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Compressed vintages, high alcohol and low wine acidity are but a few

repercussions of climate change effects on Australian viticulture. While warm

and cool growing regions may have different practical concerns related to

climate change, they both experience altered berry and must composition and

potentially reduced desirable wine characteristics and market value. Storms,

drought and uncertain water supplies combined with excessive heat not only

depress vine productivity through altered physiology but can have direct

consequences on the fruit. Sunburn, shrivelling and altered sugar-flavour-

aroma balance are becoming more prevalent while bushfires can result in

smoke taint. Moreover, distorted pest and disease cycles and changes in

pathogen geographical distribution have altered biotic stress dynamics that

require novel management strategies. A multipronged approach to address

these challenges may include alternative cultivars and rootstocks or changing

geographic location. In addition, modifying and incorporating novel irrigation

regimes, vine architecture and canopy manipulation, vineyard floor

management, soil amendments and foliar products such as antitranspirants

and other film-forming barriers are potential levers that can be used to manage

the effects of climate change. The adoption of technology into the vineyard

including weather, plant and soil sensors are giving viticulturists extra tools to

make quick decisions, while satellite and airborne remote sensing allow the

adoption of precision farming. A coherent and comprehensive approach to

climate risk management, with consideration of the environment, ensures that

optimum production and exceptional fruit quality is maintained. We review the

preliminary findings and feasibility of these new strategies in the

Australian context.
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1 Emerging challenges

Terroir is the result of an interaction between climate, soil,

landscape characteristics, topography and biodiversity for a

particular cultivar within the vineyard and aside from the

inherent natural environment, it also encompasses the cultural

management of a site. It refers to “the interactions between the

identifiable physical and biological environment and applied

vitivinicultural practices, providing distinctive characteristics for

the products originating from this area” (OIV, 2010). Of these

factors, temperature is undoubtedly a strong driving force for

vine and fruit development (Jones and Davis, 2000; Jones and

Alves, 2012). The Mediterranean climate is considered ideal for

viticulture. Hence, warm, dry summers are accompanied by cool,

wet winters and these combinations of temperature, light and

water drive the desirable evolution of berry aroma, colour and

flavour in hundreds of grape cultivars (Keller, 2010). That said,

grapevines are grown with economic success across a range of

climatic zones, resulting in highly diverse wine styles (Van

Leeuwen et al., 2004). However, heat, drought, wildfires,

excessive rain events and increased pest and disease pressure

are posing new challenges for viticulture. Additionally, many

viticultural regions are consistently experiencing a general

phenological advancement in flowering, veraison and maturity.

These trends and emerging challenges have been, at least

partially, attributed to a changing climate (Caffarra and Eccel,

2010; Bonnefoy et al., 2013; Malheiro et al., 2013; Cola et al.,

2017; Jarvis et al., 2017; Alikadic et al., 2019; Cameron

et al., 2022).

Alongside the ambient temperature rise, Australia has been

subjected to more extreme climatic events like heatwaves,

wildfires and shifts in the timing and volume of rain (Abram

et al., 2021). In February 2009, Eastern Australia witnessed

extreme temperatures and one of the most devastating fires on

record. Another extreme heat event occurred in December 2012-

January 2013 across 70% of Australia with temperature records

in every state and territory. The maximum temperature averaged

across Australia was the hottest ever recorded at 40.3°C.

Furthermore, a frost in November 2017 across South Australia

wiped out 30,000 tonnes of grapes, while hail during flowering in

2017 in the Riverina region of NSW resulted in complete crop

loss. These are genuine current examples of extreme climatic

effects on viticultural productivity. Additionally, the

unprecedented 2019-20 Black Summer bushfires occurred

during record breaking temperatures and very low rainfall.

These fires were classified as ‘megafires’ with nearly 19 million

hectares of land destroyed and with an extreme impact on

biodiversity and at least one billion vertebrate animals lost

(Filkov et al., 2020). This disaster also resulted in extensive

social and economic impacts, including smoke-related effects on

public health and on vineyards in many of the affected wine-

growing regions.
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Australian viticulture stretches from the southernmost

latitudes of Victoria, South Australia and Western Australia

northward into New South Wales and Queensland and it has

been projected that by 2050 a warming climate will reduce the

suitable area available for cultivation by 22-73% (Hannah et al.,

2013); this is despite factoring in estimates of emerging novel

areas for cultivation. These projections, however, are based on

existing cultivars and current management strategies. The

adoption of new cultivars and integration of adaptive measures

to tackle these mounting climate pressures will certainly lessen

the severity of these predictions (Van Leeuwen et al., 2013;

Mosedale et al., 2016). However, research and knowledge

transfer are required now allowing appropriate practical

strategies to be implemented (Santos et al., 2020).
1.1 Heat stress

The growing season mean temperature is an important

driver for root, canopy and reproductive development.

Grapevines can be cultivated in average growing season

temperatures with a lower and upper threshold of 12-13°C

and 22-24°C (Schultz and Jones, 2010). Once endo- and eco-

dormancy are broken, temperatures above 7-10°C will drive

budburst (Amerine and Winkler, 1944), followed by new

vegetative growth and the emergence of the inflorescences.

Warm temperatures will encourage development of the

canopy, but later in the season, if temperatures reach above

35°C, heat stress will impact on the physiology of the vine.

Temperatures can exceed 40°C for prolonged periods in

Australia and this will have an impact on carbon assimilation

and thus sugar accumulation by grapes (Greer and Weston,

2010). The process of photosynthesis is vulnerable to

temperatures due reductions in carboxylation by ribulose 1,5-

bisphosphate carboxylase/oxygenase (Rubisco) and the

regeneration of ribulose 1,5-bisphosphate (RuBP) (Greer and

Weedon, 2012). Heat is also often combined with low humidity

and therefore, to prevent water stress, stomata will close.

The berries themselves are vulnerable to heat stress with

repercussions on berry composition and wine quality. Aside

from impact on primary metabolites such as sugars (Greer and

Weston, 2010; Pillet et al., 2012), organic acids (Sweetman et al.,

2014) and amino acids (Lecourieux et al., 2017), secondary

metabolites responsible for the sensory attributes are also

altered. Flavonoids are affected by high temperatures, but

outcomes depend on the heat intensity, duration, phenological

stage and genotype (Gouot et al., 2019). Anthocyanin changes

were attributed to a combination of changes in gene expression,

enzyme activity, degradation and relocation (Gouot et al., 2019).

Additionally, molecular data pointed toward cell wall changes

(Lecourieux et al., 2017) with potential ramifications on berry

texture. Cell walls of berry skin cells became more extensible
frontiersin.org

https://doi.org/10.3389/fpls.2022.1094633
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rogiers et al. 10.3389/fpls.2022.1094633
perhaps to enable berry contraction and expansion to occur

between the day and night extremes. Elevated canopy

temperature can accelerate late ripening mesocarp cell death

and berry desiccation (i.e. shrivelling) in susceptible cultivars

(Bonada et al., 2013a). High temperature may exacerbate late

ripening cell death by increasing respiration within the berries.

Due to reduced oxygen diffusivity in late ripening berries, the

mesocarp can become hypoxic, resulting in localised anaerobic

fermentation which leads to ethanol accumulation (Xiao et al.,

2018b). Excessive radiation, in combination with heat, can result

in sunburn, especially on the western side of the canopy (Greer

and Weedon, 2013; Greer et al., 2006). Sun exposure and the

microclimate of the bunch will dictate berry temperature and,

therefore, careful manipulation of the canopy may play an

important role in berry attributes, and indeed berry survival

during an extreme temperature event.
1.2 Water deficits

Water deficits can impact on vegetative growth,

inflorescence development, berry set and berry development,

though dependent on the phenological stage, severity and

duration of the water deficit (Hardie and Considine, 1976).

Photosynthesis occurs at the expense of transpiration, with the

efficiency of carbon gain dependent on cultivar. Mild deficits

may result in stomatal limitations, but more severe deficits will

result in non-stomatal limitations, affecting photosynthesis

(Lovisolo et al., 2010). Drought tolerant cultivars with

adequate stomatal control and water-use efficiency are a

priority; as leaf water potential declines, hydraulic conductivity

can by maintained through stomatal closure. Shiraz and

Semillon, for instance, are situated on the anisohydric end of

the isohdyric to anisohydric spectrum and can suffer from water

stress (Schultz, 2003; Rogiers et al., 2009). However, cultivar

behaviour is not always clearly aligned to one or the other end of

the spectrum, and may be inconsistent (Charrier et al., 2018).

Stomatal regulation and transpiration are strongly influenced by

the environment, even during the night (Rogiers and Clarke,

2013). However, unfavourable conditions may not necessarily

increase the risk of plant water stress (Dayer et al., 2021). For

instance, the conditions preceding the water stress and the rate at

which the water stress is imposed will influence the outcomes

(Morabito et al., 2022). The age of the plant and the phenological

stage also play a role. Water stress will hamper cell division and

elongation, and thus overall growth and reproductive

development. To cope with the increase in osmotic stress as a

result of dehydration, cells can accumulate osmoprotectants

such as sugars and amino acids. Leaf petiole ABA (abscisic

acid) concentrations are positively correlated with root sucrose

concentrations in water stressed Grenache and Semillon,
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indicative of integration between ABA signalling and

carbohydrate metabolism (Rogiers et al., 2011a) during water

stress conditions. Water stress can also accelerate late ripening

mesocarp cell death and exacerbate the berry dehydration effect

in prone cultivars (Fuentes et al., 2010; Bonada et al., 2013b),

resulting in increased sugar concentration (Sadras and

McCarthy, 2007; Caravia et al., 2016), altered chemical

composition (Šuklje et al., 2016) and sensory characteristics

(Bonada et al., 2013b) of the berry.
1.3 Bushfires

The risk of fire is predicted to intensify in Australia as a

result of rising temperature (Williams et al., 2001; Clarke et al.,

2013; Abram et al., 2021). The fire season will likely increase in

both duration and intensity resulting in bushfires that damage

vines directly or compromise the crop through smoke exposure

(Summerson et al., 2021). Smoke exposed fruit resulted in

undesirable wine aromas with their intensity dependent on the

phenological stage, characteristics of the fire and environmental

conditions (Kennison et al., 2007; Krstic et al., 2015). The volatile

phenols guaiacol, 4-methylguaiacol, o-, m-, and p-cresol; and

syringol specifically contributed to the smoky aroma (Jones

et al., 2022). These volatile phenols enter the fruit through

their cuticle, with little transport from leaves. Once inside the

berry, the phenols are glycosylated as a detoxifying mechanism

(Dungey et al., 2011; Noestheden et al., 2018; Jones et al., 2022).

Both the free and glycosylated forms have repercussions on

aroma and flavour (Mayr et al., 2014).
1.4 Waterlogging

Heavy rainfall events and flooding are becoming more

frequent and more intense globally, including Australia

(Hague, 2021). Flooding as a result of excessive rain may lead

to plant oxidative stress as a result of hypoxia and/or anoxia. The

transport of O2 from the leaves to the roots becomes insufficient

because O2 is consumed enroute, and there is a large resistance

to gas movement in water saturated root conditions. Moreover,

soil microorganisms compete with the roots for any remaining

oxygen (Sauter, 2013). Once hypoxic conditions are perceived, a

cascade of events led by hypoxic genes are switched on in all the

plant’s organs (Ruperti et al., 2019). Reduced oxygen levels in the

roots results in lowered ability for aerobic respiration, however,

alcoholic fermentation is able to generate limited energy. Toxic

metabolites and reactive oxygen species (ROS) can accumulate

under hypoxia or anoxia (Ponnamperuma, 1972). Moreover, the

translocation of carbohydrates from the reserve sites in the roots

to the rest of the plant may be hampered or rapidly utilised in
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situ (Sauter, 2013). Reduced hydraulic conductance as a result of

insufficient aquaporin activity (Colmer and Greenway, 2011)

may further result in stomatal closure and consequently wilting.

Canopy senescence, decreased root growth and root decay may

also ensue. However, under adequate carbon supplies, new

adventitious roots can be produced to maintain oxygen

delivery (Striegler et al., 1993). In general, roots under hypoxic

conditions are less able to take up water and macronutrients

(Bailey-Serres and Voesenek, 2010). Soil microorganisms also

require oxygen and nitrate availability declines as a result of less

microbiological nitrification (Nguyen et al., 2018). The

combined carbohydrate and nutrient starvation may eventually

result in the death of the vine following flooding-induced

hypoxia and anoxia.
1.5 Oxidative stress

Biotic and abiotic stress such as heat, drought, waterlogging,

UV-B radiation, nutrient imbalances and salinity can result in the

overproduction of ROS, leading to oxidative stress. ROS include

hydrogen peroxide (H2O2), superoxide, singlet oxygen, the

hydroxyl radical and organic and inorganic peroxides. ROS

propagate chain reactions to target nucleic acids, lipids, proteins

and other biomolecules causing oxidative damage (Sharma et al.,

2012). However, depending on the concentration, ROS are also

secondary messengers for cellular processes, including stress

responses, and it is the delicate equilibrium between scavenging

and production that determine their role (Mittler et al., 2022).

Baseline levels of ROS are produced in most cell compartments,

including the chloroplast and the mitochondrion in the processes

of photosynthesis and respiration, and under normal conditions

cellular homeostasis is maintained. Elevated cellular oxidation

plays multiple roles in grapevine growth and development. Bud

burst was suggested to be associated with a localised modulation

of oxidative signalling within the developing cambium and

vascular tissues of the enclosed meristem (Meitha et al., 2015).

The onset of berry ripening is linked to the accumulation of H2O2

in the skin, in Pinot Noir (Pilati et al., 2014). Under stress

conditions, ROS production and accumulation is further

enhanced. For instance, under excessive heat, ROS accrue in the

cytosol and the nucleus (Babbar et al., 2021). As a result of

stomatal closure in response to drought, excess radiative energy

can cause oxidation and hence impair the chloroplast, apoplast

and cytosol. Because plants are often exposed to several stresses

simultaneously (e.g. drought, high light and heat), overproduction

of ROS may result in cell death and tissue necrosis. Cellular

oxygen sensing (Xiao et al., 2018a; Xiao et al., 2018b), ROS

detection technology (Chen and Fluhr, 2018) and molecular

tools, including DNA, RNA and proteins, can be implemented

to better understand vine response to heat and drought and

conditions resulting in oxidative stress (Gomès et al., 2021).
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1.6 Earlier maturity and decoupling of
phenolic from sugar ripeness

Earlier grape maturity occurring than in the recent past is

manifesting in many viticulture regions (Duchêne and

Schneider, 2005; Wolfe et al., 2005; Etien et al., 2009; Duchêne

et al., 2010; Urhausen et al., 2011; Webb et al., 2011; Morales-

Castilla et al., 2020). For example, studies found that fruit

maturity has advanced by 8 days per decade between 1985 and

2009 in southern Australia (Webb et al., 2011; Webb et al., 2012),

while another estimated advancement by 0.5 to 3.1 days per year

over 1993 to 2006 (Petrie and Sadras, 2008). In Chardonnay,

Shiraz and Cabernet Sauvignon of south-eastern Australia, the

early maturity is driven by the early onset of ripening as opposed

to faster ripening (Sadras and Petrie, 2011). Earlier ripening may

be driven by temperature, but also by vine water stress as dry

soils can stimulate the production of the ripening hormone

ABA. Optimum sugar levels in these warmer seasons are,

however, not always concomitant with similar maturity in

colour, flavour or aroma (Kliewer and Torres, 1972; Sadras

and Moran, 2012; Sadras et al., 2013), culminating in the

suggestion that ‘sugar ripeness’ is no longer co-ordinated with

‘phenolic’ ripeness (Van Leeuwen and Seguin, 2006; Goode,

2012). In other words, the anthocyanins and tannins have not

matured to the same extent as they would in cooler years

characterised by slower sugar accumulation. Berry acidity is

another important quality parameter likely to decline in

response to warming (Leolini et al., 2019). Warm nights can

result in the respiratory loss of malic acid with the effect that the

sugar-acid and aroma-acid balance is no longer optimal (Gatti

et al., 2015). However, it has been suggested the trends in earlier

ripening may not solely be the consequence of climate change,

considering that better disease management, fertilizer

application and deliberate yield reductions (to achieve an

appropriate leaf area to yield ratio) have been implemented

over the last decades (Webb et al., 2012). Regardless, the shift in

phenology as a result of climate change demands viticultural

practices to counteract these negative effects on vine resilience

and berry attributes. A study of Australian premium wine found

that quality ratings captured the impact of weather on wine

prices (Oczkowski, 2016). It was also noted that production

occurs at seasonal temperatures that are warmer than optimal.

This is likely to be exacerbated with climate warming and will

have economic repercussions.
1.7 Compressed vintages

A compressed vintage refers to a shorter harvest window for

one particular cultivar. It also refers to a narrower harvest

window for several cultivars in one particular region (Sadras

et al., 2013; Petrie and Sadras, 2016), bringing about competition
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for labour, harvesting machinery, cooling capacity, winery

processing equipment and tank space (Sadras et al., 2013). The

consequence is that harvest compression may result in extended

‘hang time’ due to the inability of growers and wineries to

process large amounts of fruit at once. This extended ripening

period can lead to overripe fruit with berry shrivelling

(desiccation), the concentration of existing sugars so that

alcohol levels rise, loss of acidity and even the degradation of

anthocyanins as well as altered flavour and aroma profiles such

as a loss of fresh fruit characters (Bonada et al., 2013a; Bonada

et al., 2013b; Šuklje et al., 2016). Moreover, alcohol levels have

been rising steadily across many wine regions (Alston et al.,

2011). In Languedoc, France alcohol increased from 11 to 14%,

pH increased from 3.5 to 3.75 and total acidity dropped from 6.0

to 4.5 g/L (Van Leeuwen et al., 2019). Bordeaux wines typically

were 12.5% in the 1980s but today have risen to 16%. In

Australia, alcohol concentrations for red wines have increased

from 12.4% in 1984 to a peak of 14.5% in 2005 (Godden and

Muhlack, 2010). These high alcohol levels are considered less

‘food-friendly’ (Jones, 2010; Jones, 2012), and considering the

societal issues associated with high alcohol and growing trend

for healthier lifestyles, consumers are expressing an interest in

lower alcohol levels (Saliba et al., 2013).
1.8 Pest and disease pressure

Shifts in phenology and the geographic distribution of

grapevine pest insects are taking place as a result of direct and

indirect effects of climate change (Salinari et al., 2006; Reineke and

Thiéry, 2016). The spatial and temporal distribution of insects and

pathogens is largely determined by temperature, light and water

considering these factors control their growth and development

(Rosenzweig et al., 2001). These factors alsomodify the physiology

and resilience of the grapevine as the host. Drought exacerbates

underlying issues such as trunk diseases (Eutypa and

Botryospheria), nematodes and borers while wet conditions are

conducive to increased disease activity such as powdery and

downy mildew, Botrytis and other bunch rots (Salinari et al.,

2006; Steel et al., 2011; Galarneau et al., 2019). Drier conditions

and reduced leaf wetness may lead to decreased infections;

however, the accompanying warmer springtime temperatures

will negate this due to earlier infections (Salinari et al., 2006).

Because grapevines may become vulnerable to new pathogens as

they spread geographically, regular monitoring and an adaptive

environmentally conscious preventative program will be essential.
1.9 Changing soil properties
and dynamics

The physicochemical and biological properties of the soil

have a strong influence on soil quality and functionality, and
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these impact on vine physiology and therefore yield and grape

quality (Cataldo et al., 2021). Soil is a living biological entity with

multiple functions beyond crop productivity (Doran, 2002; Lal,

2016). The soil contributes to water, carbon and mineral cycles,

maintains essential ecosystem functionality by maintaining air

and water quality, and providing a habitat for biodiversity (Yang

et al., 2020). Analogous to rising air temperatures, the

temperature of the soil has increased over the past decades in

certain regions (Zhang et al., 2005), and high air temperatures

have been associated with record soil temperatures (Ooi et al.,

2009). To what extent cover crops ameliorate the relationship

between air and soil temperature need investigation. However,

soil temperature is an important driver for microbial activity

(Bradford et al., 2019), carbon sequestration/release (Huang

et al., 2018), greenhouse gas emissions (Smith et al., 2018),

and below- and above-ground growth (Rogiers et al., 2014).

Warmer soils can initiate earlier budbreak (Rogiers et al., 2014)

and this may increase susceptibility of vine shoot growth to late-

spring frosts.

The increasing variability in the quantity, intensity of rain

and other extreme weather events also influence soil health

(Allen et al., 2011). The physical loss of soil through

mechanical cultivation and displacement through erosion is

likely to be exacerbated by heavy rains. Prolonged drought will

impact on water infiltration, soil organic matter and carbon

sequestration. Additionally, low soil moisture decreases N

availability in the upper soil horizons (Curtin et al., 2012). N

is important to overall growth and berry composition such as

aromatic secondary metabolites as well as yeast assimilable

nitrogen (YAN) for fermentation. Drought will also influence

the species and quantity of functional micro-organisms present

because water acts as a resource, solvent and transport medium

(Schimel, 2018). Aside from the soil itself, the composition and

quantity of root exudates are affected by environmental

parameters such as temperature and water, and these interact

with the root microbiome to influence nutrient cycling, organic

matter decomposition and plant growth regulation (Yang

et al., 2020).
2 Intervention strategies

Without intervention, the combination of these stresses may

lead to greater yield variability, sub-optimal berry composition

and inconsistency in wine style and typicity. Aside from

accessing cooler regions, these approaches could include:

alternative cultivars and rootstocks, efficient irrigation

strategies, delayed pruning, and consideration of row

orientation, training systems along with canopy manipulation,

plant tissue films, sustainable vineyard floor management and

sequential harvesting (Figure 1). These strategies will need to be

vineyard specific to match the topography, environmental

conditions, cultivar, and style of wine desired, and it is likely
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that a changing combination will be required depending on the

urgency of immediate threats versus addressing longer term

sustainability. Additionally, grower, community and consumer

values/pressures will need to be considered along with labour

availability and other socio-economic factors. Most importantly,

any adaptation measure should consider potential short- and

long- term impacts on the environment. Sustainable

productivity will require a balanced approach with

environmental stewardship and the preservation of our

resources for future generations (Doran, 2002).
2.1 Accessing cooler sites

Suitability maps based on bioclimatic indices have been

developed for future climate scenarios. Of the 61 wine regions

in Australia, it is expected that quality wine grape production

will be affected in 21 regions by 2070 if appropriate adaptations

are not implemented (Hall and Jones, 2009). The investment

into cooler regions is already apparent, particularly in Tasmania

where wine production is increasing by 10% each year.

Moving vineyards to cooler elevations is another likely

scenario. Higher altitudes have lower night temperatures,

potentially resulting in higher acidity and aroma in grape

berries with lower alcohol in the wine (Van Leeuwen and

Senguin, 2006). Delayed budbreak and bloom are also

characteristic of the lower temperatures at increased elevations

(Falcão et al., 2010). Vineyards that are currently located on sun-

exposed slopes, may spread into sites that traditionally avoided

because these sites were low in temperature. The particular fine-

scale conditions including aspect, slope, wind exposure, soil

drainage and proximity to water bodies will impact on
Frontiers in Plant Science 06
suitability of a site, but often are not captured with

macroclimatic modelling (Mosedale et al., 2016; Pipan et al.,

2021). Regardless, shifts in location will entail high economic,

environmental and social cost. Extension of vineyards into more

marginal sites maybe at the expense of loss of natural habitats,

impacting on biodiversity and natural water supplies.
2.2 Alternative cultivars, clones
and rootstocks

Viticulture has the availability of hundreds of cultivars well

suited to a wide range of climates, extending from cool,

intermediate, warm to hot conditions (Jones, 2006). The

conservation of current viticultural regions is possible by

exploiting this diverse plant material. Finding the right cultivar

or clone for a specific location is complex, however, and is

dependent on the cultivar/clone’s climate niche and the

distinctive wine style that is desired. Any one cultivar can

produce quite different wine styles, with cooler climates

resulting in lighter, fresher and crisper styles of higher acidity

while warmer climates result in wines with more body, colour,

higher alcohol and darker fruit characters. Growing a cultivar

outside its climatic niche may decrease certainty in consistent

productivity, quality as well as wine style. High quality Pinot

Noir, for example, has a particularly narrow range of optimal

average growing season temperature, at 14-16°C (Jones et al.,

2005) and its future suitability to a particular location could be in

doubt (Jones and Webb, 2010). A greater effort to match the

climate to many of the lesser-known cultivars will greatly

enhance the adoption of these cultivars in a changing climate.

The allocation of specific rootstocks that are able to shift
FIGURE 1

Summary of emerging challenges related to climate change and potential practical intervention strategies for the viticulture industry to consider.
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phenology and ripening rates (Van Leeuwen and Destrac-Irvine,

2017) will also be valuable but will require site specific research

in line with cultivar credentials.

Drought tolerant cultivars may be considered for the future

when water is scarce or too expensive. Likewise, late ripening

cultivars may be required to address the expected advance of

phenology (Duchêne et al., 2010). Choosing a cultivar to plant in

a new vineyard today, knowing that it will experience a different

climate in 20-30 years, is challenging and is also confounded

with changing consumer preferences. Shiraz might be the iconic

Australian wine for some time yet, but there is scope to bring in

lesser-known cultivars or even newly bred cultivars that are

better able to cope with climate change. To spread the risk, some

winegrowers are adopting to plant several cultivars and/or

rootstocks within a specific location.

Cultivars from countries such as Italy, are currently being

planted in regions across Australia and their growth,

productivity and wine production potential are being evaluated

(Chalmers, 2019). In particular, the cultivar’s distinctive

character is assessed along with consumer preference studies

to better gauge its potential for premium wine production. The

breeding of cultivars suited to hot climates from additional

ongoing research has yielded interesting cultivars, producing

wines with, for example, increased colour intensity that may be

used on their own or for blending purposes (Dry et al., 2022).

Specifically, disease resistant cultivars bred by CSIRO have been

evaluated across both cool and warm growing regions with good

performance. Second generation mildew-resistant cultivars is the

current focus of the breeding programs and the microvine, a

dwarf grapevine mutant that flowers continuously (Dry and

Thomas, 2015), will speed up the process considerably.

Aside from climate, soil is an important component of the

vine’s natural environment and the roots interact directly with

the abiotic and biotic characteristics of the soil profile along a

range of depths. Rootstocks offer resistance to phylloxera,

nematodes and fungal pathogens but they also have varying

tolerance to abiotic stresses (Marıń et al., 2021). Vines with

deeper and more extensive root systems are better able to access

available underground water, while others have a greater

intrinsic capacity to absorb water as a result of their higher

fine root hydraulic conductivity and aquaporin activity

(Gambetta et al., 2012). Rootstocks that are able to control

vigour, or influence stomatal conductance through chemical or

hydraulic signalling, can reduce vine transpiration and maintain

plant water status. Drought tolerant rootstocks such as Ramsey,

110 Richter, the new generation M-series rootstocks, and salt-

exclusion rootstocks such as 140 Ruggeri and 1103 Paulsen have

been adopted to help vines cope with drought and soil salinity

(Stevens and Walker, 2002; Pitt et al., 2018; Bianchi et al., 2020).

Soil salinity has increased due to irrigation, of concern in the

Murray River Valley of Australia, as high salinity impacts

severely on growth and productivity. To improve tolerance to

flooding, grafting onto Couderc 3309 resulted in less adverse
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impacts (Striegler et al., 1993). Rootstocks can also influence

phenology and ripening (May, 1994; Walker et al., 2000).

Breeding programs can target rootstocks that shift berry

ripening into a lower temperature period enabling berry

anthocyanin and acidity to be maintained. Trials have been

implemented to assess rootstocks for their ability to reduce

potassium uptake by vines and berries (Ollat et al., 2015;

Walker and Clingeleffer, 2016; Xiao et al., 2020) considering

that grape juice pH is correlated with juice potassium and high

pH has negative consequences for flavour, wine stability and

colour (Rogiers et al., 2017).
2.3 Irrigation

Increases in evaporative demand and declines in

precipitation as a consequence of climate change result

in greater irrigation requirements for the vineyard. However,

in Australia, it is expected that the quantity and quality of water

available for irrigation will be reduced (Murray-Darling Basin

Authority 2010). Drawing water from surface and groundwater

sources has impacts on the surrounding natural environment

as well as other agricultural industries and thus more judicious

use of this precious resource is at the forefront of vineyard

managers. The conversion from flood to drip irrigation in

Australian grape growing regions has resulted in enormous

water savings, and despite the additional energy required to

run water pumps, the precision offered by drip irrigation has

allowed the implementation of various mild deficit strategies to

influence yield, berry composition and wine properties

(Edwards and Clingeleffer, 2013). Regulated deficit irrigation

(RDI) is another strategy used to limit competition between

vegetative and reproductive growth in red cultivars and is

usually applied between fruit set and veraison. While RDI

and prolonged deficit reduced yield in Cabernet Sauvignon

grown in a warm climate, there was no progressive reduction in

yield over multiple seasons (Edwards and Clingeleffer, 2013).

However, deficit irrigation in combination with elevated

temperatures were detrimental to Shiraz wine phenolic

substances and sensory traits (Bonada et al., 2015). Applying

a water deficit prior to véraison may offset the delay in

anthocyanin accumulation that can occur during high

temperatures later in the season (Sadras and Moran, 2012).

Investment in soil moisture sensors and methods to monitor

vine water status will ensure that critical thresholds are not

surpassed in managing the vineyard.

From the perspective of balancing canopy management and

water-use efficiency, even though water savings are generally

beneficial, if canopy development is impaired and bunch over-

exposure occurs then it is suggested that sufficient water should

be applied early in the season to allow full canopy development.

The cooler microclimate because of the shading will lessen the

severity of berry sunburn and shrivelling during late ripening.
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Hypoxia and cell death in the berries can also occur during the

late ripening stage in some cultivars (Xiao et al., 2018b), and this

is exacerbated by water stress (Bonada et al., 2013b; Bonada

et al., 2015; Xiao et al., 2018a).

The loss of berry cell vitality was characterised using the cell

vitality dye (Krasnow et al., 2008; Tilbrook and Tyerman, 2008;

Fuentes et al., 2010), which was associated with the reduced

electrical impedance of the berries (Caravia et al., 2015). The cell

death inhibitor gene VvBAP1 was associated with increased

drought tolerance (Cao et al., 2019). Shiraz is a variety

associated with severe hypoxia and cell death in berries (Xiao

et al., 2018b), increased hydraulic resistance into the berry after

véraison (Tilbrook and Tyerman, 2008), as well as greater

propensity for backflow of water from the berry to the vine in

the later stage of ripening (Tilbrook and Tyerman, 2009). Due to

greater severity of hypoxia and a decline in respiration, the

energy status of berries may be curtailed in the late ripening

stages. These changes in berry energy status might be correlated

with altered metabolism and the greater force to transport

solutes into and within the berries. The hydraulic and energy

status of the berries, and the vitality of berry cells, may provide

more insight into berry ripening, potentially informing future

irrigation and fertilisation strategies.

Practical safeguard measures to deal with drought include

the use of polymers or physical covers to reduce evaporation

from storage dams, prioritising high value blocks when water is

limited. Monitoring water demand through soil or plant-based

sensors in combination with weather data, will ensure

sustainable water use and potentially water savings for

heatwave events. Ensuring dripper spacing is frequent enough

to prevent alternating wet and dry zones will allow consistent

root growth to spread across a wide area.
2.3.1 Irrigation during heatwaves
Irrigation is recommended prior to an impending heatwave

to ensure that the optimal field capacity is maintained (Webb

et al., 2010). Relative to the local climate and historical

observations, a three-day period of unusual high maximum

and minimum temperatures can be classified as a heatwave

event (Nairn and Fawcett, 2015). During the heatwave, the vines

should continue to be watered at regular intervals ensuring that

transpiration is maintained to cool the canopy and bunches

(Hayman et al., 2012). Application of water directly to the

canopy is discussed below in 2.6 under hydro-cooling. The

timing of the heatwave during the growing season will result

in different consequences, with earlier heatwaves lowering fruit

set and later heatwaves disrupting ripening. Heatwaves can cause

vines to ‘shut down’; that is, photosynthesis stops, due to

stomatal closure, so that water can be conserved, and thus the

rate of ripening slows (Greer and Weedon, 2013). Depending on

the timing, severity and duration of the heatwave, it may take

several weeks for the vine to resume its normal photosynthetic
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activity resulting in overall low-quality fruit. In contrast, it has

been suggested that dry soils brought about by higher

temperatures and drought may advance grape maturity (Webb

et al., 2012) associated with ABA production by the roots

(Davies et al., 2000), a hormone correlated with ripening

(Wheeler et al., 2009). Moreover, dry soils fluctuate in

temperature to a greater extent during the day hence vine

roots may experience warmer temperatures (Rogiers et al.,

2014) when the soils are dry.

2.3.2 Post-harvest irrigation
Post-harvest irrigation has the benefit of prolonging leaf

photosynthesis if conditions are warm enough so that vine

carbohydrates can be replenished (Loescher et al., 1990).

Grapevines rely on the stored reserves during early season

root, shoot and inflorescence growth and a long post-harvest

period with adequate soil moisture allows carbon capture

through photosynthesis and may even encourage a new flush

of fine root growth to aid in the uptake of nutrients (Mahmud,

2016). The timing of leaf senescence to some extent determines

the length of carbohydrate reserve accumulation during the

post-harvest period and this can be considerable in warm-

climate viticulture.

2.3.3 Dry winters
Rainfall has been declining in late autumn and early winter

in south-eastern Australia (Cai and Cowan, 2013) and may have

negative impacts during budburst and spring canopy

development. A recent study investigated the effects of low

winter rainfall on vine growth and wine quality using rainout

shelters (Bonada et al., 2017). Vines were irrigated with micro-

sprinklers or drippers at different timepoints during the winter

and it was evident that waiting to refill the profile until budburst

resulted in excessive vegetative growth with negative

consequences on yield and wine composition. It is likely that

root growth dynamics and root longevity is altered by the

changes in precipitation and irrigation patterns and this will

have consequences on overall vine performance. Bonada et al.

(2017) recommended that the soil profile be maintained

throughout winter rather than delaying until spring to irrigate

and refill the soil profile.
2.4 Delayed pruning

Delayed maturation of the berries into the cooler period of

the growing season and decompressing the harvest window can

be encouraged by delayed pruning. Applying pruning after

budburst can delay véraison, allowing ripening to occur during

cooler months. Pruning carried out at the 10 cm shoot length

stage, following mechanical winter spur pruning, achieved a

reduction in sugar accumulation in Sangiovese berries (Palliotti
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et al., 2017). Shiraz berries from vines pruned at the 2-3 leaf stage

reached sugar ripeness up to two weeks later than those with

winter pruning applied and attained an improved anthocyanin

to sugar ratio (Moran et al., 2017). This strategy was favourable

for balancing tannin accumulation, colour intensity, fruit aroma

and flavours (Moran et al., 2018).

In addition, delayed pruning can minimize the risk of spring

frost damage of the young spring shoots (Friend and Trought,

2007) and improve pollination and fertilisation, by inducing

flowering to occur in warmer months. Delayed spur-pruning of

the previous season’s apical nodes inhibits the development of

basal nodes through apical dominance. Pruning carried out three

months later than the usual winter pruning time increased yield

by 60 to 90%, in Merlot, over a three-season trial (Petrie et al.,

2017). However, the impact of delayed pruning on yield was

considered to be dependent on interrelated factors such as

cultivar, seasonal conditions as well as timing and severity of

the pruning applied. Hence further development and assessment

of this strategy is needed.
2.5 Row orientation, training systems and
canopy manipulation

2.5.1 Vine balance
Balancing yield with new biomass growth is critical to

maintaining long-term sustainable productivity. Nutrient and

carbohydrate reserves are essential for supporting early spring

growth prior to flowering and are subsequently refilled within

the vine prior to ripening (Rogiers et al., 2011b). Heat and

drought can influence the quantity of the photoassimilate that is

fixed and then distributed to the three growing sinks (roots,

shoots and bunches), as well as the reserve pool, predominantly

sequestered as starch in the vine structural root system (Rogiers

et al., 2011a).

Vine balance can be achieved by pruning of the dormant

vines and thinning of the growing leaves/shoots. The number of

nodes to be retained during winter pruning can affect vigour,

yield, fruit composition and long-term productivity of the vines.

Factors such as cultivar, climate and other management

influences should be considered when determining the number

of nodes retained. Keeping long-term records on yield and

pruning weight will aid in monitoring vine performance for

reliable vine balance assessment and crop load calculation. Leaf

removal and shoot thinning can influence ripening of the fruit to

varying degrees, depending on the cultivar, growing conditions,

timing and severity of the thinning applied (De Bei et al., 2019).

Excessive leaf removal around the bunch zone may result in

sunburn of berries. Likewise, shoot thinning of Semillon at the 8-

9 leaf stage in a hot Australian climate did not alter berry

composition, probably because vine balance was not altered

(De Bei et al., 2020). Further research on thinning techniques

is required to assess the sustainable effects of this strategy.
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2.5.2 Natural shading
The geometry of the canopy can be manipulated to ensure

that the microclimate of the bunch zone is well-suited to the

development of desirable berry attributes. Adequate solar

radiation is required for optimal photosynthesis, bud fertility,

and berry development, including polyphenol accumulation

(Berli et al., 2008). However, over-exposure of leaves may

result in photo-inhibition of photosynthesis (Greer et al.,

1986) and leaf necrosis and mortality. Sunburnt fruit leads to

increased bitterness with browning of the wine, and damaged

skin can lead to pathogen invasion. Dark cultivars can

experience berry temperature 15°C higher than ambient

temperature and thus alterations in the primary and secondary

metabolites important to wine quality are likely (Bergqvist et al.,

2001). The excessive exposure of leaves and fruit to direct

incoming and reflected radiation can be addressed by row

orientation, vine architecture, planting density and canopy

management. The hot afternoon sun can be avoided by

orientating rows in the east-west direction as opposed to the

north-south direction (Buesa et al., 2020). Allowing canopies to

sprawl so that fruit are shaded will minimise sunburn and

shrivelling in hot, sunny climates. While the natural shading

may decrease air circulation and increase disease pressure, this

may not be an issue in dry regions. Because light is important to

anthocyanin production, shading may decrease colour in the red

cultivars hence the balance between temperature and light will

need to be considered. Removal of the leaves above the

bunchzone of cvs. Bobal and Tempranillo vines prior to

veraison, and grown under mild water stress, limited the

accumulation of anthocyanins more than total soluble solids

and was thus not recommended as a method to delay harvest

(Buesa et al., 2018). Similarly, avoiding shoot trimming or leaf

removal will decrease sun damage and also save on labour costs.

Vertical Shoot Positioning (VSP) is not recommended in hot,

dry conditions and when sun damage is an issue. Foliage wires

can, however, be used to minimise canopy displacement caused

by wind.

Pergola type systems that allow the spread of leaves above

the hanging fruit are ideal for providing shade, and ventilation

simultaneously. In contrast, the Gobelet, also known as the bush

vine, is an ancient architectural system still used in the dry

regions of Spain with reduced leaf area (Van Leeuwen et al.,

2019). It, however, has the drawback of low productivity and is

not conducive to mechanical harvesting. The bush vine tends to

have a short trunk, however, trunk height can be manipulated to

raise bunches away from the soil surface where temperatures

may be warmer (Van Leeuwen et al., 2019)
2.6 Shade structures and hydro-cooling

The interactive effect of temperature and photon flux

densities on reproductive development in Shiraz vines was
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assessed in response to several densities of shade cloth over three

seasons (Abeysinghe et al., 2018). During severe heat events the

50% shade treatments were able to reduce canopy temperatures

significantly, by approximately 4-5°C. While berry growth was

delayed by a 50% shade cover, maximum berry size and the rate

of sugar accumulation was not affected. It was interesting to note

that shade cover up to 50% had no impact on the ripening

process when there were no heat events. The berries had lower

sugar concentrations due to greater water content and cell

vitality was maintained, but most notably the wines from the

fruit resulted in lower alcohol without reduced anthocyanin

concentrations. Alongside density, the net’s colour has an

important impact on the spectral wavelengths that the canopy

and fruit are exposed to, thus impacting on vegetative growth

and reproductive development, including fruit composition

(González et al., 2015).

Overhead sprinklers and misting may reduce heat and water

stress as they are able to cool both canopies and berries. Semillon

is a cultivar that is particularly sensitive to heat stress both

during flowering and ripening, with reduced photosynthesis due

to both stomatal and nonstomatal limitations and requiring up

to 2 weeks to recover (Greer and Weston, 2010; Greer and

Weedon, 2013). Hydrocooling, activated at a threshold

temperature of 35°C, extended the period for leaf and berry

expansion so that berries were larger. Canopy temperatures were

lower, net CO2 assimilation was higher and berry TSS was also

slightly elevated (Greer and Weedon, 2014)

The cost and availability of water for hydrocooling may be

an issue and adequate planning so that enough water is available

for the entire season is required. The increase in disease pressure

is likely to be low in heatwave conditions, but if conditions are

warm and humid for a protracted period this may become an

issue. The water quality should be adequate as saline water will

result in leaf burn and defoliation.
2.7 Antitranspirants, sunscreens and film-
forming barriers

Plant tissue films have been available to viticulture for

several decades and have been trialled for their capacity to

maintain tissue hydration (e.g. di-1-p-menthene: Palliotti et al.,

2013; Gatti et al., 2016; Rogiers and Fahey, 2019), prevent

sunburn (e.g. kaolin: Dinis et al., 2016; Conde et al., 2016;

Conde et al., 2018), decrease disease incidence (e.g. chitosan:

Meng et al., 2008) or even to ameliorate smoke taint (e.g. kaolin:

Van der Hulst et al., 2019). These films are derived from natural

or synthetic origins and, depending on their composition, time

of application and concentration, may or may not be beneficial.

When compared to protective netting, these particle film-

forming and antitranspirant products may reduce fruit quality

and consumer acceptance (Brillante et al., 2016). In a smoke
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taint study, several materials were tested for their ability to

prevent absorption of gaseous phenols but it was noted that they

did not provide much protection (Culbert et al., 2021).
2.8 Sustainable vineyard
floor management

2.8.1 Inter-row and under-row vegetation
Bare soil as a result of cultivation contributes significantly to

vineyard heating, water and carbon loss, soil erosion and

greenhouse gas emissions (Santos et al., 2020). Allowing the

resident vegetation to grow or planting cover crops can improve

water infiltration, soil organic matter and microbial function

(Celette et al., 2008; Steenwerth and Belina, 2008). Inter-row and

under-row vegetation can encourage soil biodiversity and lessen

disease pressure (Garcia et al., 2018). To minimise the

competition for water between the vines and the inter-row

plants they can be slashed or allowed to dry (Webb et al.,

2010). Moreover, planting native species alongside a vineyard

has the benefits of reducing wind, salinity, erosion and providing

ecosystem services (Viers et al., 2013).

In regions with adequate rainfall, legume cover crops can

supply soil organic matter and biologically fixed N to the

grapevine (Ball et al., 2020). Nitrogen application to soil in the

form of synthetic fertilisers, manures, composts or mulches can

lead to nitrous oxide emissions, a particularly potent greenhouse

gas (Longbottom and Petrie, 2015). Targeting the application of

N during the phase of active nutrient uptake (before flowering

and after harvest when there is a long post-harvest period) will

reduce excessive N in the soil and curb nitrous oxide emissions.

Employing drip irrigation instead of furrow or flood irrigation

will also curb emissions as microbial activity leading to

denitrification is reduced (Suddick et al., 2011).

2.8.2 Mulches, composts and soil conditioners
Undervine mulch, such as straw or vineyard prunings, has

many benefits, aside from weed control, including the

amelioration of soil water evaporation (López-Urrea et al.,

2020), the regulation of soil temperature and improving

biodiversity. Improving the carbon content of the soil by

adding mulch and composts not only offsets carbon

emissions but also improves soil structure and the water

holding capacity of the soil. Likewise, composts increase

nutrient reserves, the cation exchange capacity, and reduce

the requirement for synthetic fertilisers. Organic matter

supports soil biodiversity, which in turn suppresses

pathogens and promotes beneficial as opposed to parasitic

organisms. Figure 2 provides an overview of factors driving

soil health and indicators for soil health assessment. Microbes

are especially beneficial at the recycling of nutrients from

organic matter and minerals. Mulches applied on top of the
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manure or compost further reduces the release of nutrients

such as nitrogen to the atmosphere and also helps control root-

zone temperature. The characteristics of the soil amendment

including its pH, EC, nutrient and heavy metal content should

be considered prior to application. Composted grape marc, for

instance, contains potassium and this has the potential to

increase the pH of the grape must so that acid additions are

required in the winery (Rogiers et al., 2017). That said, the

addition of grape marc to soil in New Zealand had minor

effects on juice K and pH (Mundy and Agnew, 2002).

Organic amendments such as biochar and brown coal

waste (BCW) are a source of soil organic matter, which can

influence the soil microclimate, microbial community

structure, biomass turnover and mineralisation of nutrients

(Amoah-Antwi et al., 2020). Coal derived humate is potentially

effective as a soil conditioner in improving aggregate stability

of acidic and sodic soils against adverse effects of cyclic

seasonal wetting and drying conditions (Imbufe et al., 2005).

Biochar is a carbon-rich material produced by heating organic

material through the pyrolysis process in an oxygen limited

environment . Feedstock and pyro lys i s condi t ions

(temperature, heating rate, oxygen supply, pressure, residence

time, cooling down procedure) can result in biochars with

differing chemical and physical properties (Fryda and Visser,

2015). Therefore, they are heterogeneous materials with a

diverse range of properties that change over time. Biochar

may improve soil function, increase nutrient availability to

plants, promote plant productivity, remediate organic/

inorganic contaminants, reduce N2O emissions, increase soil

pH and lead to the net removal of carbon from the atmosphere

(Laird, 2008; Kolton et al., 2017). Biochar’s macropores filled

with adsorbed nutrients create a habitat for beneficial
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microorganisms (Atkinson et al., 2010). Biochar can provide

protection against both root and foliar plant diseases through

the direct manipulation of bacterial communities or by induced

plant resilience (Elad et al., 2011). In vineyards, biochar may

increase soil fertility, productivity or both (Baronti et al., 2014;

Schmidt et al., 2014; Genesio et al., 2015; Mackie et al., 2015;

Giagnoni et al., 2019; Garcıá-Jaramillo et al., 2021). Notably, a

long-term study over ten years showed evidence of increases in

soil water content and plant water status (Baronti et al., 2022).

However further research is required using different parent

materials and pyrolysis conditions to gain a better

understanding of the potential for improving plant resilience

and maintaining fruit quality under climate change.
2.9 Biostimulants

Application of biostimulants to grapevines have a high

potential for promoting nutrient uptake, tolerance to biotic

and abiotic stress and improving fruit yield and quality

(Monteiro et al., 2022). Biostimulants are defined as “any

substance or microorganism applied to plants with the aim to

enhance nutrition efficiency, abiotic stress tolerance and/or crop

quality traits, regardless of its nutrients content” (Du Jardin,

2015). Biostimulants commonly used in vineyards include

seaweed extracts, humic substances, chitosan, exudates, and

other plant extracts (Cataldo et al., 2022). Seaweed extracts

contain macro- and micro-nutrients, amino acids, vitamins,

auxins, abscisic acid and cytokinins. Likewise, brown sea

weeds (Ascophyllum nodosum L.) have been shown to improve

tolerance against biotic and abiotic stresses (Salvi et al., 2019;

Taskos et al., 2019).
FIGURE 2

Indicators and benefits of optimum soil health. Soil health is comprised of the interactive physical, chemical and biological spheres and can be
assessed through various measurable indicators and resulting benefits in the vineyard.
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2.10 Sequential harvesting

Wine alcohol can be reduced through the simple method of

adding water to the juice and amendments to the Australia New

Zealand Food Standards Code now allows limited addition of

water to high sugar must above 24.3°Brix. Alternatively, alcohol

can be removed from wine using vacuum distillation or

membrane systems based on reverse osmosis and evaporative

perstraction, however the methods are not eco-sustainable and

these wines tend to lack aroma through the loss of desirable

volatile compounds responsible for fruity and floral characters

(Longo et al., 2018). Other strategies include the use of yeast

strains tailored for lower ethanol yields (Ristic et al., 2016;

Hranilovic et al., 2020). Grapes harvested at a lower sugar

level may have insufficient phenolic and aroma attributes that

are characteristic of more mature fruit, and they may have too

much acid and an undesirable herbaceous character. This can

potentially be overcome by blending a low and high alcoholic

wine so that acid levels are balanced and ripe flavours mask the

unripe attributes. Following two sequential harvests, blending

wines made from less ripe grapes with wine vinified from riper

fruit resulted in a wine with similar sensory profiles of the later

harvested fruit but with a lower alcohol content (Longo et al.,

2018). This particular investigation was conducted on Petit

Verdot and Verdelho, but the positive outcome certainly

warrants further studies on other cultivars.
2.11 Technology, sensors, AI and
online tools

Information on vineyard status can be obtained through

sensors placed in contact with the soil or plant. For instance, soil

nutrients can be assessed using ion-selective electrodes and ion-

sensitive field-effect transistors (Adamchuck and Rossel, 2010).

Direct measurement of plant water status for irrigation

scheduling is more accurate than soil moisture monitoring

alone as sensor placement may not be representative of full

field conditions; moreover, plant measurement integrates

evaporative demand. The most accurate method for assessing

plant water potential is the pressure chamber, however this

method is not conducive to automation. Dendrometers

(Clonch et al., 2021), sap flow (Mancha et al., 2021), and

acoustic sensors (Oletic et al., 2020) provide information on

plant water status, and if temperature sensitivity, set-up

inaccuracies and data interpretation difficulties can be

overcome, these tools may be useful when correctly calibrated.

Additionally, climate sensors alongside leaf temperature and

wetness sensors provide continuous data on pest and disease

pressure. These data can be captured using wireless sensor
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network (WSN) technologies that allow the real-time remote

monitoring of several areas within the vineyard.

While contact sensors have their place in vineyard

management, contactless sensors are the new focus of the

viticulture industry. Satellite imagery allows monitoring at a

large scale however is limited by satellite orbit coverage patterns,

visiting times, clouds and spectral resolution. Remote sensing

using unmanned aerial vehicles (UAVs) or ground vehicles

equipped with GPS and an array of sensors is capable of the

collection of high-resolution data (mm) on phenology, water

status, vigour, pest and disease incidence, weeds, yield and

maturity (Seng et al., 2018; Maes and Steppe, 2019; Sassu

et al., 2021). Thermal (Far-IR), RGB (red, green, blue),

multispectral, hyperspectral sensors and chlorophyll

fluorescence systems have all been applied to assess plant

status and reproductive parameters (Matese et al., 2015;

Tardaguila et al., 2021). Light detection and ranging (LiDAR)

is appropriate for the determination of leaf area index and can be

used to assess dieback as a result of trunk diseases (Ouyang et al.,

2021). Hyperspectral and near-infrared (NIR) spectroscopy have

been useful for the assessment of real-time berry composition

during ripening (González-Caballero et al., 2012; Power et al.,

2019). Additionally, both thermal imaging and NIR

spectroscopy have been developed for real-time plant water

status assessment (De Bei et al., 2011; Diago et al., 2018), with

automated variable drip irrigation to address low-performing

areas within a vineyard on the radar. Thus, high-resolution

monitoring allows for management that takes into consideration

the natural variability in the block (Fuentes and Gago, 2022).

One of the greatest challenges that remains is the processing

and integration of the large data sets acquired by these

monitoring technologies (Manfreda et al., 2018), allowing a

targeted management plan to be effected. AI and machine

learning (ML) models are able to overcome these limitations

and have been rapidly advancing in viticulture (Seng et al., 2018;

Fuentes and Gago, 2022). These approaches can result in

intelligent recommendations for efficient water, pesticide and

nutrient use not only to target yield and composition but also to

deal with temporal and spatial variability. Moreover, robotic

innovations are currently under development for the

monitoring, pruning, spraying and weeding of vineyards

(Matese et al., 2015). Thus, these technologies allow for

targeted treatment with improvements in efficiency and

reductions in environmental repercussions.

The widespread use of smartphones and apps allow growers

rapid and cost-effective assessments of individual vines within

the vineyard. A smartphone with an attached thermal camera

showed promise for assessing vine water status and to aid in

irrigation scheduling (Petrie et al., 2019). Canopy vigour

assessment through the VitiCanopy® app has GPS capabilities
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making it appropriate to map spatial canopy architecture (De

Bei et al., 2016), and early prediction of yield is possible at

flowering (Aquino et al., 2015) and berry (Liu et al., 2020)

quantification. ML has also been applied for the detection of

smoke contamination in berries using NIR spectroscopy

(Fuentes and Tongson, 2018; Summerson et al., 2021).

Furthermore, computer vision and deep learning were applied

for the detection of nutrient disorders in grapevines (Debnath

et al., 2021). RGB images of nutrient deficiencies were taken as

symptoms progressed and these were used to develop, train and

test models for the incorporation onto a smartphone. Flexible

and rapid adjustment to the challenges posed by variable

weather patterns can now be addressed through timely online

notification systems, including SMS messages to a phone. There

has been significant investment in the forecasting of heatwaves

and communication to growers so that they are able to prepare

for such events. For maximum adoption, technical solutions

need to be simple, rapid, affordable, accurate, precise and

integrated with other data gathering platforms (Figure 3).
3 Summary

The Australian wine industry is already implementing site-

specific adaptive measures to deal with unpredictable weather,

droughts and rising temperatures. Growers are conscious of

their environmental footprint, their long-term sustainability,

and are balancing these visions with economic viability

(Figure 4). The increasing awareness of sustainable

management practises will result in overall improvements in

environmental equilibrium and soil health for future

generations. As they become more economical and user-
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friendly, technical innovations will be readily adopted and

integrated with more traditional approaches to vineyard

management. However, long-term field trials are required to

fine-tune these adaptive strategies to particular situations.

Additionally, the inclusion of stakeholders in a co-design

framework for future R&D will accelerate the adoption of

these mitigation strategies.
FIGURE 3

Minimum requirements for maximum adoption of technical
solutions by the viticulture industry.
FIGURE 4

Resilient viticulture is reliant on a number of environmental, economic and social factors.
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