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Increasing water-soluble carbohydrate (WSC) content in white clover is important

for improving nutritional quality and reducing environmental impacts frompastoral

agriculture. Elucidation of genes responsible for foliar WSC variation would

enhance genetic improvement by enabling molecular breeding approaches. The

aim of the present study was to identify single nucleotide polymorphisms (SNPs)

associated with variation in foliar WSC in white clover. A set of 935 white clover

individuals, randomly sampled from five breeding pools selectively bred for

divergent (low or high) WSC content, were assessed with 14,743 genotyping-by-

sequencing SNPs, using three outlier detection methods: PCAdapt, BayeScan and

KGD-FST. These analyses identified 33 SNPs as discriminating between high and

low WSC populations and putatively under selection. One SNP was located in the

intron of ERD6-like 4, a gene coding for a sugar transporter located on the vacuole

membrane. A genome-wide association study using a subset of 605 white clover

individuals and 5,757 SNPs, identified a further 12 SNPs, one of which was

associated with a starch biosynthesis gene, glucose-1-phosphate

adenylyltransferase, glgC. Our results provide insight into genomic regions

underlying WSC accumulation in white clover, identify candidate genomic

regions for further functional validation studies, and reveal valuable information

for marker-assisted or genomic selection in white clover.

KEYWORDS

genome-wide association study, genotyping-by-sequencing, outlier detection, white
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1 Introduction

White clover (Trifolium repens L.) is sown in temperate

pastures globally, as it provides high quality forage for ruminants

and is a source of bioavailable nitrogen, fixed through symbiosis

with soil Rhizobium bacteria (Ulyatt, 1997). It is a recent (15 –

28,000 years ago) allotetraploid that resulted from the

hybridization of two diploid Trifolium species, T. occidentale

and T. pallescens (Ellison et al., 2006; Griffiths et al., 2019).

Retention of the combined genomes as T. occidentale and T.

pallescens-derived subgenomes likely underpins the broad

adaptation and phenotypic plasticity of this agronomically

successful species (Griffiths et al., 2019). White clover foliage

has a high concentration of crude protein but a relatively low

concentration of water-soluble carbohydrate (WSC) (Cosgrove

et al., 2009). Foliar WSC is important because it provides readily

available energy to the rumen microbiome, which improves the

efficiency of protein utilisation by the animal (Woodfield et al.,

2001). Higher levels of WSC available for consumption by

ruminant microbes enables a shift in the partitioning of

digested nitrogen, with less excreted as urea and more utilised

for animal growth and production (Easton et al., 2009). Breeding

for increased foliar WSC in pasture species, including white

clover, can therefore have beneficial effects for the environment

as less nitrogen is lost via urine and dung to nitrous oxide

emission and nitrate leaching (Luo et al., 2015; Selbie et al.,

2015). In addition to improved nutritional quality and positive

environmental outcomes, WSC has been found to be important

in conferring cold tolerance and drought resistance in plants due

to its role in osmotic adjustment (Kerepesi and Galiba, 2000;

Dalmannsdóttir et al., 2001; Livingston et al., 2009).

Several aspects of WSC composition and variation in white

clover plants have been studied, including seasonal and diurnal

foliar WSC variation (Michell, 1973; Ruckle et al., 2018; Kagan

et al., 2020). While research has addressed the genetic control of

WSC accumulation in stolons (Inostroza et al., 2018), little is

known about the genetic mechanisms underlying foliar WSC

accumulation in white clover. Improved understanding of the

genes that influence foliar WSC accumulation would support the

development and application of molecular breeding tools, such

as marker-assisted and genomic selection, that could be used by

breeders to accelerate genetic improvement of this trait.

Two complementary approaches may be used to detect

genomic loci linked to trait phenotype variation, as a means to

identify candidate genes. Outlier analysis can be used to identify

single nucleotide polymorphisms (SNPs) that differentiate
Abbreviations: DF, Discriminant Function; DM, Dry Matter; EMMs,

estimated marginal means; HMW, High Molecular Weight; K, number of

genetic clusters; KGD, Kinship using Genotyping-by-sequencing with Depth

adjustment; KPC, number of principal components; LMW, Low Molecular

Weight; PC, Principal Components; PCA, Principal Component Analysis;

SSS, Soluble Sugars and Starch; WSC, Water-Soluble Carbohydrate.
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populations with divergent phenotypes. This approach most

commonly involves FST-based tests (Antao et al., 2008;

Whitlock and Lotterhos, 2015) or principal component

analyses (PCA) (Luu et al., 2017) to identify differentiating loci

that are distinct from those under neutral selection. Genome-

wide association studies (GWAS) offer a second approach,

utilising SNP markers across the entire genome with the goal

of associating specific variants with phenotypic variation, as

measured in a population or a panel of diverse individuals. This

method can be used in both model and non-model organisms

and has successfully identified genes underlying traits in forage

species (Arojju et al., 2016; Sakiroglu and Brummer, 2017; Biazzi

et al., 2017). Both outlier approaches and GWAS require a

preliminary assessment of population structure to avoid false

positive associations (Sul et al., 2018).

Selective breeding to create experimental white clover

populations with divergent levels of foliar WSC was previously

undertaken in two New Zealand breeding programmes, with five

discrete breeding pools. Three were described by Widdup et al.

(2010) and conducted over four cycles of divergent recurrent

selection, and the remaining two pools were part of another

programme (Mr. John Ford, pers. comm.) in which selection

took place over six cycles. Both programmes included pools in

different leaf size classes (large leaf and small leaf). The

divergently-selected populations in these pools represent a

valuable genetic resource for investigating the genetic basis of

WSC accumulation, including the relationship between leaf size

and WSC levels (Woodfield et al., 2001).

Genotyping-by-sequencing (GBS), enables highly efficient

and cost-effective simultaneous SNP discovery and genotyping

(Elshire et al., 2011; Poland et al., 2012b) and has been

implemented in numerous forage species (Biazzi et al., 2017;

Sakiroglu and Brummer, 2017; Faville et al., 2018; Guo et al.,

2018), including white clover (Wright et al., 2017; Griffiths et al.,

2019). In our study, we applied GBS in the five white clover pools

to support investigation of genomic regions and loci under

selection for WSC accumulation. Analyses were based on

genome-wide GBS-derived SNP data from individuals within

the breeding pools, targeting three generational time points

within each pool. The overall aim was to identify SNPs

associated with foliar WSC accumulation, that may

subsequently be developed and used to support gene discovery

and molecular breeding approaches in white clover populations

to aid breeding for increased WSC accumulation in white clover.

There were three principal objectives: (1) to confirm that

foliar WSC phenotypes were significantly and directionally

different amongst the populations used in the study, ensuring

that subsequent genetic studies were performed on truly

divergent phenotypes; (2) to establish whether selective

breeding had altered WSC independently of changing leaf

area in those populations; and (3) apply outlier detection and

GWAS approaches to identify SNPs associated with foliar

WSC accumulation.
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2 Materials and methods

2.1 Plant material

The plant material used in this study was bred and supplied by

Grasslands Innovation Ltd. Selective breeding for foliar levels of

water-soluble carbohydrate (WSC) in white clover was completed

previously in two breeding programmes, one consisting of four

cycles of recurrent selection in three breeding pools (Widdup

et al., 2010) and the other over six cycles in two pools (Mr John

Ford, pers. comm.) (Figure 1). In all breeding pools, divergent

selection was undertaken at each cycle to create populations with

either low or high levels of foliar WSC, so that at each generation

there is both a low and a highWSC population. In the programme

described by Widdup et al. (2010) there were 24 populations

generated (3 breeding pools × 4 cycles × low/high WSC) and in

the Ford programme there were also 24 populations (2 breeding

pools × 6 cycles × low/high WSC). Adding the five parental

generations, a total of 53 populations were available for evaluation.

Of these, 25 were chosen for phenotyping and genotypic analyses
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(Figure 1). These were the parental, middle and end generation

populations within each pool. The middle generation was cycle 2

or cycle 3 and the end generation cycle 4 or 6, for the Widdup and

Ford pools, respectively. Seed from all populations was acquired

from the Margot Forde Germplasm Centre (Palmerston North,

New Zealand).

Nomenclature for population names is: W = Widdup, F =

Ford; NZ = New Zealand, US = United States of America; LL =

large leaf, SL = small leaf; Low = low water-soluble carbohydrate

(WSC), High = high WSC; P = parental generation, Mid =

middle generation and End = end generation. The 25

populations were: WNZLL-Low-End, WNZLL-Low-Mid,

WNZLL-Parent, WNZLL-High-Mid, WNZLL-High-End,

WNZSL-Low-End, WNZSL-Low-Mid, WNZSL-Parent,

WNZSL-High-Mid, WNZSL-High-End, WUSLL-Low-End,

WUSLL-Low-Mid, WUSLL-Parent, WUSLL-High-Mid,

WUSLL-High-End, FNZLL-Low-End, FNZLL-Low-Mid,

FNZLL-Parent, FNZLL-High-Mid, FNZLL-High-End, FNZSL-

Low-End, FNZSL-Low-Mid, FNZSL-Parent, FNZSL-High-Mid,

and FNZSL-High-End.
A

B

FIGURE 1

Schematic representation of white clover populations from the (A) Widdup et al. (2010) and (B) Ford breeding programmes. G, generation; W,
Widdup; F, Ford; NZ, New Zealand/Aotearoa; US, United States of America; LL, large leaf; SL, small leaf; P, Parent generation; HWSC and High,
high water-soluble carbohydrate (WSC); LWSC and Low, low WSC; Mid, Middle generation; and End, End generation. † denotes populations
used in phenotyping and genotyping studies.
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2.2 Population establishment and
experimental design

Approximately 100 seeds from each of the 25 populations

were germinated, planted into propagation trays and grown

under standard greenhouse conditions for two months. A total

of 900 plants from the 25 populations (180 plants per breeding

pool) were then randomly selected and transplanted into 2L pots

for phenotyping. In each breeding pool, 60 plants per parent

population (Parent) were randomly selected, along with 30

plants each from the middle generation low and high WSC

populations (Low-Mid, High-Mid) and 30 plants each from the

end generation low and highWSC populations (Low-End, High-

End). Potted plants were kept in the greenhouse to establish for

two weeks before being placed outside at Palmerston North,

New Zealand (40.38°S, 175.61°E), in autumn, late May 2017, in a

randomised Latin square design with three replicate blocks. The

block was set up on a 9 × 9 m concrete pad and plants were set at

30 cm centre-to-centre spacing.
2.3 Plant phenotyping

2.3.1 Water-soluble carbohydrate phenotyping
using near infra-red reflectance spectroscopy

Leaves from the 900 plants were sampled over three

consecutive days in November 2017. One replicate block was

harvested per day, between 8:00 and 10:00 am to minimise

diurnal variation in WSC levels and to be consistent with the

methodology originally used for breeding these divergent WSC

selections (Widdup et al., 2010). Thirty fully expanded, healthy

leaf laminae were removed per plant to constitute a single plant

sample, snap frozen in liquid nitrogen, and stored at -20°C

before being freeze-dried and milled. Samples from two of the

three replicate blocks (n = 600) were analysed by near infra-red

spectroscopy (NIRS) at the Massey University Nutrition

Laboratory, (Palmerston North, New Zealand) for nutritive

quality attributes including WSC concentration (g kg-1 dry

matter). Two NIRS calibrations were used initially to

determine WSC: (a) total soluble sugars and starch (SSS)

(Corson et al., 1999), the calibration originally used in the

Widdup et al. (2010) and Ford breeding programmes; (b)

WSC-NIRS; the sum of high molecular weight (HMW)- and

low molecular weight (LMW)-WSC fractions estimated using a

calibration developed from perennial ryegrass (Cosgrove

et al., 2009).
2.3.2 Leaf area phenotyping
Leaf area was assessed for each of the five pools. A total of

450 of the 900 plants were sampled from every second column,

across all three blocks (150 plants per block). Four leaves per

plant (first leaves from the stolon tip with fully opened laminae)
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were collected, glued to 1 mm graph paper and scanned.

Scanned images were converted to binary in ImageJ

(Schindelin et al., 2012), a global calibration curve was set to

convert from pixel distance to actual distance (cm), and leaf area

(cm2) was estimated. The mean of four leaves was used as a

proxy for average plant leaf area.

2.3.3 Phenotype statistical analyses and
correlation investigation

Estimated Marginal Means for the WSC phenotype, using

SSS, and leaf area were calculated for each population using a

linear mixed model in the R package “emmeans” v 1.4.2 (Lenth

et al., 2020) that accounted for treatment and spatial variation

(Equation 1).

y e  TrtC  +  (1   Block)  +  (1 j j Block : Column) 

+  (1 j Block : Row)

Where: y is the phenotypic trait, and TrtC is the interaction

between Pool, Generation (i.e., Parent, Mid and End) and Trt

(i.e., None (Parent; no selection), high WSC and low WSC).

Leaf area data were transformed by square root such that

residuals conformed to constant variance and normality

(Supplementary Figure 1). SSS required no transformation as

residual assumptions were met. Leaf area data were back-

transformed to derive population-fitted values on the original

cm2 scale. The Parent population was used as the baseline for

comparisons between populations within each pool. Significant

differences in these comparisons were investigated using

“emmeans” at a = 0.05. The Low-End population was then

used as the baseline for the SSS dataset so differences between the

Low-End and High-End populations for each pool could

be determined.

Three hundred plants common to the sets used for

evaluation of WSC and leaf area were used for phenotypic

correlation analysis (Pearson correlation). This dataset was

then split further into five datasets corresponding to the five

pools (WNZLL, WNZSL, WUSLL, FNZLL and FNZSL) within

which correlations between the two variables were investigated.

Prior to correlation analysis, leaf area and SSS data were

evaluated for normality using the Shapiro-Wilk Normality

Test implemented in R (Royston, 1995; R Core Team, 2019).

Data that did not follow a normal distribution were transformed

using Box-Cox Transformation analysis (Venables and Ripley,

2002). Models were created for each pool using R statistical

software, and adjusted coefficient of determination (r2) values of

the lines of best fit were used to initially compare the predictive

abilities of leaf area for SSS. Regression analysis amongst

populations was then conducted using linear mixed models

constructed for each pool. Models were constructed with SSS

as the dependent variable and the interaction between leaf area

and population was used as the independent variable. The

Parent population for each pool was used as the baseline for
frontiersin.org
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comparison. Adjusted r2 was reported for both types of linear

models (SSS ~ leaf area and SSS ~ 0 + Population * leaf area) to

avoid false inflation of r2 values. Residuals were checked for

normality and assumptions were met; thus, no data

transformation was required. The R scripts used to produce

estimated phenotype means and perform correlation and

regression analyses can be found at https://github.com/

SofiePearson/White_Clover_WSC_Outlier_Detection_GWAS.
2.4 Plant genotyping

2.4.1 Genotyping-by-sequencing library
preparation and sequencing

Genomic DNA was extracted from 1,536 white clover

individuals (approximately 60 individuals from each of the 25

populations) using the freeze-dried tissue protocol described in

Anderson et al. (2018). A subset of 1,175 individuals, comprising

47 from each of the 25 populations, were chosen for genotyping-

by-sequencing (GBS). Each GBS library consisted of 94 samples,

plus one negative control (water) and one positive control DNA

from an inbred white clover, “S9” (Griffiths et al., 2019). Thirteen

GBS libraries were created in total, and any spare wells filled with

duplicated DNA chosen at random from all populations,

including duplication of samples within a library and

duplication of samples among libraries. GBS libraries were

constructed following Poland et al. (2012b) using restriction

enzymes PstI and MspI, with some modifications (see

Supplementary Methods). Each library was then sequenced in

parallel on two lanes of a flow cell on an Illumina HiSeq 2500

(Illumina, San Diego, CA, USA) at Invermay Agricultural Centre

(AgResearch, Mosgiel, New Zealand).

2.4.2 SNP calling, filtering and genotyping-by-
sequencing library quality control

Raw data FASTQ files containing sequence reads were

processed for SNP identification using Trait Analysis by

aSSociation, Evolution and Linkage (TASSEL) v 5.0 (Glaubitz

et al., 2014), using default parameters except minor allele

frequency was set to 0.01. An AgResearch white clover

genome assembly (version 5) was used as the reference

genome (Griffiths et al., 2019). Raw sequence data from 1,222

samples, 13 positive controls and 13 negative samples were

analysed together. Sequence reads were first trimmed to 64 bp

and identical reads were grouped into sequence tags. The

sequence tags were then aligned to the reference genome using

Burrows-Wheeler Alignment (BWA) tool (Li and Durbin, 2009).

After SNP calling, all filtering was performed using VCFtools

v 0.1.16 (Danecek et al., 2011). To provide a SNP marker dataset

for downstream analyses, the marker set was restricted to high

quality SNPs: biallelic SNPs with read depth range of 5 – 150,
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missing genotype data ≤ 20% per SNP, and minor allele

frequency ≥ 0.03. Samples with a large proportion of missing

data were removed from the dataset and negative control

samples were removed after checking that they did not contain

unduly high levels of sequence data.
2.5 Analysis of population genetic
structure and variation

Genetic structure in the dataset was explored by

Discriminant Analysis of Principal Components (DAPC)

(Jombart et al., 2010), implemented in “adegenet” v 2.1.1

(Jombart, 2008) for R software v 3.6.1 (R Core Team, 2019).

The analysis used 14,743 SNPs from 1,113 individuals in 24

populations (WNZSL-Parent population excluded due to high

sample missing data). K-means clustering was used to detect the

number of clusters amongst the samples, without prior

assumptions of assignment based on pool or population. K-

means was run sequentially from 1 to 40 genetic clusters (K),

with 800 principal components retained, accounting for

approximately 90% of the total genetic variation. The optimal

clustering solution corresponded with the lowest Bayesian

Information Criterion (BIC). Individual assignment from the a

priori grouping to the K-means determined clusters was

visualised and compared using the R package “ade4” v 1.7-15

(Chessel et al., 2004).

DAPC analysis was implemented using the cross-validation

“xvalDapc()” function, and was run with 100 replicates from 1 –

50 principal components (PCs) with individuals grouped based

on the K-means determined number of clusters. This cross-

validation method determined 6 PCs should be used, hence the

final “dacp()” was run with “n.pca = 6” and 6 discriminant

functions (DFs) retained. A scatter plot of individuals grouped

by K-means on DFs was created using “adegenet”

(Jombart, 2008).

Genetic variation within and among populations was

assessed by Analysis of Molecular Variance (AMOVA)

implemented with “poppr” v 2.9.1 (Kamvar et al., 2014) in R.

This was conducted for all 24 populations, as well as among

genetic clusters identified using the most supported DAPC K-

value (K = 11) with 9,999 permutations (Excoffier et al., 1992;

Kamvar et al., 2014). A matrix of pairwise genetic differentiation

between all population pairs from two possible population

structures (the a priori of K = 24 and the DAPC-determined

grouping of K = 11) was also computed using the R package

“hierfstat” v 0.04-22 (Goudet and Jombart, 2015) using the

fixation index FST (Weir and Cockerham, 1984). The R scripts

used to perform population genetic structure analyses can be

found at https://github.com/SofiePearson/White_Clover_WSC_

Outlier_Detection_GWAS.
frontiersin.org

https://github.com/SofiePearson/White_Clover_WSC_Outlier_Detection_GWAS
https://github.com/SofiePearson/White_Clover_WSC_Outlier_Detection_GWAS
https://github.com/SofiePearson/White_Clover_WSC_Outlier_Detection_GWAS
https://github.com/SofiePearson/White_Clover_WSC_Outlier_Detection_GWAS
https://doi.org/10.3389/fpls.2022.1095359
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pearson et al. 10.3389/fpls.2022.1095359
2.6 Detection of loci under selection

Three approaches were used to analyse the 14,743 SNP

dataset for loci under divergent selection: PCAdapt (Luu et al.,

2017), BayeScan (Foll and Gaggiotti, 2008) and an FST outlier

detection approach in the package Kinship using Genotyping-

by-sequencing with Depth adjustment (KGD, available from

https://github.com/AgResearch/KGD.git) (Dodds et al., 2015).

Missing data for SNPs were not imputed.

2.6.1 PCAdapt
Individuals from the DAPC analysis were split into five

datasets using VCFtools (Danecek et al., 2011) to enable

identification of outlier loci differentiating high and low WSC

populations within pools. These datasets consisted of five VCF

files with individuals split into their respective pools but with the

Parent populations removed, resulting in a total of 935

individuals retained for outlier detection analyses. All VCF

files were converted into PLINK format (BED, BIM and FAM

files) using PLINK v 1.9 (Purcell et al., 2007). The R package

“pcadapt” v 4.0.3 was used to detect loci driving variation on the

principal components (Luu et al., 2017). The KPC value (number

of principal components) with the best fit to the data was

determined using the scree test (Cattell , 1966) and

interpretation of score plots with KPC values higher than those

determined by the scree test method. To determine the number

of principal components (KPC) separating high and low WSC

populations, each of the five pools was analysed in PCAdapt

separately. Scree plots were produced (Supplementary Figure 2)

and visually assessed for optimal KPC value (Cattell, 1966), with

components retained from the steep portion of the curve, prior

to inflection into a flat line. Outlier SNPs based on Mahalanobis

distance (Luu et al., 2017) at the optimal KPC value were

identified, after correcting for false positives using the

Bonferroni correction in each pool. SNPs were visualised on

Manhattan plots using “qqman” v 0.1.4 (Turner, 2018), with

outliers shown as exceeding Bonferroni false discovery

thresholds, of a = 0.01 and a = 0.05.

2.6.2 BayeScan
The five VCF files were converted into BayeScan format in R

using “vcfR” v 1.8.0, “adegenet” v 2.1.1, and “hierfstat” v 0.04-22

(Jombart, 2008; Goudet and Jombart, 2015; Knaus and

Grünwald, 2017). Population structure analysis identified little

genetic differentiation between generations within the low WSC

and high WSC divergent selections, respectively. Therefore, for

this analysis within each pool the two high WSC populations

were merged and two low WSC populations were merged,

resulting in five population pairs to be tested. The analysis was

conducted separately for each pool so that SNPs under divergent
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selection could be traced back to each pool. BayeScan was run

with default parameters (20 pilot runs with 5,000 iterations,

followed by a burn-in of 50,000 iterations, and prior odds for the

neutral model was 10). The q-value for each locus was calculated

and a false discovery rate of a = 0.05 was used to determine

significant outlier loci that had positive alpha values.

2.6.3 KGD-FST
The filtered VCF file was converted to a Reference

Alternative file using the KGD vcf2ra_ro_ao.py python script,

and a separate file containing individual and population

information was constructed. The “Fst.GBS.pairwise()”

function was used to calculate approximate mean FST for each

SNP between each population pair, accounting for GBS read

depth (Dodds et al., 2015). The five population pairs were tested

and SNPs with FST values greater than 0.3 and present in more

than two pools at that threshold were called as outlier SNPs.

Manhattan plots were created as described above. Outlier SNPs

from all three analyses (PCAdapt, BayeScan and KGD-FST) were

visualised in a Venn diagram using the R package

“VennDiagram” v 1.6.20 (Chen and Boutros, 2011). The

scripts used to perform the outlier detection analyses can be

found at https://github.com/SofiePearson/White_Clover_WSC_

Outlier_Detection_GWAS.
2.7 Genome-wide association

A mixed-linear model implemented in the R package

“rrBLUP” (Endelman, 2011) was used for an association

analysis on a subset of individuals (n = 605) possessing both

genotypic and phenotypic information (Supplementary

Figure 3). Markers for this analysis were filtered to retain

those with ≤ 50% missing data before the “A.mat()” function

was used to impute missing values using the EM algorithm

designed for GBS markers (Poland et al., 2012a). This resulted in

5,757 SNPs used in the analysis. Population structure and family

relatedness was accounted for with “n.PC = 2” and a kinship

matrix calculated by rrBLUP from the genotypic data. To

account for multiple testing, a Bonferroni correction was

applied and markers passing the threshold at an a of 0.05

were considered statistically significant (Bonferroni, 1936).

Manhattan and Quantile-Quantile (Q-Q) plots were created

for each phenotypic trait: leaf area, soluble sugars and starch

(SSS), water-soluble carbohydrate (WSC) and other nutritional

attributes including ash, crude protein, neutral detergent fibre,

acid detergent fibre and lipid content. The R script used to

perform GWAS can be found at https://github.com/

SofiePearson/White_Clover_WSC_Outlier_Detection_GWAS.
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2.8 Changes in genotypes due to
selection over time

As a complement to the methods described above, changes

in genotype frequencies from generation to generation were

evaluated. Each outlier SNP detected by ≥2 outlier analyses, in

each population, was assessed in this way. Genotype proportions

for each SNP were extracted using VCFtools v 0.1.16 –extract-

FORMAT-info GT and patterns were investigated (Danecek

et al., 2011).
2.9 Identification of candidate genes

The physical positions of outlier SNPs identified by ≥2

outlier analyses were used to locate potential candidate genes.

For outlier SNPs located to introns or exons, the host gene was

recorded as the best candidate. SNPs identified in coding regions

of a gene were investigated further to determine if they were

likely to affect protein function or structure. Geneious Prime v

2019.1.1 (http://www.geneious.com/) was used to determine the

position of the SNP in the protein and whether there was a

synonymous or non-synonymous change. For outlier SNPs that

occurred outside of genes, a maximum distance of 10 Kbp either

side of each SNP were recorded. When considering potential

candidate genes, the upstream and downstream regulatory

elements of the gene, including the promoter region, were also

considered. If intergenic outlier SNPs were located less than 1

Kbp away from the start codon of a gene, they were also

classified as putatively in linkage disequilibrium with the gene

due to the proximity to a promoter. White clover genome

annotations (Griffiths et al., 2019), BLAST (Johnson et al.,

2008), UniProt (The Uniprot Consortium, 2018) and STRING

v 11.0 (Szklarczyk et al., 2019) were used to identify genes and

their functions.
3 Results

3.1 Phenotypic variation

3.1.1 Water-soluble carbohydrate phenotyping
Water-soluble carbohydrate (WSC) content was measured

using two NIRS calibrations (soluble sugars and starch, SSS; and

WSC-NIRS), which were found to be highly correlated within

the sample set (r2 = 0.92, p < 0.0001), and therefore subsequent

analyses focused principally on SSS alone. Population fitted

values for SSS are presented in Figure 2. Comparison of

population fitted values within each pool showed an overall

trend for SSS to increase by selection cycle for high WSC

selections and, conversely, decrease by selection cycle for low
Frontiers in Plant Science
 07
WSC selections (Table 1). When averaged across all pools, there

were significant differences (p < 0.01) for all comparisons, with

the low WSC populations lower for SSS than the Parent, and the

high WSC populations higher for SSS content than the Parent

(Table 1). Within individual pools, high and low WSC

populations did not always differ significantly from the Parent

population, but in all pools there were significant (p < 0.05)

differences between the Low-End and High-End populations

(mean difference of 78.3 g kg-1 DM) (Table 1). These results

confirm that breeding for divergent WSC in the five pools was

successful, with a mean 76.9% difference in SSS between the

Low-End and High-End populations (Supplementary Table 1).
3.1.2 Leaf area phenotyping
Population fitted values for mean leaf area (cm2) are

presented in Supplementary Table 2. When compared

against Parent population values, there was a trend for leaf

area to increase or decrease with WSC selection, but there

were only four instances where that change was statistically

significant (p < 0.05) (Table 1). The FNZLL (-5.4 cm2, p < 0.01)

and WUSLL (-4.4 cm2, p = 0.02) pools showed a significant

decrease in leaf area from the Parent to Low-End population.

In the WNZSL pool there was a significant increase in leaf area

in both the High-Mid and High-End populations relative to

the Parent population (+5.9 cm2, p < 0.01 and +5.5 cm2,

p < 0.01, respectively).
FIGURE 2

Population fitted values (adjustment for treatment, block, row
and column effects) and standard error, for soluble sugars and
starch (SSS) as a measure of water-soluble carbohydrate (WSC).
Populations are grouped by pool as indicated by colour and
symbol combinations. The x-axis indicates a timeline by
generation, where: Low, low WSC; High, high WSC; End, End
generation; Mid, Middle generation; Parent, Parent generation.
Population means for SSS are based on n = 20 – 40.
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TABLE 1 Estimated phenotype means for each divergently-selected population compared to the parental mean after adjusting for treatment,
block, row and column effects.

SSS (g kg-1 DM) Leaf area (cm2)

Comparison Difference SE p-value Difference SE p-value

WNZLL-Low-End – WNZLL-Parent -42.2 7.77 <0.01** -0.83 0.16 1

WNZLL-Low-Mid – WNZLL-Parent -10.9 7.78 0.97 0.6 0.16 1

WNZLL-High-Mid – WNZLL-Parent 36.4 7.77 <0.01** 2.74 0.16 0.37

WNZLL-High-End – WNZLL-Parent 57.5 7.77 <0.01** 2.92 0.16 0.27

WNZSL-Low-End – WNZSL-Parent -0.098 7.79 1 0.56 0.16 1

WNZSL-Low-Mid – WNZSL-Parent 0.44 7.78 1 1.81 0.16 0.85

WNZSL-High-Mid – WNZSL-Parent 48.7 7.76 <0.01** 5.89 0.16 <0.01**

WNZSL-High-End – WNZSL-Parent 69.6 7.78 <0.01** 5.48 0.16 <0.01**

WUSLL-Low-End – WUSLL-Parent -45.1 7.8 <0.01** -4.41 0.17 0.02*

WUSLL-Low-Mid – WUSLL-Parent -34.2 7.77 <0.01** -1.65 0.16 0.99

WUSLL-High-Mid – WUSLL-Parent 13.4 7.76 0.82 1.14 0.16 1

WUSLL-High-End – WUSLL-Parent 23.6 7.76 0.054 -0.87 0.16 1

FNZLL-Low-End – FNZLL-Parent -13.4 7.77 0.82 -5.37 0.16 <0.01**

FNZLL-Low-Mid – FNZLL-Parent -22.8 7.79 0.07 -3.49 0.16 0.15

FNZLL-High-Mid – FNZLL-Parent 25.2 7.78 0.029* 0.72 0.16 1

FNZLL-High-End – FNZLL-Parent 41.4 7.79 <0.01** 1.19 0.16 1

FNZSL-Low-End – FNZSL-Parent -27.1 7.76 0.012* -1.5 0.16 0.94

FNZSL-Low-Mid – FNZSL-Parent -18.7 7.77 0.29 0 0.16 1

FNZSL-High-Mid – FNZSL-Parent 57.8 7.78 <0.01** -0.75 0.16 1

FNZSL-High-End – FNZSL-Parent 71.6 7.77 <0.01** -1.77 0.16 0.8

Low-End – Parent -25.6 3.47 <0.01** -2.18 0.07 <0.01**

Low-Mid – Parent -17.2 3.49 <0.01** -0.43 0.07 1

High-Mid – Parent 36.7 3.46 <0.01** 1.95 0.07 0.01**

High-End – Parent 52.7 3.48 <0.01** 1.35 0.07 0.24

WNZLL-High-End – WNZLL-Low-End 99.6 8.99 <0.01**

WNZSL-High-End – WNZSL-Low-End 69.7 8.98 <0.01**

WUSLL-High-End – WUSLL-Low-End 68.7 8.98 <0.01**

FNZLL-High-End – FNZLL-Low-End 54.8 8.98 <0.01**

FNZSL-High-End – FNZSL-Low-End 98.7 8.98 <0.01**

Low, low water-soluble carbohydrate (WSC), High, high WSC; Parent, Parent generation; Mid, Middle generation; End, End generation; W, Widdup; F, Ford; NZ, New Zealand/
Aotearoa; US, United States of America; LL, large leaf; SL, small leaf and SE, standard error.
Significance codes: ** ≤ 0.01, * = 0.01 – 0.05, no symbol ≥ 0.05 at a = 0.05.
Soluble sugars and starch (SSS; grams per kilogram dry matter, g kg-1 DM) and leaf area (cm2) population fitted values compared to the Parent population are presented in the
“Difference” column. For SSS, the High-End population fitted values are compared to the Low-End population fitted values for each pool and are also presented in the “Difference”
column. Standard error and p-values are shown for each comparison. p-values are adjusted for multiple comparisons calculated using the R package “emmeans”.
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3.1.3 Correlation and regression analysis
between water-soluble carbohydrate and
leaf area

Correlation analysis was used to measure the strength of

relationship between SSS and leaf area for each pool and for the

combined pool dataset (Supplementary Figure 4). Weak to

moderate positive linear relationships between SSS and leaf

area were observed in all pools (Supplementary Figure 4),

significant at p < 0.05 except for FNZSL (p = 0.73). Pearson’s

coefficients of determination for WNZLL (r2 = 0.13), WNZSL

(0.33), WUSLL (0.26), FNZLL (0.09), FNZSL (-0.015) and the

combined dataset (0.14), indicated between 1.5 – 33% of the

observed SSS phenotypic variation was accounted for by leaf area

in each of the pools. These low r2 values demonstrate that the

basic linear model (SSS the dependent variable and leaf area the

independent variable) provided a poor to average fit to the data.

The data were then split into populations for each pool and

regression analysis was used to test if leaf area was significantly

predictive of SSS for each pool at the population level. Linear

models were constructed with SSS as the dependent variable and

the interaction between leaf area and population was used as the

independent variable. Including populations in the linear model

increased the adjusted r2 values up to 94 – 97% (Supplementary

Table 3). This indicated that splitting the data into populations

for each pool and analysing separately provided a better fit to the

data than combining all population data points within each pool.

The majority of slope coefficients for each pool (Supplementary

Figure 5 and Supplementary Table 3) were gradual and not

significant (p > 0.05), with the exception of WUSLL-Parent

(slope = 0.37, p = 0.004), FNZLL-Low-End (slope = 0.44, p =

0.037) and FNZLL-High-End (slope = 0.21, p = 0.04). Because all

populations, except WUSLL-Parent, had non-significant p-

values (p > 0.05) for both the intercept and slope, we were

unable to reject the null hypothesis, allowing the conclusion that

there was no relationship between SSS and leaf area for all but

one population (WUSLL-Parent).
3.2 Genotyping

3.2.1 DNA isolation, genotyping-by-sequencing
library evaluation and single nucleotide
polymorphism filtering

High molecular weight (> 15 Kbp) genomic DNA and free

from RNA contamination, was isolated successfully from 1,536

plants. For GBS library construction, 47 individuals per

population with DNA concentration > 10 ng μL-1 were

selected (n = 1,175 total). Bioanalyzer evaluation of the 13

pooled GBS libraries, prior to sequencing, showed that small

adapter dimers present in the pre-size selection libraries (88 bp)

were removed successfully post-size selection and that library

fragment sizes were limited to the targeted 193 – 313 bp range.
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A total of 191,484 SNPs were called initially across all

samples. After filtering for depth, multiallelic loci, missing and

minor allele frequency, a total of 14,743 SNPs were retained for

1,113 samples. A total of 109 samples were removed across all

populations, most of which were population WNZSL-Parent,

due to a high proportion of missing data (> 80%). A further 15

samples from amongst other populations were removed due to

high missing data (> 80%). Positive control samples, a single

genotype repeated in all 13 GBS libraries, were at first retained to

check for consistency across GBS libraries using a principal

component analysis (PCA). Duplicated GBS data from 47

individuals were also removed as they were derived from

duplicated technical replicates included for quality control and

were not required for subsequent analyses.

3.2.2 Single nucleotide polymorphism
distribution and density

The number of SNPs found on each pseudomolecule and the

SNP density across the white clover reference genome was

investigated using the 14,743 SNPs from 1,113 samples identified

above. Pseudomolecules were assigned to their relevant

subgenomes, where pseudomolecules 1 to 8 belong to the T.

occidentale-derived (TrTo) subgenome, and pseudomolecules 9 to

16 belong to the T. pallescens-derived (TrTp) subgenome (Griffiths

et al., 2019). The number of SNPs per pseudomolecule was strongly

correlated to pseudomolecule length (r2 = 0.96, Supplementary

Figure 6), with higher numbers of SNPs on the longer

pseudomolecules, demonstrating that the SNPs are evenly

distributed across the genome. A mean of 16.1 (± 1.6 standard

deviation) SNPs per Mbp was found across all pseudomolecules.

The lowest SNP density was found on pseudomolecules 14, 10 and

6 with 12.5, 13.9 and 14.5 SNPs per Mbp, respectively. The highest

densities were on pseudomolecules 5, 3 and 4 with 19.1, 18.0 and

17.7 SNPs per Mbp, respectively.
3.3 Population structure

3.3.1 Discriminant analysis of
principal components

Discriminant analysis of principal components (DAPC) was

conducted to determine the number of clusters described by the

data and to validate the pre-defined genetic clusters (i.e.,

populations within pools). The lowest Bayesian information

criterion (BIC) value from the “find.clusters()” function

corresponded to K = 11 (Supplementary Figure 7) which was

therefore selected as the number of clusters described by the

data. The assignment of individuals to the 11 clusters was

compared with the a priori population grouping (Figure 3). In

the following, the names of the 11 DAPC clusters are italicised

and the 24 a priori population names are non-italicised.

Individuals in both high WSC populations within a pool

tended to group together in a single cluster, e.g., WNZLL-
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High-Mid and WNZLL-High-End comprised the WNZLL-H

cluster, as did individuals from low WSC a priori populations

e.g., WNZLL-Low-Mid and WNZLL-Low-End comprised the

WNZLL-L cluster. Individuals from all the Parent populations

grouped in a single cluster (PARENT), except for nine

individuals from the WUSLL-Parent population that grouped

withWUSLL-H. One to two samples from the FNZLL-Low-End,

WUSLL-High-Mid andWUSLL-Low-End also grouped with the

PARENT cluster.

The “xvalDapc()” function determined the optimal number

of PCs to retain was 43 (root mean square error = 0.0033).

However, both the root mean square error and mean successful

assignment plateaued at 6 PCs (root mean square error = 0.0107

and mean successful assignment = 0.9928) with very little change

thereafter (Supplementary Figure 8), therefore DAPC was run

with 6 PCs retained. A scatter plot showing the 11 clusters

inferred by K-means and the two axes representing the first two

discriminant functions (DFs) of the DAPC analysis (Figure 4).

The first DF showed a general separation of high WSC and low

WSC populations with High clusters centred to the right of the

plot, Low clusters centred to the left, and the PARENT plants

clustering in the middle of the plot. TheWNZLL-H and FNZSL-

L clusters were clearly isolated from the bulk of the clusters.

With respect to their counterpart populations (WNZLL-L and
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FNZSL-H), separation occurred on both the first and second DF.

For WNZSL and WUSLL, Low and High population clusters

showed very little separation on the first two DF and in fact clear

separation was not observed on any DF (data not presented).

The FNZLL-L and FNZLL-H clusters only showed clear

separation on the fifth DF.

3.3.2 Pairwise FST
Pairwise fixation index (FST) was calculated both for the a

priori population grouping (K = 24) and for the grouping

identified above (K = 11). For biallelic marker systems Wright

(1978) suggests that FST values from 0 – 0.05 indicate little

differentiation, 0.05 – 0.15 moderate differentiation, 0.15 – 0.25

great differentiation, and values above 0.25 indicate high

differentiation (Balloux and Lugon-Moulin, 2002; Hartl and

Clark, 2007). For the a priori population grouping (K = 24),

the WUSLL-Parent population showed moderate genetic

differentiation from the NZ Parent populations (0.06 – 0.08),

while FST values were low among the three NZ Parent

populations (0.03 – 0.04). Pairwise comparisons of the high

WSC populations (Mid and End) within each pool and of the

low WSC populations (Mid and End) within each pool showed

low to moderate differentiation, with FST values ranging from

0.03 – 0.09. Divergent low and high WSC pairs within a pool
FIGURE 3

Group assignment based on K-means clustering prior to
discriminant analysis of principal components for 24 populations.
Original populations are positioned horizontally, and K-means
determined clusters are positioned vertically. Size of black boxes
represent the number of individuals assigned to the K-means
determined cluster from the original population, with the scale
presented in the bottom left-hand corner. High, high water-
soluble carbohydrate (WSC); Low, low WSC; Parent, Parent
generation; E, End generation; and M, Middle generation.
FIGURE 4

Discriminant analysis of principal components (DAPC) scatter
plot of 1,113 individuals using 14,743 SNPs based on 11 assigned
genetic clusters. Six principal components (Supplementary
Figure 8) and six discriminant functions (DFs) were retained for
analyses to describe the relationship between the genetic
clusters. The scatter plot shows the first two DF from the DAPC
analysis (X and Y axis explaining 24.6% and 19.3% of genetic
variance, respectively) with the scree plot of eigenvalues of the
linear discriminant analysis (LDA) shown in the inset. Populations
are labelled and colour coded at K = 11 as determined from the
K-means clustering algorithm. Each dot represents a single
individual and the centre of each cluster, as determined by a
minimum spanning tree based on the squared distances
between populations, is indicated by a cross.
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(e.g., WNZLL-Low-Mid compared with WNZLL-High-Mid)

showed greater differentiation as indicated by an FST range of

0.12 – 0.22 (Supplementary Table 4). Pairwise FST values based

on the 11 K-means determined clusters showed moderate

genetic differentiation between High and Low clusters within

each pool, ranging between 0.13 – 0.19. Very low genetic

differentiation was observed between the PARENT cluster and

all the other clusters (0.07 – 0.10) (Supplementary Table 5).

3.3.3 Analysis of molecular variance
A total of 342 loci with missing values less than 5% were used

for the analysis of molecular variance (AMOVA). The AMOVA

for K = 24 revealed that most genetic variation was partitioned

within populations (80.7%), and the remainder partitioned

among populations (19.3%). A hierarchical AMOVA for the

11 genetic clusters determined by K-means revealed that 15.4%

of the variance was distributed among clusters, and only 5.4%

was distributed among populations within clusters.

Approximately similar variance was found within populations

or clusters (K = 24: 80.7%, p < 0.001; K = 11: 79.2%, p < 0.001),

indicating that genetic variation is mainly distributed within

populations (Supplementary Table 6). Each of the DAPC,

pairwise FST and AMOVA results indicate that, genetically, the

two high WSC populations (High-Mid and High-End) for each

pool can be grouped together and the two low WSC populations

(Low-Mid and Low-End) for each pool can be grouped together.

Population groupings for subsequent outlier locus detection

were based on this K = 10 grouping (Parent populations

were excluded).
3.4 Outlier loci detection

PCAdapt was used to identify SNPs corresponding to PCs

that differentiate low and high WSC populations, within each

pool. Cattell’s scree test (Supplementary Figure 2) and

interpretation of score plots (Supplementary Figure 9),

determined that the KPC value, the number of PCs to

investigate, in all four pools was KPC = 1. The first PC

captures the distinction between high and low WSC

populations in all pools (Figure 5). Therefore, to identify SNPs

related to WSC, we focused on the SNPs associated with PC1

only. The number of SNPs used for outlier detection in PCAdapt

ranged from 10,976 to 11,479 per pool, with a mean of 11,133.

The genome-wide significance thresholds were determined for

each pool at Bonferroni false discovery thresholds of a = 0.01

and a = 0.05, using their respective total number of SNPs

(Supplementary Table 7). The average p-value threshold used

for outlier detection at a = 0.05 was 4.49e-06, which is 5.34 on

the log scale. Any SNPs associated with PC1 with -log10(p-

values) larger than 5.34 were retained from each pool and

identified as putative outliers. To reduce the risk of detecting
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SNPs associated with population structure, SNPs identified as

outliers were subjected to another criterion: they had to be

present as outliers in two or more pools. Of 643 total outlier

SNPs detected using PCAdapt, 36 were found in common

amongst two or more pools based on PC1. A total of 329

outliers were detected using BayeScan at a = 0.05, with 27

common to two or more pools (Supplementary Table 8). All

outliers identified by BayeScan exhibited positive alpha values,

indicating that only SNPs putatively under directional selection

were detected. The KGD-FST method detected the largest

number of outliers of the three methods, with 1,188 in total

and 229 in common amongst two or more pools (Supplementary

Table 8). The strongest candidates for selection were 33 SNPs

found using two or more of the outlier detection methods

(Supplementary Figure 10). The two FST based methods

(BayeScan and KGD-FST) had the most SNPs in common (n =

22) whereas PCAdapt and BayeScan only had two SNPs in

common and PCAdapt and KGD-FST had 13 SNPs in common.

Of the 33 candidate SNPs, five were found in exons, 15 were

in introns and the remainder were either intergenic or in

promoter regions. One of the exon-located SNPs exhibited a

synonymous mutation, while the other four had non-

synonymous mutations leading to a change in amino acid

(Supplementary Table 9). Seven of the SNP-associated genes

had unknown functions, while the remaining 23 had putative

functions (Supplementary Table 9). One SNP, 16_32428574, was

identified by BayeScan and KGD-FST in the WNZLL and FNZSL

pools and found in the intron of ERD6-like 4, a gene coding for a

sugar transporter located on the vacuole membrane.

To assess the potential that SNP genotypes changed due to

random genetic drift, generational changes in genotype and

allele frequencies of the 33 candidates were investigated. The

vast majority of the 33 SNPs identified as outliers demonstrated

a complete sweep where fixation of the reference allele occurred

in the high WSC populations and the alternate allele became

fixed in the low WSC populations, within the first two to three

generations (Supplementary Table 10). This was observed for all

33 SNPs in two or more pools. There were instances where

fixation was not achieved but genotype frequencies showed an

apparent directional shift across generations. For example, in

both the WUSLL and FNZLL pools at SNP 2_6673787

(Supplementary Table 10) allele frequencies were fixed for the

reference allele in the low WSC populations but there was a

transition from Low-End and Low-Mid to the Parent

populations and then to the High-Mid and the High-End

populations whereby the alternate allele increased in frequency

over successive generations.
3.5 Genome-wide association study

A genome-wide association study (GWAS) was carried out

using 24 white clover populations that had both genotype andWSC
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phenotype data. No SNPs were found to be significantly associated

with SSS after correction for multiple testing (Figure 6 and

Supplementary Figure 11). However, ten SNPs on

pseudomolecules 1, 3, 4, 6, 8, 9 and 11 were ranked highly for the

SSS trait, and close to the false discovery threshold with -log10(p-

values) > 3. By the same criterion two additional SNPs on

pseudomolecules 1 and 5 were ranked highly for the WSC-NIRS

trait but not SSS (Table 2). On the white clover reference genome,
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one of the SNP markers on pseudomolecule 1 located to the coding

region of a VPS35B (Vacuolar protein sorting-associated protein

35B) gene, the second located to the intron of a CBP (chlorophyll a-

b binding protein) gene, and the third located to the coding region

of a La-related protein 7-like gene. The two markers on

pseudomolecule 3 located to the intron of a transcription

regulating protein (PKS-NRPS hybrid synthetase CHGG_01239-

like), and the marker on pseudomolecule 4 was located 305bp
D

A B

E

C

FIGURE 5

Score plots from PCAdapt analysis using the first two principal components (PC) for all five pools. Each dot represents an individual and the
colour corresponds to individuals from the same population. Each pool has four populations as the Parent populations were excluded from the
analysis. A total of 188 individuals were used from the WNZLL pool (A), 186 from WNZSL (B), 195 from WUSLL (C), 182 from FNZLL (D) and 184
from FNZSL (E), for a combined total of 935. Population information is displayed in the key in the bottom right corner.
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upstream of the start codon of a gene with unknown function. The

SNP on pseudomolecule 5 was located 855 bp before a glgC

(glucose-1-phosphate adenylyltransferase) gene, the SNP on

pseudomolecule 6 was intergenic, the SNP on pseudomolecule 8

located to the intron of COG8 (conserved oligomeric Golgi complex

subunit 8), the SNPs on pseudomolecule 9 were located in the

coding region ofUPL6 (E3 ubiquitin-protein ligase) gene and on the

intron of a mixed-amyrin synthase gene. The SNP on

pseudomolecule 11 located to the coding region of a clustered

mitochondria protein gene. Two SNPs located in coding regions

conferred non-synonymous mutations, as both altered the first base

of a codon and subsequently the encoded amino acid. The SNP

located in VPS35B caused an isoleucine to valine change, while the

SNP inUPL6 caused a glutamine to glutamic acid change. The SNP

in the coding region for the clustered mitochondrial protein gene

and the SNP for the La-related protein 7-like gene both conferred

synonymous mutations. The SNP on pseudomolecule 5 was located

near a gene (glgC) that may be considered a prime candidate for a

role in WSC accumulation, based on its inferred function.

Significant SNPs for other phenotypic traits are found in

Supplementary Table 11 and visualised in Supplementary Figure 12.
4 Discussion

This study substantially increases our knowledge of genomic

regions and candidate genes underpinning WSC accumulation in

white clover leaves, by utilising GBS and phenotypic data from a
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population resource in which divergent recurrent selection for

foliar WSC was undertaken over multiple generations.
4.1 The association between selection
for WSC and change in leaf size

Phenotypic analysis of foliar WSC in five breeding pools

confirmed breeding progress, showing that populations with

divergent WSC phenotypes had been generated in each of the

breeding pools. For the purpose of characterising the genetic

control of foliar WSC per se, it is crucial to account for any effects

of leaf size. Woodfield et al. (2001) reported that large-leaved

white clover types tended to have higher levels of WSC than

medium- and small-leaved cultivars, highlighting a potential

positive correlation between the two traits and suggesting that

gains in foliar WSC could be achieved by breeding for increased

leaf size. However, an inverse relationship exists between leaf

size and stolon density, a trait that influences vegetative

persistence (Charlton and Stewart, 1999) meaning that

breeding for larger leaves to increase WSC content could

negatively impact sward persistence (Jahufer et al., 1999;

Woodfield and Clark, 2009). In the current study, only weak

correlations between WSC and leaf size were observed, in some

pools, and once population was accounted for in the linear

models there was little relationship between the two variables.

The association between leaf area and WSC has not been

researched extensively in legumes, and the outcomes are not
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FIGURE 6

Manhattan plots from the genome-wide association study (GWAS) of water-soluble carbohydrate, WSC-NIRS (A) and soluble sugars and starch,
SSS (B) using 5,757 SNP markers and 605 individuals. -log10(p-values) are plotted against physical map position of SNPs with subgenomes of
corresponding chromosomes (i.e., pseudomolecules) similarly coloured (TrTo 1 – 8 and TrTp 9 – 16). Significant loci lie above the false discovery
rate thresholds as denoted by the red (a = 0.01) and blue (-log10(p-value) > 3) solid lines. Twelve SNPs with -log10(p-values) > 3 identified for
the WSC-NIRS and SSS traits are highlighted. Quantile-Quantile plots for each trait are presented in Supplementary Figure 11.
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consistent. For example, in lentil, a weak negative relationship

between WSC and leaf area was identified (Tahir et al., 2019),

whereas either positive (Malinowski et al., 1998; Woodfield et al.,

2001) or no association (Ruckle et al., 2018) has been identified

in white clover. Similarly, Ruckle et al. (2017) reported little to

no correlation between biomass and starch concentration in red

clover. The current study suggests that white clover plants with

small leaves can accumulate WSC to levels comparable with

large-leaved plants, as demonstrated in Figure 2, and that

increased WSC content can be achieved without changing leaf

size classes. We conclude that, although there was variation in
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leaf size in some of the breeding pools, changes in leaf WSC did

not result from indirect selection for leaf size.
4.2 Population genetic structure

Assessment of population structure, which reflects

relatedness among samples, is required in outlier detection

and GWAS analyses as it can be a confounding factor -

population structure can result in strong signals being assigned

to SNPs that are not associated with the trait of interest (Sul
TABLE 2 Genome position and gene annotation for SNPs with large -log10(p-values) identified from a genome-wide association study (GWAS).

Pseudomolecule
SNP

position
(bp)

-log10
(p-

value)
for

WSC-
NIRS

-log10
(p-

value)
for
SSS

Genomic
region

Gene model identifier and
Gene annotation (Ann)

Potential function of gene
and codon change

1 (TrTo – 1) 102,715 2.93 3.14 Intron
chr1.jg10.t1Ann: Chlorophyll a-b
binding protein (Trifolium pratense)

Photosynthesis, light harvesting in
photosystem I.

1 (TrTo – 1) 2,338,028 3.51 4.52 Exon
chr1.jg302.t1Ann: VPS35B Vacuolar
protein sorting-associated protein 35B
(Arabidopsis thaliana)

Protein storage and vacuole
biogenesis. Retarding the senescence
of leaves. ATC to GTC changes
isoleucine to valine.

1 (TrTo – 1) 13,746,102 3.99 2.70 Exon
chr1.jg1888.t1Ann: La-related protein 7-
like, partial (Trifolium pratense)

RNA processing GTG to GTC no
change

3 (TrTo – 3)
51,874,121
51,874,123

2.39 3.97 Intron
chr3.jg7956.t1Ann: PKS-NRPS hybrid
synthetase CHGG_01239-like (Cicer
arietinum)

Positive regulation of transcription
from RNA polymerase II promoter
in response to iron ion starvation.

4 (TrTo – 4) 30,841,647 2.38 3.44 Promoter

305 bp from start codon of
chr4.jg4214.t1Ann: Protein with
unknown function/hypothetical protein
MTR_6g072130 (Medicago truncatula)

5 (TrTo – 5) 47,903,593 3.83 2.85 Promoter

855 bp upstream from start codon of
chr5.jg7106.t1Ann: glgC Glucose-1-
phosphate adenylyltransferase small
subunit 1, chloroplastic (Vicia faba)

Starch biosynthesis and glycan
biosynthesis.

6 (TrTo – 6) 16,865,077 3.01 3.94 Intergenic

8 (TrTo – 8) 27,636,527 2.79 3.01 Intron
chr8.jg3785.t1Ann: COG8 conserved
oligomeric Golgi complex subunit 8
(Medicago truncatula)

Intra-Golgi vesicle-mediated
transport and protein transport.

9 (TrTp – 1) 23,070,656 2.99 3.19 Exon
chr9.jg3440.t1Ann: UPL6 E3 ubiquitin-
protein ligase UPL6 (A. thaliana)

Protein post-translational
modifications.Response to water
deficit and cold stress. CAA to GAA
changes glutamine to glutamic acid.

9 (TrTp – 1) 31,736,793 2.65 3.18 Intron
chr9.jg4697.t1Ann: Mixed-amyrin
synthase (Pisum sativum)

Pentacyclic triterpenoid biosynthetic
process, alpha- and beta-amyrin
synthase activity.

11 (TrTp – 3) 7,689,073 3.29 3.36 Exon
chr11.jg1201.t1Ann: Clustered
mitochondria protein (Cicer arietinum)

Translational initiation ACT to
ACC no change

A total of 605 individuals were used for the GWAS with a mean of 25 individuals per population (n = 24). A total of 122 individuals were used from the WNZLL pool, 83 fromWNZSL,
136 from WUSLL, 127 from FNZLL and 137 from FNZSL.
bp, base pairs; WSC-NIRS, water-soluble carbohydrate by NIRS; SSS, Soluble sugars and starch by NIRS; TrTo, white clover Trifolium occidentale-derived subgenome; TrTp, white clover
T. pallescens-derived subgenome.
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et al., 2018), producing false positive associations. To investigate

population structure and partitioning of genetic variation for the

outlier detection methodologies, three analyses were used.

K-means clustering determined that the SNP dataset from

the 24 populations described 11 genetic clusters in which the two

high WSC populations (High-Mid and High-End) within each

pool coalesced to a single cluster, as did the two low WSC

populations (Low-Mid and Low-End). By contrast, the Parent

populations for all pools formed a single cluster. AMOVA on

this reduced genetic cluster set showed greater variation among

clusters (15.4%) than among populations within clusters (5.4%),

indicating the populations within clusters were very similar. This

is supported by FST values (FST 0.03 – 0.09) representing low

genetic differentiation (Wright, 1978) between populations

within clusters and higher values (FST 0.12 – 0.22) between

Low WSC and High WSC clusters, indicating selection was

successful in driving genetic separation between the high and

lowWSC populations. Selection within the first 2 – 3 generations

(Parent to Mid), therefore, produced the greatest genetic change,

with less change occurring in the next 2 – 3 generations (Mid to

End). This pattern is reflected in both WSC phenotypes

(Figure 2) and genotype frequencies of outlier SNPs. A mean

difference of 36 g SSS kg-1 DM occurred between Parent and

High-Mid populations, compared with 16 g SSS kg-1 DM

between High-Mid and High-End populations and, similarly a

-17.24 g SSS kg-1 DM differential occurred between Parent and

Low-Mid populations compared with -8.34 g SSS kg-1 DM

between Low-Mid and Low-End populations (Table 1). From

a heterozygous state in the Parent population most outlier SNPs

exhibited rapid fixation for one allele in the Mid populations,

and no further changes were observed between the Mid and End

populations (Supplementary Table 10). Thus, selection for high

WSC white clover individuals can be achieved in a short time

frame of 2 – 3 generations and for the purposes of identifying

SNPs under selection for divergent foliar WSC, the population

grouping that showed the most genetic differentiation (K = 11)

should be used. One SNP associated with movement of sugars

showed this pattern (Supplementary Table 10) and is discussed

in greater detail below.

DAPC placed all Parent populations into a single cluster,

suggesting a lack of population structure at the parental source

material level. However, pairwise FST analysis showed material

from the Widdup US large leaf (WUSLL) pool was slightly more

genetically distinct from the New Zealand (NZ) cultivars (FST
0.06 – 0.08), than the NZ Parent populations were among

themselves (FST 0.03 – 0.04) (Supplementary Table 4). It has

been demonstrated that white clover has extremely large effective

population sizes worldwide and exhibits negligible population

structure on continental and global scales (George et al., 2006;

Olsen et al., 2007; Kooyers and Olsen, 2012; Kooyers and Olsen,

2013), with pairwise FST values < 0.03 in previous studies

(Wright et al., 2017; Inostroza et al., 2018). It is, therefore, not

surprising that while FST values were slightly higher between
Frontiers in Plant Science 15
different countries of origin, these values were still very low.

Furthermore, cultivars used in the WUSLL-Parent population

included a mixture of US (e.g., ‘Tillman’ and ‘SRVR’; (Widdup

et al., 2015)) and NZ material (e.g., ‘Grasslands Huia’ and

‘Ranger’; (Williams, 1983; Caradus et al., 1995; Widdup et al.,

2010)). As the pedigrees of the Parent populations had cultivars

in common (Supplementary Table 12), it may be expected that

the Parent populations should not show a great level of genetic

differentiation. All three methods suggest minimal population

structure was observed in the 24 white clover populations.

However, divergent selection has created a structure that

differentiates high and low WSC populations and within the

divergent lines there was low genetic variation.

Analysis of molecular variance (AMOVA) revealed that the

genetic variation within each of the 24 white clover populations

accounted for a mean 81% of the total variation, whereas 19% of

the variation occurred among populations (Supplementary

Table 6). These results align with previous AMOVA studies

where 19 – 24% of genetic variation partitioned among white

clover populations (Gustine and Huff, 1999; Khanlou et al., 2011;

Collins et al., 2012). The high levels of intra-population diversity,

as observed in the current study, may be attributed not only to

white clover’s obligate outcrossing (Annicchiarico and Piano,

1995), which leads to genetically diverse populations with less

genetic differentiation among populations (Hamrick and Godt,

1996; Nybom, 2004), but also other factors including a very

recent human-associated range expansion (Zeven, 1991).
4.3 Outlier detection methodologies

After assessing population structure, three genome scan

methods identified SNPs associated significantly with WSC

levels that may also be linked to genes influencing this trait in

white clover. The number of outlier SNPs differentiating high

and low WSC populations varied among the methods, with few

significant SNPs in common (Supplementary Figure 10).

Unsurprisingly, the strongest overlap occurred between the

two FST-derived methods: BayeScan and KGD-FST. However,

BayeScan FST values were higher than those estimated by KGD-

FST, for all pairwise comparisons. For example, in the WNZLL

pool, the minimum FST value determined for a SNP locus by

BayeScan was 0.21 with a maximum of 0.69 and mean of 0.23. In

the equivalent KGD-FST analysis the minimum FST value was

0.0, maximum of 0.99, and the mean was 0.04. Both sets of FST
values fitted c2 distributions (data not presented), but the mean

BayeScan FST values were higher. BayeScan is relatively robust

against confounding demographic processes, but strong

selection, hierarchical structure, population bottlenecks and

recent migration can impact this method and artificially inflate

FST (Hermisson, 2009; Narum and Hess, 2011; Lotterhos and

Whitlock, 2014; Lotterhos and Whitlock, 2015). Inflation of FST
values due to population structure and a similar evolutionary
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history has been documented (Excoffier et al., 2009; Eckert et al.,

2010b). Given the contrasting outcomes from BayeScan and

KGD-FST, it is likely that the inflated minimum FST values were

due to analysing populations that are closely related. It is also not

unusual for minimum FST values to sit around 0.2 when strong

selection is occurring (Narum and Hess, 2011). For example,

Reinert et al. (2019) presented FST values from a BayeScan

analysis in barley that never dropped below 0.1. One of the

benefits to BayeScan is that it runs two models for each locus: a

neutral and a selection model. The posterior probability for both

models is calculated, and the posterior odds are used as evidence

for one model or the other. Log10(posterior odds) ≤ 2 indicates

decisive evidence for selection and corresponds to large positive

alpha values. Therefore, not only do the SNPs need to have high

FST values, but also large alpha values to be indicative of adaptive

selection. Although the inflated FST values technically indicate all

the SNPs are under selection, as FST values greater than 0.25

indicate high genetic differentiation (Wright, 1978), the type of

selection they are under can be determined from the alpha value.

BayeScan calculates q-values for each locus, which is a test

statistic directly related to the false discovery rate (FDR) and

should be used to make decisions (Foll and Gaggiotti, 2008).

Therefore, the FST values calculated by BayeScan in this study

may be disregarded and focus should instead be placed on the

alpha values of SNPs above the FDR threshold as indicated by

the q-value, the approach implemented in the current study.

Most SNPs identified as outliers indicated a complete sweep,

that is, fixation of one allele occurred in the high WSC

populations and the alternate allele was fixed in the low WSC

populations. This was often achieved within few generations as

the Mid populations often showed fixation or near fixation for

one allele. Because these SNPs exhibit clear changes in allele

frequencies, multiple detection methods were able to detect these

as outliers. BayeScan, however, appeared unable to detect

outliers due to subtle changes in allele frequency such as

occurs for an incomplete sweep. This was demonstrated in

multiple pools, with SNPs 2_6673787, 4_9733285 and

12_3437942, as examples. These SNPs each showed gradual

increases in reference allele homozygotes in the low WSC

populations and alternate allele homozygotes in the high WSC

populations, moving directionally fromMid to End populations.

KGD-FST and PCAdapt detected these SNPs as outliers but

BayeScan did not. In support of this observation, Narum & Hess

(2011) showed that, under simulated strong selection, BayeScan

could correctly identify all markers under selection. However,

under weak selection, only two of five markers were correctly

identified. In the current study, we aimed to maximise detection

of SNPs under strong selection (e.g., complete sweep), hence we

compared populations that exhibited the largest differences in

allele frequencies. However, to detect both types of selection

(strong and weak), multiple detection methodologies need to

be utilised.
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4.4 An outlier SNP associated with a
candidate gene for WSC accumulation

Of the 33 SNPs common to more than one analysis method,

one SNP was identified as located within a gene of biological

significance, indicating a potential functional association. A

white clover homologue of early responsive to dehydration

(ERD) monosaccharide vacuole transporter, ERD6-like 4

(At1g19450) , was phys ica l ly assoc ia ted with SNP

16_32428574, detected in both the WNZLL and FNZSL pools.

ERD6-like transporters are involved in energy-independent

sugar efflux from the vacuole (Wei et al., 2014) and are

induced by dehydration and cold treatment (Kiyosue et al.,

1998). Endler et al. (2006) identified ERD6-like 4 as being

highly homologous to the sugar beet (Beta vulgaris) hexose

transporter U43629 (Chiou and Bush, 1996). This sugar

transporter has been hypothesised to catalyse facilitated

diffusion of glucose across the vacuole membrane (Chiou and

Bush, 1996). In plants it is uncommon for monosaccharide

transporters to function as facilitators (Büttner, 2007; Taiz and

Zeiger, 2010). However, in the last decade Sugars Will Eventually

be Exported Transporters (SWEET) proteins were discovered

(Chen et al., 2010), which function as energy-independent

uniporters of sucrose and glucose at the plasma membrane

(Chen et al., 2010; Chen et al., 2012), and of fructose across

the tonoplast membrane (Chardon et al., 2013). This evidence

suggests a role for ERD6-like 4 in WSC accumulation. It is

possible that ERD6 homologs are involved in movement of

sugars out of the vacuole during circumstances where

carbohydrate reallocation is important (Büttner, 2007).

Although there is compelling evidence to suggest that ERD6-

like 4 plays a role in WSC accumulation, possibly in the form of

osmotic adjustment, further experiments need to be done to test

an hypothesis that ERD6-like 4 protein expression leads to

differences in WSC content in white clover leaves.
4.5 Putative candidate genes identified
from GWAS

GWAS failed to identify SNPs significantly associated with

variation in leaf WSC levels, after accounting for population

structure. The false discovery rate applied was controlled by

Bonferroni’s multiple testing correction method, which has been

suggested to be too stringent (Wang et al., 2005; Hirschhorn and

Daly, 2005) and may exclude real associations (Yang et al.,

2010). Other studies have used a conservative p-value (p < 0.001)

approach to reduce Type I error, whereby SNPs that are the

highest ranking and have -log10(p-value) ≥ 3.0 are reported

(Kang et al., 2015; Sakiroglu and Brummer, 2017; Biazzi et al.,

2017). Applying this approach in the current study, ten SNPs in

the SSS plot exceeded the log10(p-values) 3.0 threshold and two
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SNPs in the WSC plot exceeded the log10(p-values) 3.0

threshold. Seven candidate genes in close proximity to these

highly ranked SNPs were investigated further for their potential

association with genes.

SNP 5_47903593 is associated with glgC, encoding the small

subunit of ADP-glucose pyrophosphorylase, which is involved

in starch biosynthesis and in turn may affect glucose and sucrose

concentrations (Burgess et al., 1997). Zhang et al. (2015) also

found the large subunit of glgC (Glucose-1-phosphate

adenylyltransferase) to be associated with drought resistance in

Medicago sativa. This suggests that glgC may also play a role in

osmotic adjustment or osmoprotection, affecting the capacity of

cells to accumulate solutes and lowering water potential during

periods of osmotic stress. Low molecular weight sugars are often

involved in osmotic adjustment which adds to the confidence of

associating variation in glgC with WSC accumulation in

white clover.

Two SNPs (3_51874121 and 3_51874123) occur in genes

associated with regulation of transcription, while SNP

11_7689073 is associated with translation initiation. Another

SNP (9_23070656) was associated with the UPL6 gene, which is

involved in protein post-translational modification, mediating

the addition of ubiquitin groups to target proteins for

subsequent proteasomal degradation. Increased protein

degradation due to environmental stress has been observed in

plants as a way to mobilise nitrogen or eliminate damaged

proteins (Eckert et al., 2010a). This may affect the ratio of

protein to sugar concentrations in the cells as other studies

have found evidence of induced protein turnover (enhancement

of ubiquitin ligase) in response to water deficit and cold stress

(Kiyosue et al., 1996; Abernethy and McManus, 1999; Schulze

et al., 2003; Kim and Kim, 2013; Patel et al., 2015). A sixth SNP

(1_2338028) occurred in the exon of VPS35B, which plays a role

in vesicular protein sorting (Yamazaki et al., 2008) and is

involved in plant growth and leaf senescence. Similarly, SNP

8_27636527 was associated with COG8 which is involved in

protein transport. Finally, SNP 1_102715 is associated with the

chlorophyll a-b binding protein 7 gene, which functions as a

light receptor that captures and delivers excitation energy to

photosystem I. Expression of these genes will need to be

investigated further to identify their role in WSC accumulation

in white clover.

Inostroza et al. (2018) investigated WSC in white clover and

identified four candidate genes associated with stolon WSC

degradation rate, including a prolyl 4-hydroxylase alpha-like

protein, a putative RING-finger E3 ubiquitin ligase, plant

invertase/pectin methylesterase inhibitor and peptide/nitrate

transporter. None of these genes were in common with the

candidates identified in the current study, but there are

important differences between the two investigations. Firstly,

Inostroza et al. (2018) examined the stolon, typically a carbon

sink, whereas leaves, as investigated in the current study, are
Frontiers in Plant Science
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carbon sources and the control of WSC in both tissues are likely

to be under different mechanisms (Ballicora et al., 2004).

Secondly, Inostroza et al. (2018) examined degradation of

WSC whereas in the current study WSC accumulation was the

focus. Finally, Inostroza et al. (2018) completed GWAS using a

dataset of a greater SNP density (16.6 SNPs per Mbp) than the

current study (6 SNPs per Mbp), therefore all genes important

for WSC accumulation may not have been detected. The genetic

control of foliar WSC accumulation requires further elucidation

and should be investigated further.
5 Conclusions

The genetic control of foliar WSC accumulation in white

clover was examined for the first time, by examining genetic

changes in five breeding pools subject to divergent selection.

Breeding for divergent foliar WSC was successful in all pools,

with significant differences in WSC between low and high WSC

populations achieved at the conclusion of the recurrent selection

programmes, and these differences were not attributable to

changes in leaf area. Outlier analyses identified GBS SNP

markers that differentiate low and high WSC populations and,

from these and from GWAS, two strong candidate genes were

identified: ERD6-like 4 and glgC. SNPs associated with a range of

other candidates were also identified, which are involved in

numerous aspects of plant development, membrane transport,

post-translational processing, cell division and pathogen

response. The clear phenotypic separation of the high and low

WSC populations provides a robust platform for further

investigation of foliar WSC accumulation in white clover,

using transcriptomics and proteomics.
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