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The perils of planning strategies
to increase vitamin C content in
plants: Beyond the hype
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1Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari,
Italy, 2Department of Earth and Geoenvironmental Sciences, University of Bari "Aldo Moro", Bari, Italy
Ever since the identification of vitamin C (ascorbic acid, AsA) as an essential

molecule that humans cannot synthesize on their own, finding adequate

dietary sources of AsA became a priority in nutrition research. Plants are the

main producers of AsA for humans and other non-synthesizing animals. It was

immediately clear that some plant species have more AsA than others. Further

studies evidenced that AsA content varies in different plant organs, in different

developmental stages/environmental conditions and even within different cell

compartments. With the progressive discovery of the genes of the main

(Smirnoff-Wheeler) and alternative pathways coding for the enzymes

involved in AsA biosynthesis in plants, the simple overexpression of those

genes appeared a suitable strategy for boosting AsA content in any plant

species or organ. Unfortunately, overexpression experiments mostly resulted

in limited, if any, AsA increase, apparently due to a tight regulation of the

biosynthetic machinery. Attempts to identify regulatory steps in the pathways

that could be manipulated to obtain unlimited AsA production were also less

successful than expected, confirming the difficulties in “unleashing” AsA

synthesis. A different approach to increase AsA content has been the

overexpression of genes coding for enzymes catalyzing the recycling of the

oxidized forms of vitamin C, namely monodehydroascorbate and

dehydroascorbate reductases. Such approach proved mostly effective in

making the overexpressors apparently more resistant to some forms of

environmental stress, but once more did not solve the issue of producing

massive AsA amounts for human diet. However, it should also be considered

that a hypothetical unlimited increase in AsA content is likely to interfere with

plant development, which is in many ways regulated by AsA availability itself.

The present review article aims at summarizing the many attempts made so far

to improve AsA production/content in plants, evidencing the most promising

ones, and at providing information about the possible unexpected

consequences of a pure biotechnological approach not keeping into

account the peculiar features of the AsA system in plants.

KEYWORDS
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1 Introduction: Is vitamin C the
new panacea?

Since its identification as the long sought anti-scurvy factor

vitamin C (King and Waugh, 1932; Svirbely and Szent-Gyorgyi,

1932) ascorbic acid (formerly known as hexuronic acid) has been

the subject of extensive research. The name ascorbic acid (AsA)

literally means “against scurvy”, and early research was mainly

oriented to understanding how the deadly disease known as

scurvy could be prevented and cured by the newly found

molecule, but the biochemical mechanism underlying the

beneficial effect of AsA in scurvy prevention was eventually

discovered only much later (Stone and Meister, 1962). Scurvy is

a complex disease involving several concomitant malfunctions,

apparently all caused by the inactivation of different enzymes

belonging to the large family of 2-oxoglutarate-dependent

dioxygenases (De Tullio, 2012). With the general improvement

of life conditions, scurvy became a rare disease for a large part of

the world population, although some scattered cases still occur

(Amisha et al., 2022). Nowadays, vitamin C is very popular, but

definitely not because of its original role as the anti-scurvy factor.

The reasons for such popularity trace back to the ‘70s and ‘80s of

the last century, when the double-Nobel laureate (for Chemistry

in1954, and for Peace in 1962) Linus Pauling established

collaborations with the biochemist Irwin Stone and the

clinician Ewan Cameron. On the basis of limited clinical data

and his own experience, Pauling claimed that “megadoses” (up

to 18 grams per day)- of vitamin C are effective against many

different pathologies: from the common cold to cancer (Pauling,

1986). Pauling’s megadoses largely exceed the daily amount of

vitamin C currently recommended by official international

bodies and health organizations. For example, the European

Food Safety Authority recommends a daily intake in the

milligram range, differentiated according to age and specific

requirements (Table 1). In parallel with Pauling’s promise of a

long and healthy life with vitamin C, the Free Radical Theory of
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Ageing received increasing consideration. Initially proposed in

the 1950s by the gerontologist Denham Harman (Harman,

1956), the theory, based on the concept that ageing results

from oxidative stress, became more and more popular as it

provided an apparently simple molecular explanation to the

complexity of the ageing process. Later studies further suggested

that free radicals (but also hydrogen peroxide, which is not a free

radical) are involved in the pathogenesis of an array of diseases,

stressing the importance of antioxidants as a tool to counteract

the damage caused by reactive oxygen species (Dormandy,

1978). Over the years and the decades, the popularization of

the Free Radical Theory of Ageing and Disease has led to a

dramatic oversimplification, inducing in the general public the

belief that antioxidants, and in particular vitamin C, can protect

us from almost any harm. Unfortunately, this is not true. More

and more studies contradict the initial assumptions of the

Theory (Gladyshev, 2014). We now know that generically

increasing “antioxidant defenses” can even have detrimental

effects, as reactive oxygen species also have essential roles as

signaling molecules (Mittler, 2017). Thus, massive removal of

reactive oxygen species by antioxidants is not only impossible,

but also not desirable. In spite of this simple consideration, the

market of antioxidant supplements is worth several billion

dollars, and a boost in sales occurred during the recent Covid-

19 pandemic (Evans, 2020). Vitamin C requirement by

consumers is likely to further increase in the next years.
2 Why increasing vitamin C content
in plants

An effective and inexpensive industrial method for vitamin

C production was developed as early as 1933 by Reichstein, and

additional synthetic methods have been proposed thereafter

(Pappenberger and Hohmann, 2014). Nevertheless, plants

remain the main source of vitamin C for human consumption.
TABLE 1 Ascorbic acid requirement (mg/day) in different subsets of the population, according to the European Food Safety Authority. http://
multimedia.efsa.europa.eu/drvs/index.html.

Average Requirement* (mg) Population Reference Intake** (mg)

Adults (≥18 years) 80 95

Infants 7-11 months – 20

Children (1-3 years) 15 20

Children (7-10 years) 40 45

Adolescents (15-17 years) 75 90

Pregnant women (≥18 years) – 105

Lactating women (≥18 years) 140 155

*The average requirement (AR) refers to the intake of a nutrient that meets the daily needs of half the people in a typical healthy population.**The population reference intake (PRI) is
the intake of a nutrient that is likely to meet the needs of almost all healthy people in a population.
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It is worth mentioning that most animal species do not need

AsA supplementation, as they can produce it themselves using a

well-known biosynthetic pathway (Duque et al., 2022). Humans

and some other primates, bats, some birds, and a few more

species have lost this capability due to the loss of function of the

gene encoding L-gulono-1,4-lactone oxidase, the enzyme

catalyzing the final step in AsA biosynthesis (Nishikimi and

Yagi, 1991).

Although no difference in reactivity and effectiveness can be

observed between “natural” and “man-made” AsA, time and

efforts were necessary to make vitamin C produced with the

Reichstein method appealing to consumers (Bächi, 2008). Still

today, it is generally assumed that “natural” vitamin C is always

preferable, possibly because in plant extracts other beneficial

factors (e.g. bioflavonoids) are also present. Unfortunately, this

opinion is not substantiated by experimental data, as there is no

evidence of differences in the bioavailability of synthetic versus

food-derived vitamin C in humans (Carr and Vissers, 2013).

Anyway, the popularity of vitamin C is now so high, that

producing plants able to provide us with AsA megadoses in a

few bites seems a desirable goal: the more the better. As

discussed in the next sections of this article, this is not an easy

goal to reach, and many attempts failed. On the other hand, in

some cases plants possessing even slightly higher AsA content

proved more resistant to abiotic stress conditions as compared to

controls. Such findings opened a different opportunity:

increasing plant AsA content not for feeding it to humans, but

for the survival and better performance of overproducing plants.

This second approach appears more feasible, and generally

produced valuable results.
3 Ways to increase vitamin C
content in plants

Among the different strategies used to increase AsA content

in plants with the aim of producing biofortified crops (Strobbe

et al., 2018), three main approaches have been used so far: 1.

Increasing AsA content by affecting its biosynthesis; 2.

Increasing AsA content by improving recycling from its

oxidized forms; 3. Increasing AsA content by limiting

its catabolism
3.1 The long way to the discovery of the
AsA biosynthetic pathway in plants

Full elucidation of the AsA biosynthetic pathway in plants

has been quite troublesome and took decades of investigation.

Early work by Mapson and co-workers in the 1950s (Isherwood

et al., 1954) suggested that animals and plants have different

biosynthetic routes. The two pathways, as we know them today,
Frontiers in Plant Science 03
are compared in Figure 1. For years the debate focused on the

inversion vs. non-inversion pathway, i.e. whether carbon 1 of D-

glucose, the initial precursor, becomes carbon 6 in L-AsA

(inversion, as in the animal pathway), or is retained as C1 in

AsA (non-inversion) (Smirnoff et al., 2001). The final step in the

plant pathway, the conversion of L-galactono-g-lactone (L-GalL)
into AsA, was observed in the presence of the mitochondrial

fraction (Mapson et al., 1954). The enzyme catalyzing this step

was later identified as a mitochondrial dehydrogenase (Ôba

et al., 1995), in a difference to the animal pathway, in which

the last step is catalyzed by an oxidase associated to the

microsomal fraction. Until the turn of the XX Century there

was no consensus on all other steps in the pathway, and the

situation was quite confused. Still in 1990, the unusual

precursors D-glucosone and L-sorbosone were proposed as

intermediates in the plant pathway (Saito et al., 1990).

Labeling experiments with C-14, which had been so very

effective for the study of different pathways, and very helpful

even to disentangle the complexity of the Calvin cycle (Bassham

et al., 1953), did not work as well in the case of AsA. This is

possibly due to the fact that the amount of AsA produced in the

pathway is relatively low, and the pathway itself is

interconnected to different biosynthetic routes, so the

radioactive labeling was scattered onto many different

carbohydrate molecules, with no chance to observe clear

trends and quantitatively relevant key intermediates.

Alternatively, attempts to target enzyme activities in crude

extracts or in partially purified protein fractions were also
FIGURE 1

Ascorbic acid (AsA) biosynthetic pathways in animals and in
plants. The committed steps (specific for AsA synthesis) in the
plant pathway are highlighted in green.
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hardly successful: the activities of the enzymes putatively

involved in the pathway were apparently quite low, when

detectable. Only the outstanding work performed by the

Smirnoff group at the University of Exeter in the late 1990s

eventually reached the goal of deciphering the full picture of a

coherent biosynthetic pathway (Wheeler et al., 1998). Further

support to the Smirnoff-Wheeler pathway (also known as the L-

galactose pathway) came from genetic evidence obtained by

Conklin and Last, who, while looking for ozone-sensitive

Arabidopsis mutants, observed the sensitive to ozone1 (soz1)

mutant, characterized by lower AsA content (about 70-75% less

than the wild type). The mutant was soon renamed vitamin c

deficient1 (vtc1) when it was found partially defective in the

activity of GDP-mannose pyrophosphorylase, the enzyme

catalyzing an early step in the biosynthesis (Conklin et al.,

1999). Additional vtc mutants were identified and

characterized Conklin et al., 2000). This was the starting point

of a “Renaissance” in AsA research, as Smirnoff, Conklin and the

pioneer Loewus entitled their seminal paper summarizing those

novel and exciting discoveries (Smirnoff et al., 2001). Since then,

all the enzymes catalyzing the different steps of the Smirnoff-

Wheeler pathway have been characterized, and their

corresponding genes cloned. The list of the enzymes involved

includes phosphoglucose isomerase (PGI); phosphomannose

isomerase (PMI); phosphomannomutase (PMM); GDP-D-

mannose pyrophosphorylase (GMP); GDP-D-mannose 3′,5′
epimerase (GME); GDP-L-galactose phosphorylase (GGP); L-

galactose 1-phosphate phosphatase (GPP); L-galactose

dehydrogenase (L-GalDH); L-galac tono-1 ,4- lactone

dehydrogenase (L-GalLDH).

Possible alternative pathways of AsA biosynthesis have been

proposed: the MIOX pathway, using myo-inositol as a precursor
Frontiers in Plant Science 04
(Lorence et al., 2004), and the galacturonic acid pathway (Agius

et al., 2003). Rather than full pathways, they both are alternate

entry points into the biosynthetic machinery and might

contr ibute to bui ld ing the AsA pool under some

circumstances, but they are unlikely to provide the bulk

amount of AsA required by the cell. An additional pathway

going from GDP-D-mannose to L-gulonic acid, through GDP-L-

gulose, L-gulose-1-P and L-gulose, has also been proposed

(Valpuesta and Botella, 2004).
3.2 Increasing AsA content by
modulating its biosynthesis is not easy

Over the years, virtually all the genes involved in the

Smirnoff-Wheeler pathway have been overexpressed under the

control of constitutive promoters to obtain higher AsA content

in different plant species, but in almost all cases the actual results

were far below the expected (Macknight et al., 2017; Strobbe

et al., 2018), the only valuable exception being GGP (Table 2).

Pyramiding tomato lines in which 4 genes in the pathway (GME,

GMP, GGP, and GPP) were co-overexpressed under the control

of the 35S CaMV promoter showed increased AsA content in

leaves and, to lesser extent, in fruits, but co-overexpression was

only slightly more effective than other gene combinations (Li

et al., 2019). When data on AsA increase in the overexpressors

are reported as fold change compared to controls

(untransformed or mock-transformed plants), the results may

appear promising (see e.g. Macknight et al., 2017), but if we go

into details and check the actual AsA content measured

(Table 2) and the variability within the same population of

transformants, we realize how far we are from the goal
TABLE 2 Effect of the overexpression of selected genes of the main ascorbic acid (AsA) biosynthetic pathway on AsA content.

Gene(s) overexpressed Plant species and
organ

AsA content in
control plants

AsA content and fold increase in
transformants

Ref.

GMP = GDP-D-mannose
pyrophosphorylase (VTC1)

Arabidopsis thaliana
leaf

0.358 ± 0.086 mg/g fw 0.508 ± 0.084 mg/g fw (1.4) Zhou et al.,
2012

GME = GDP-D-mannose 3′,5′
epimerase

A. thaliana leaf 0.358 ± 0.086 mg/g fw 0.497 ± 0.095 mg/g fw (1.3) Zhou et al.,
2012

GGP = GDP-L-galactose phosphorylase
(VTC2)

Potato tuber
Tomato fruit
Strawberry fruit

0.50 ± 0.2 mg/g dw
0.18 ± 0.4 mg/g fw
0.62 ± 0.1 mg/g fw

1.65 ± 0.47 mg/g dw (3)
1.11 ± 0.23 mg/g fw (6)
1.31 ± 0.1 mg/g fw (2)

Bulley et al.,
2012

GPP = L-galactose 1-phosphate
phosphatase (VTC4)

A. thaliana leaf 0.358 ± 0.086 mg/g fw 0.572 ± 0.102 mg/g fw (1.6) Zhou et al.,
2012

L-GalDH = L-galactose dehydrogenase A. thaliana leaf 0.358 ± 0.086 mg/g fw 0.468 ± 0.081 mg/g fw (1.3) Zhou et al.,
2012

L-GalLDH = L -galactono-1,4-lactone
dehydrogenase

A. thaliana leaf 0.358 ± 0.086 mg/g fw 0.647 ± 0.143 mg/g fw (1.6) Zhou et al.,
2012

GMP+GME+GGP+
GPP

Tomato leaf
Tomato fruit

~ 0.4 mg/g fw
~ 0.28 mg/g fw

~ 1 mg/g fw (2.5)
~ 0.37 mg/g fw (1.3)

Li et al.,
2019

For some genes, the names of the corresponding Vitamin C deficient (VTC) genes of Arabidopsis are reported. fw: fresh weight; dw: dry weight.
f
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insistently claimed in almost all the papers reporting such

experiments: meeting the needs of human nutrition.

Manipulation of AsA content by tackling alternate pathways

was not more effective. Overexpression of the strawberry D-

galacturonic acid reductase gene in tomato increased fruit AsA

content from about 2 to about 5 mg/100g f.w. (Lim et al., 2016),

meaning that an adult should eat almost 2 kilograms of tomatoes

per day to fulfill the prescribed AsA requirement (Table 1). It is

surprising that so many attempts have been made to increase

AsA content in tomato plants, considering that organs of

different species (fruits of Capsicum annuum, various Citrus

species, Fragaria sp. and inflorescences of Brassica oleracea)

make better sources of AsA (Palma et al., 2015).

Expression of an animal (from rat liver) cDNA encoding L-

gulonolactone oxidase increased AsA content in lettuce (Jain

and Nessler, 2000), but the use of non-plant genes to boost AsA

contents in plants had little further development, conceivably

because similar products would hardly be accepted by

consumers and have any market.
3.3 A closer look into GGP

As mentioned above, several reports confirm that GDP-L-

galactose phosphorylase (GGP) catalyzes a key step in AsA

biosynthesis. The identification of this enzyme as the product

of the Arabidopsis gene VTC2 was reported independently by

three research groups in the same year (Dowdle et al., 2007;

Laing et al., 2007; Linster et al., 2007). In the Smirnoff-Wheeler

pathway, GGP is the first committed step in AsA production, as

the previous steps provide GDP-D-mannose and L-galactose, that

are also used in cell wall metabolism (Smirnoff et al., 2001).

Dowdle et al. (2007) also found an Arabidopsis gene (VTC5)

coding for a second GGP with distinct kinetic features, as

compared to the VTC2 enzyme. Interestingly, seeds of the

double mutant vtc1/vtc5 can germinate, but seedlings undergo

early growth arrest and die if not supplemented with exogenous

AsA, demonstrating that “scurvy” plants are not viable. Most

likely, the germination of the vtc2/vtc5 double mutant is made

possible by the reduction of dehydroascorbic acid to AsA by

means of dehydroascorbate (DHA) reductase (see below), since

it has been demonstrated and repeatedly confirmed that mature

orthodox seeds have no AsA (reduced form) and retain only a

small amount of DHA (oxidized form) (Arrigoni et al., 1992).

Overexpression of GGP mostly (but not always) increased

AsA content in model and non-model plant species (Macknight

et al., 2017; Broad et al., 2020). Soon after its characterization in

2007, it was very clear that GGP has a special regulatory role in

the AsA biosynthetic pathway and is a strategic target for further

research. An interesting study on VTC2 in Arabidopsis (Müller-

Moulé, 2008) showed that the expression of the gene is rapidly

elicited by light in green tissues, whereas root expression is much

lower. Most interestingly, and somewhat surprisingly, the YFP-
Frontiers in Plant Science 05
tagged VTC2 protein localizes not only to the cytosol, but also to

the nucleus. Nuclear, in addition to cytoplasmic location, has

been observed also for some other enzymes of the Smirnoff-

Wheeler pathway, namely GMP, GPP, and L-GalDH (Fenech

et al., 2021). This finding suggests a regulatory role for such

proteins, but further studies will be necessary to elucidate this

point. An accurate and comprehensive kinetic model of AsA

biosynthesis confirmed that GGP is the main control point and

limiting step of the metabolic flux along the pathway (Fenech

et al., 2021).
3.4 Regulators of the pathway

Both overexpression studies and data on the effects of

feeding with precursors (Pallanca and Smirnoff, 2000; Bulley

et al., 2021) confirm that the AsA biosynthetic machinery is

tightly regulated. This finding is not consistent with the common

opinion that unlimited antioxidant (and in particular AsA)

supply is always beneficial to all organisms. AsA inhibits its de

novo biosynthesis with a typical negative feedback mechanism,

apparently affecting three enzymes in the pathway: PMI, GGP,

and L-GalDH (Fenech et al., 2021). The search for factors

regulating AsA biosynthesis started with the identification by

the Nessler group of an Arabidopsis phosphatase possibly

activating the myo-inositol alternative branch (Zhang et al.,

2008). Later on, the Arabidopsis VTC3 protein was identified

by Conklin et al. (2013) as a putative plastid-associated factor

with a dual protein kinase::protein phosphatase function,

apparently involved in the light-mediated induction of AsA

biosynthesis: notably, the vtc3 mutant shows no increase in

AsA content in response to light and heat (Conklin et al., 2013).

The list of transcription factors putatively involved in AsA

synthesis includes the ethylene response factor AtERF98

(Zhang et al., 2012), the tomato SlHZ24 (Hu et al., 2016) and

SlDOF22 (Cai et al., 2016). Two more regulatory factors

apparently activate the VTC1 protein (the Arabidopsis GMP):

KONJAC (Sawake et al., 2015) and CSN5B (Wang et al., 2013),

the latter being involved in the ubiquitination and subsequent

degradation of VTC1. An F-box protein also controls GMP

expression in Malus domestica (Ma SY et al., 2022). An

Arabidopsis calmodulin (CML10) has been found to interact

with PMM, with a possible regulatory role (Cho et al., 2016).

A real breakthrough in the search for factors controlling AsA

biosynthesis occurred when Laing et al. (2015) reported on a cis-

acting upstream open reading frame (uORF) repressing the

translation of the downstream GGP open reading frame under

high ascorbate concentration. The peptide encoded by the

noncanonical uORF functions in the ascorbate-induced

inhibition of translation. Disruption of the uORF using a

CRISPR-Cas9 approach removed the AsA feedback repression

of GGP and increased AsA content in tomato fruit up to the

remarkable amount of 1 mg per gram fresh weight (Deslous
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et al., 2021). Two more transcription factors from Actinidia

eriantha (AceMYBS1 and AceGBF3) working synergistically to

activate GGP have been recently described by Liu et al. (2022).

Interestingly, AceMYBS1 is repressed by abscisic acid (ABA),

confirming that AsA biosynthesis is also hormone-regulated.

Wolucka et al. (2005) observed stimulation of AsA biosynthesis

in methyl-jasmonate-treated tobacco and Arabidopsis

suspension cultures. Additionally, the signaling molecule nitric

oxide (NO) caused a 40% AsA increase in pepper fruit, possibly

by influencing L-GalLDH activity (Rodrıǵuez-Ruiz et al., 2017;

Zuccarelli et al., 2021). Increasing AsA content by using

treatments with growth regulators could be a useful alternative

to invasive gene manipulation techniques.
3.5 The Smirnoff-Wheeler pathway
connects different cell components and
signaling modules

The last ten years have brought quite a lot of relevant

information on the regulation of the Smirnoff-Wheeler

pathway. Although there is still much to understand about

how the pathway actually works, the picture is getting clearer

and clearer. A tentative model is described in Figure 2. The first

steps in the pathway serve two different purposes: producing

intermediates that will go through the pathway to yield AsA, and

producing key molecules that will eventually be targeted to the

cell wall, namely D-mannose and L-galactose. The reaction

catalyzed by GGP is the first committed step, and the 3 final

ones, catalyzed by GPP, L-GalDH and L-GalLDH, respectively,

are specific for AsA production. All the reactions are known to

occur in the cytosol, with one major exception: the peculiar

location of the last enzyme, L-GalLDH, at the mitochondrial

inner membrane (Siendones et al., 1999). If we add to the picture

the involvement in AsA synthesis of the plastid-located factor

VTC3 (Conklin et al., 2013), and the observed co-presence in the

nucleus of the cytosolic enzymes GMP, GGP, GPP, and L-GalDH

(Müller-Moulé, 2008; Fenech et al., 2021), we can conclude that

AsA biosynthesis spans all over the cell establishing connections

between cell wall metabolism, photosynthesis and respiration, all

processes exerting an obvious regulatory influence on AsA

production. There is evidence that all the enzymes in the

pathway, of course with the exception of the mitochondrial

one, could be connected and form a single multienzyme complex

(Fenech et al., 2021). This possibility (represented by the red

dotted line in Figure 2) deserves further investigation.

Plants deficient in GMP activity show interesting features.

Reduced growth and early senescence were observed in antisense

potato plants underexpressing a GMP gene, in parallel with

lower AsA content (-60%) and cell wall-associated mannose

(-70%) in leaves, while tubers develop normally (Keller et al.,

1999). Decreased growth and delayed flowering also occur in the

Arabidopsis vtc1 mutant, defective in GMP activity (Veljovic-
Frontiers in Plant Science 06
Jovanovic et al., 2001). However, the growth defects of these

plants are likely due to the reduced availability not only of AsA,

but also of mannose. The relevance of GMP activity is also

indirectly witnessed by the presence of specific regulators

interacting with the enzyme (Sawake et al., 2015). Partial

inactivation of GMP activity in the Arabidopsis hsn1 mutant,

allelic to vtc1, caused ammonium hypersensitivity not due to the

partial loss of AsA, but entirely to impaired N-glycosylation.

Moreover, NH+
4 inhibits GMP activity (Qin et al., 2008).

The final step of the biosynthesis takes place in the

mitochondrion. The reaction catalyzed by L-GalLDH uses

cytochrome c as an electron acceptor (Ôba et al., 1995;

Leferink et al., 2008). From a structural point of view, the

protein regulates the assembly of the mitochondrial complex I

(Schimmeyer et al., 2016). The correlation between respiratory

electron transport and AsA synthesis has been widely

investigated (Millar et al., 2003; Szarka et al., 2013). Imbalance

of AsA biosynthesis also affects photosynthetic activity (Senn

et al., 2016). It is especially intriguing that silencing of L-GalLDH

had no effect on total AsA+DHA content, but reduced leaf and

fruit size in tomato plants, also affecting the TCA cycle and

secondary metabolic pathways related to stress response

(Alhagdow et al., 2007).
3.6 Additional ways to increase AsA
content: MDHA/DHA reductases and
AsA oxidase

In the classical Halliwell-Asada pathway, AsA oxidized

forms (namely monodehydroascorbate, MDHA, and

dehydroascorbate, DHA) can be reduced back to AsA by

means of the enzymes MDHA reductase (MDHAR) and DHA

reductase (DHAR, respectively (Hausladen and Kunert, 1990).

The possibility of increasing AsA content by overexpressing the

two enzymes has been explored over the years. MDHA is a

short-lived free radical (also known as Ascorbate Free Radical)

that is considered to disproportionate (in an uncatalyzed

reaction) yielding AsA and DHA, whereas the enzyme

MDHAR is NADH-dependent. In turn, DHA is reduced back

to AsA in a glutathione-dependent reaction catalyzed by DHAR

(Arrigoni et al., 1981). A MDHAR-coding gene from Malpighia

glabra (acerola) has been expressed in tobacco leaves with a 1.8-

fold increase in AsA content, but once more, the basal AsA level

is relatively low, in the nanomoles per gram fresh weight range

(Eltelib et al., 2012). Often erroneously represented as a

tricarbonyl molecule (Kerber, 2008), DHA in aqueous solution

is actually a dimer, whereas the tricarbonyl form, named

pseudodehydroascorbic acid, is very unlikely to occur because

of its extreme instability (Njus et al., 2020). The presence of a

specific enzyme catalyzing the reduction of DHA has been a

matter of debate, because several proteins sharing a C-X-X-C

motif can potentially act as DHARs (Morell et al., 1997; Morell
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et al., 1998). Later on, putative DHARs have been cloned and

characterized (Urano et al., 2000), and in some cases

overexpressed with the aim of increasing AsA content (Lin

et al., 2016). Also in the case of DHARs, the results of the

overexpression on AsA content were far from dramatic. It

should be considered that, during plant development, DHAR

activity is usually not consistent with AsA content (De Tullio
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et al., 1998; Lin et al., 2016). Most likely, DHARs act as

modulators of DHA content rather than significantly

contributing to the AsA pool, with the exception, already

mentioned above, of seed germination.

In principle, the AsA pool can be increased also by limiting

its degradation. A possible strategy to increase AsA content

might be the targeting AsA oxidase (AO), an enzyme of still
FIGURE 2

Schematic representation showing the main ascorbic acid (AsA) biosynthetic pathway in its cellular context. Cytosolic enzymes in the Smirnoff-
Wheeler pathway, possibly physically connected to form a multienzyme complex (red dotted line) produce intermediates used for glycoprotein
(in the Golgi) and cell wall assembly. The committed steps in the pathway yield L-galactono-1,4-lactone that is transported to the
mitochondrion, where a specific dehydrogenase catalyzes its conversion to AsA using oxidized cytochrome c as an electron acceptor. AsA
controls its biosynthesis through feedback inhibition on three enzymes of the pathway. Inhibition of GGP activity is mediated by an AsA-
regulated upstream Open Reading Frame (uORF). The chloroplast-associated factor VTC3 could be associated to light-dependent activation of
GGP (black dotted line). Nuclear co-location of 4 enzymes of the pathway could have a yet unexplored regulatory role. PMI=phosphomannose
isomerase; PMM=phosphomannomutase; GMP=GDP-D-mannose pyrophosphorylase; GME=GDP-D-mannose 3′,5′ epimerase; GGP=GDP-L-
galactose phosphorylase; GPP= L -galactose 1-phosphate phosphatase; L-GalDH= L-galactose dehydrogenase; L-GalLDH= L-galactono-1,4-
lactone dehydrogenase.
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unclear physiological role (De Tullio et al., 2013). The

suppression of AO expression in antisense tobacco plants and

in a T-DNA insertion Arabidopsis mutant (Yamamoto et al.,

2005) resulted in higher AsA content (approximately up to 3-

fold increase). However, virus-induced AO silencing in tomato

plants increased fruit yield under water limiting conditions, but

hardly affected AsA content (Garchery et al., 2013).
4 The consequences of increasing
AsA content: All that glitters
is not gold

All the attempts made to increase AsA content in plants are

based on the assumption that more AsA can only be beneficial to

plants and, by consequence, to the humans who are supposed to

consume those “biofortified” plants in their diet. No matter how

much AsA is produced, no negative outcome will ever occur.

This principle, possibly a consequence of the popularization of

Pauling’s hypotheses unproperly transferred to plants, is

contradicted by the simple observation that AsA biosynthesis

is strictly regulated. As discussed above, the biosynthetic

pathway leading to AsA production is very hard to “crack”,

and only in very few cases, over a large number of attempts, AsA

content in tomato fruit was raised up to a level that could, at least

in theory, be used for the needs of human nutrition (Bulley et al.,

2012; Deslous et al., 2021). From an evolutionary point of view, it

is unconceivable that AsA synthesis is kept on a tight leash

without any selective advantage. Is there an unexpected trade-off

behind the limitations in plant AsA production? Wheeler et al.

(2015) in their comprehensive, excellent study on the evolution

of AsA biosynthesis, showed that in eukaryotes the ancestral

gene gulono-lactone oxidase (GULO), encoding the enzyme still

present in the animal biosynthetic pathway, was lost in early

photoautotrophs and replaced by L-GalLDH in the

Archaeplastida lineage, but also in some non-photosynthetic

organisms that have lost their plastids. The plant enzyme

apparently confers an advantage over the animal one, also in

the view that photosynthesis unavoidably produces an excess of

reactive oxygen species that need effective management (Maruta

et al., 2016). The presence in plants of AsA peroxidases,

ubiquitary in all cell compartments, suggests that plants

require more AsA than animals, but the question whether an

“upper limit” to AsA biosynthesis might occur in plants

still stands.

A closer look at tomato plants produced by GGP

overexpression (Bulley et al., 2012), or removal of the uORF

controlling GGP expression (Deslous et al., 2021) shows

surprising and interesting anomalies in fruit development. In

tomato lines with high AsA content due to the expression of the

kiwifruitGGP gene under the control of the 35S promoter, the fruits

were not only smaller and lighter (16 ± 2 g in the line with 6-fold
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AsA increase, as compared to 52 ± 8 g in control plants), but they

were also seedless (or had small, nonviable seeds), and the typical

mucilage in locular tissue wasmissing (Bulley et al., 2012). Similarly,

the removal of the AsA-regulated feedback inhibition either by

mutagenesis or by using a CRISPR/Cas9 approach (Deslous et al.,

2021) markedly increased AsA content in tomato plants, but

concomitantly caused the production of seedless fruits (and in

some cases no fruit production at all) in homozygous lines. The

seedless phenotype cannot be ascribed to a switch to parthenocarpy,

but is clearly due to male sterility, since further analysis of the AsA-

overproducing plants showed altered anther development and

anomalous pollen grains unable to produce a functional pollen

tube. The phenotype of heterozygous plants was somewhat

intermediate. Transcriptome analysis evidenced effects of AsA

overproduction mainly on defense responses and the immune

system, suggesting a trade-off between defense and development

(Deslous et al., 2021).

Previous studies, in which AsA content had been increased

by feeding Arabidopsis plants with AsA precursors, (mainly L-

GalL), have shown that AsA affects plant development by

delaying the transition to the reproductive stage (Attolico and

De Tullio, 2006; Barth et al., 2006). The precursor-feeding

approach has been recently used to investigate the effect of

increased AsA content on the expression of possible downstream

targets and regulators (Bulley et al., 2021), evidencing a putative

regulatory network that mainly involves ABA responsive genes.

ABA content and the expression of the gene encoding the ABA

biosynthetic enzyme NCED3 are also increased by AsA

enhancement. Notably, NCEDs (9’-cis-epoxycarotenoid

dioxygenases) are enzymes belonging to the large class of

dioxygenases. Many dioxygenases share a complex catalytic

mechanism in which AsA has a key regulatory role (De

Tullio, 2020).
5 Conclusions: A long way ahead

In the last 10-15 years, astonishing progress has been made

in the development of powerful tools allowing us to manipulate

genes and genomes and introduce favorable traits in plants. Such

improved techniques, and mainly the apparently unlimited

potential of the CRISPR/Cas9 approach, are now opening new

stimulating perspectives for the production of healthy crops able

to meet the needs of a growing world population. However, to

avoid wasting time and money, careful planning should be made

before starting a research project aimed at altering a key

component in plant metabolism. At least at the moment,

increasing vitamin C content to obtain superfoods and defeat

any disease just by eating good stuff sounds like pure hype, for

two different reasons. First, the popular claim that AsA is always

good, no matter how much, should probably be re-considered

(Tóth et al., 2018). Moreover, as discussed above, the “perfect
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crop” able to provide unlimited vitamin C supply at low cost is

very unlikely to be obtained in the near future.

Even more than other known biosynthetic routes, AsA

biosynthesis appears entangled in the complexity of cell

metabolism. Unbalancing AsA content beyond a certain

threshold resulted in anomalies in reproductive development. It is

especially interesting that Deslous et al. (2021) boosted AsA content

beyond the “safe” limit not by heterologous overexpression of GGP

(as in Bulley et al., 2012), but by removing the block that keepsGGP

under the AsA regulated feedback control, thus “unleashing” the

Smirnoff-Wheeler pathway. This means that the “leash” is not there

by accident, and that AsAmust be handled with care in different cell

locations and developmental stages. A clear example is the absence

of AsA from dry orthodox seeds (Arrigoni et al., 1992). Incidentally,

this is a major challenge if one wishes to make vitamin C available

to the entire world population, since dry seeds of some species are

staple foods of uttermost importance (Strobbe et al., 2018). It is

tempting to speculate that low vitamin C availability is necessary

whenever cell metabolism must be downregulated, as in seeds or in

the quiescent center of the root apical meristem, where AsA is

apparently “leashed” by AsA oxidase (Kerk and Feldman, 1995; Liso

et al., 2004; De Tullio et al., 2010). A specific involvement of AsA in

the epigenetic control of gene expression via the demethylation of

DNA and histone proteins catalyzed by TET dioxygenases has been

reported (Young et al., 2015). This regulatory mechanism, initially

observed in animals, is now known to be widespread in plants too

(Ma S et al., 2022). Altering AsA content is likely to affect the

epigenome, which conceivably results in changes in the plant

developmental program.

When describing the phenotype of GPP-overexpressing

plants, Bulley et al. (2012) underline that seedless fruits occur in

tomato, but not in strawberry plants transformed with the same

constructs. Nonetheless, in the strawberry line with the highest

GPP activity, fruit size is apparently lower (unfortunately no

picture of the strawberries is shown in the paper). Indeed, in the

mentioned paper strawberries have higher basal AsA than tomato

fruits also in the control plants, and the fold change in AsA

content observed after the transformation is definitely lower (2-

fold change in strawberries, 6-fold in tomatoes). This observation

raises the question whether different species could have a different

“threshold value” beyond which AsA becomes too much.

Although at the moment there is no answer, the simple

observation that AsA is unevenly distributed among different

organs, tissues, cells and even cell compartments (Zechmann,

2018) suggests that AsA is produced “on demand” and

transported to the sites of utilization, where it has been

suggested to operate as a redox buffer (Palma et al., 2015). The

light-dependency of AsA biosynthesis is a clear example: green

tissues require AsA upon activation of the photosynthetic process,

and AsA is delivered to the chloroplast to scavenge excess reactive

oxygen species. VTC3, which is plastid located, is possibly

involved in the signaling module activating AsA biosynthesis at

the GGP level (Figure 2). The reason why some plant species have
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high vitamin C content in the fruit, mostly fleshy fruits used for

animal consumption, is another intriguing issue. Recent studies

have demonstrated that the nutrient content in fleshy fruits,

together with other fruit features, can influence the choices of

frugivore bats and birds (Rojas et al., 2021a; Rojas et al., 2021b).

Notably, some bats and birds, similarly to humans and some other

primates, have lost their AsA biosynthetic capability. The

possibility that high AsA in the fruit evolved as a form of

reward for the animals involved in seed dispersal, as nectar is a

reward for pollinators, deserves further investigation, although at

the moment this is just a hypothesis.

Although, as discussed above, almost all attempts to enhance

AsA production by modulating the expression of AsA

biosynthetic genes did not result in dramatic changes in AsA

content, even moderate increases appeared beneficial for plant

resistance to different forms of abiotic stress. This is an interesting

and useful notion per se, but quite often it is explained exclusively

as the result of the antioxidant action of AsA, without further

investigation. Undoubtedly a strong connection exists between

AsA and defense responses, as evidenced by studies on the

transcriptome of plants with altered AsA content (Pastori et al.,

2003; Deslous et al., 2021). To this respect, the identification of a

possible ABA-dependent signaling module regulating AsA

biosynthesis (Liu et al., 2022) is especially interesting, as it goes

beyond the usual unfocused concept of a fight between “good”

antioxidants and “bad” ROS. The hypothesis that AsA is a key

player in the trade-off between defense and development, as

suggested by Deslous et al. (2021) is probably the best direction

to pursue in the next years of AsA research.
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Ôba, K., Ishikawa, S., Nishikawa, M., Mizuno, H., and Yamamoto, T. (1995).
Purification and properties of L-galactono-gamma-lactone dehydrogenase, a key
enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem. 117 (1),
120–4. doi: 10.1093/oxfordjournals.jbchem.a124697.

Pallanca, J. E., and Smirnoff, N. (2000). “The control of ascorbic acid synthesis
and turnover in pea seedlings.” J. Exp. Bot 51 (345), 669–674. doi: 10.1093/jexbot/
51.345.669
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