

expression levels. It is possible that these genes encode multiple

functions, some of which could be vital. Loss of function mutations

in these genes presumably lack necessary fitness values and were

selected out by natural selection. Therefore, nature shaped the

expression of most of these genes without causing any changes to

the protein structures to provide better adaptation to temperate

climate. This study identified 14 novel genes including five that

encode novel leucine-rich repeat domain-containing proteins,

including three NBS-LRR proteins. The knowledge gained

through identification of 14 novel chilling tolerance genes

complementes the ongoing effort on understanding cold

tolerance mechanisms and provides a strong base for developing

chilling tolerant crop varieties that would well adapt well to cold
Frontiers in Plant Science 16
stress, which is becoming frequent because of climate change and a

serious threat to sustainable crop production.
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