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Combined application of plant
growth-promoting bacteria and
iron oxide nanoparticles
ameliorates the toxic effects
of arsenic in Ajwain
(Trachyspermum ammi L.)

Yan Sun1, Li Ma1, Jing Ma1,2, Bingkun Li1, Yanfeng Zhu2

and Fu Chen1*

1School of Public Administration, Hohai University, Nanjing, China, 2School of Environmental
Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
Soil contamination with toxic heavy metals [such as arsenic (As)] is becoming a

serious global problem because of the rapid development of the social

economy. Although plant growth-promoting bacteria (PGPB) and

nanoparticles (NPs) are the major protectants to alleviate metal toxicity, the

study of these chemicals in combination to ameliorate the toxic effects of As is

limited. Therefore, the present study was conducted to investigate the

combined effects of different levels of Providencia vermicola (5 ppm and 10

ppm) and iron oxide nanoparticles (FeO-NPs) (50 mg/l–1 and 100 mg/l–1) on

plant growth and biomass, photosynthetic pigments, gas exchange attributes,

oxidative stress and response of antioxidant compounds (enzymatic and non-

enzymatic), and their specific gene expression, sugars, nutritional status of the

plant, organic acid exudation pattern As accumulation from the different parts

of the plants, and electron microscopy under the soil, which was spiked with

different levels of As [0 mM (i.e., no As), 50 mM, and 100 mM] in Ajwain

(Trachyspermum ammi L.) seedlings. Results from the present study showed

that the increasing levels of As in the soil significantly (p< 0.05) decreased plant

growth and biomass, photosynthetic pigments, gas exchange attributes,

sugars, and nutritional contents from the roots and shoots of the plants, and

destroyed the ultra-structure of membrane-bound organelles. In contrast,

increasing levels of As in the soil significantly (p< 0.05) increased oxidative

stress indicators in term of malondialdehyde, hydrogen peroxide, and

electrolyte leakage, and also increased organic acid exudation patter in the

roots of T. ammi seedlings. The negative impact of As toxicity can overcome

the application of PGPB (P. vermicola) and FeO-NPs, which ultimately

increased plant growth and biomass by capturing the reactive oxygen

species, and decreased oxidative stress in T. ammi seedlings by decreasing

the As contents in the roots and shoots of the plants. Our results also showed

that the FeO-NPs were more sever and showed better results when we

compared with PGPB (P. vermicola) under the same treatment of As in the
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soil. Research findings, therefore, suggest that the combined application of P.

vermicola and FeO-NPs can ameliorate As toxicity in T. ammi seedlings,

resulting in improved plant growth and composition under metal stress, as

depicted by balanced exudation of organic acids.
KEYWORDS

herbaceous crop, heavy metal, Providencia vermicola, nano-technology,
electron microanalysis
1 Introduction

Metal contamination issues are becoming increasingly

common in China and elsewhere, with many documented

cases of metal toxicity in mining industries, foundries,

smelters, coal-burning power plants, and agriculture (Afzal

et al., 2020; Saleem et al., 2020a; Akram et al., 2022; Al Jabri

et al., 2022; El-Kazzaz et al., 2022; Kareem et al., 2022). Heavy

metal accumulation in soils is of great concern in agricultural

production because of its adverse effects on food safety and

marketability, crop growth due to phytotoxicity, and the

environmental health of soil organisms (Rehman et al., 2020;

Zaheer et al., 2020a; Zaheer et al., 2020b; Ashraf et al., 2022;

Chen et al., 2022; Yasmeen et al., 2022; Ma et al., 2022a; Ma et al.,

2022b; Ma et al., 2022c; Ma et al., 2022d; Ma et al., 2022e).

Arsenic (As) is a highly toxic and carcinogenic element (Irshad

et al., 2021; Alsafran et al., 2022b), and the most widespread

sources of As in soil and water are natural sources, such as

volcanic activities, weathering, erosion of minerals and rocks,

and geothermal waters (Bhat et al., 2022; Ulhassan et al., 2022a;

Ulhassan et al., 2022b). In addition, use of pesticides, fertilizers,

industrial wastes, agricultural chemicals, and copper chromate-

arsenate wood preservative are the major anthropogenic sources

of As contamination in soil and water (Mondal et al., 2021;

Saleem et al., 2022; Tanveer et al., 2022). There is an abundance

of evidence that As negatively interferes with several biochemical

and physiological processes within a plant, causing reduced

plant growth and yield (Farooq et al., 2015; Shahid et al.,

2019). Inside the plant cell, heavy metals induce oxidative

stress by enhanced production of reactive oxygen species

(ROS), which may cause cell death via oxidative processes,

such as protein oxidation, enzyme inhibition, DNA and RNA

damage, and lipid peroxidation (Mumtaz et al., 2021; Tariq et al.,

2021; Ali et al., 2022d). Antioxidants, such as superoxide

dismutase (SOD), peroxidase (POD), catalase (CAT), and

ascorbate peroxidase (APX), come into play to scavenge ROS.

For example, SOD facilitates the conversion of superoxide (O−1)

radicals to hydrogen peroxide (H2O2), whereas POD

decomposes H2O2 into water (H2O) and molecular O2 (Afzal
02
et al., 2020; Saleem et al., 2020c; Saleem et al., 2020e; Salam et al.,

2022; Ali et al., 2022b). The sites contaminated with As need

immediate attention because of the associated severe

health risks.

Recently, nanotechnology has gained significant attention

because of its widespread application in numerous industries

(Hamzah Saleem et al., 2022; Dola et al., 2022). Nanofertilizers

could be a favorable methodology, as chemical fertilizers are

utilized in very small amounts by plants and other fertilizers left

over in the soil can cause environmental risks (Ahmad et al.,

2022; Al-Zaban et al., 2022; Ali et al., 2022a; Ali et al., 2022b).

The use of nanoparticles (NPs) as a fertilizer may be effective

because of decreased nutrient losses in fertilization (Siddiqui

et al., 2020). Recently, interest is diverting toward the use of

metal-based NPs [e.g., iron oxide nanoparticles (FeO-NPs)] in

the agriculture sector (Tanveer et al., 2022). In recent years,

several studies on the effects of NPs on plants under abiotic

stresses have been accomplished (Rizwan et al., 2019; Ahmed

Rather et al., 2021; Ali et al., 2022a). These reports showed that

the response of NPs on metal uptake varies with the type of NPs,

plants species, and metal species. Plant growth-promoting

bacteria (PGPB) help in improving the plant growth and metal

resistance (Ali et al., 2022a) by modifying the concentration of

growth regulators and phytohormones that facilitate the plant’s

ability to tolerate metal contaminants (Rizwan et al.;Saleem et al.,

2020d; Ali et al., 2022b). PGPB improve As bioremediation

because of their ability to enhance heavy metal bioavailability,

uptake, and conversion into less toxic forms through

methylation, oxidation, demethylation, and reduction

(Panhwar et al., 2020; Ali et al., 2021; Manghwar et al., 2021;

Ali et al., 2022b).

Ajwain (Trachyspermum ammi L.), a member of the

Apiaceae family, is a herbaceous crop plant and widely

cultivated in Pakistan, India, Egypt, Iran, and many European

countries (Jalbani et al., 2016; Javed et al., 2020). Seeds of T.

ammi contain beneficial essential oil, traditionally used for

different ailments and applications, such as antiseptic, diuretic,

antimicrobial, antiviral, bronchodilatory, and hepatoprotective

(Rao and Ikram, 2015). T. ammi has also been established as an
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important medicinal plant. During recent years, certain heavy

metals have received considerable attention on plant

morphology and physiology because of increasing

environmental exposure, which also likely to have an negative

impact on medicinal plants, including T. ammi (Ashraf and

Orooj, 2006). Previously, few studies on T. ammi were executed

to investigate its morphology and physiology under metal stress

(Ahad et al., 2014; Rao and Ikram, 2015); but synergistic

application of NPs and PGRB on various morpho-

physiological characteristics, ionomics, electron microscopy

and organic acid exudation potential of T. ammi was rarely

investigated under metal stressed regimes. Therefore, the present

study was conducted to study (1) the effect of different levels of

PGPB (Providencia vermicola) and FeO-NPs on plant growth,

biomass, and gaseous exchange parameters of T. ammi seedlings

under As stress, (2) oxidative stress and the responses of different

antioxidative enzymes (enzymatic and non-enzymatic), as well

as the response of the specific gene expression; (3) essential

minerals uptake, organic acids exudation, and As accumulation

in different organs of T. ammi seedlings under As stress; and (4)

electron microscopy of membrane-bound organelles of T. ammi

seedlings grown under varying levels of As in the soil.
2 Materials and methods

2.1 Experimental setup

Apot experiment was conducted at the Botanical Garden of the

Hohai University, Nanjing, China. Viable seeds of Ajwain (T.

ammi) were collected from Hohai University. Before sowing, the

seedswere carefullywashed and sterilized in 0.1%mercuric chloride

solution for 1 min and then washed three times with distilled water.

The soil sample was air dried, passed through a 5-mm sieve, and

was water saturated two times before being used in pots. The soil

used for this study was collected from the experimental stations of

Hohai University, and its properties was as follow: pH-6.9, EC-0.9

dS cm−1, organic matter-17 g kg−1, EK-21 mg kg−1, TP-0.17 g kg−1

and TN-16 g kg−1 (further details are mentioned in Table S1). All

pots were divided in the three subgroups: (1) without any As

treatment, (2) addition of 50 µM of As, and (3) addition of 100 µM

of As. All of the As-treated pots were further treated with FeO-NPs

(50 mg/l–1 and 100 mg/l–1) and PGPB (P. vermicola; 5 ppm and 10

ppm) to evaluate their ameliorative effects on As stress. Thus,

all pots were divided into the following 15 treatments: (1) As (0

mM), FeO-NPs (0 mg/l–1), P. vermicola (0 ppm); (2) As (0 mM),

FeO-NPs (50 mg/l–1), P. vermicola (0 ppm); (3) As (0 mM), FeO-

NPs (100mg/l–1), P. vermicola (0 ppm); (4) As (0 mM), FeO-NPs (0

mg/l–1), P. vermicola (5 ppm); (5) As (0 mM), FeO-NPs (0 mg/l–1),

P. vermicola (10 ppm); (6) As (50 mM), FeO-NPs (0 mg/l–1), P.

vermicola (0 ppm); (7) As (50 mM), FeO-NPs (50 mg/l–1), P.

vermicola (0 ppm); (8) As (50 mM), FeO-NPs (100 mg/l–1), P.

vermicola (0 ppm); (9) As (50 mM), FeO-NPs (0 mg/l–1), P.
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vermicola (5 ppm); (10) As (50 mM), FeO-NPs (0 mg/l–1), P.

vermicola (10 ppm); (11) As (100 mM), FeO-NPs (0 mg/l–1), P.

vermicola (0 ppm); (12) As (100 mM), FeO-NPs (50 mg/l–1), P.

vermicola (0 ppm); (13) As (100 mM), FeO-NPs (100 mg/l–1), P.

vermicola (0 ppm); (14) As (100 mM), FeO-NPs (0 mg/l–1), P.

vermicola (5 ppm); and (15) As (100 mM), FeO-NPs (0 mg/l–1),

P. vermicola (10 ppm). The salt of sodium arsenate

(Na2HAsSO4.7H2O; Sigma-Aldrich, St. Louis, MO, USA) was

used to artificially spike natural soil at various levels [i.e., 0 µM

(no As), 50 µM and 100 µM]. After adding As, the pots were

equilibrated for 2 months, with four cycles of saturation with

distilled water and air drying. Application of FeO-NPs and P.

vermicola was provided soon after the seed germination (2 weeks

after the seed sowing). The concentration of P. vermicola was

screened under the As stress and best levels were chosen by

following a previous study (Tanveer et al., 2022). The levels of

FeO-NPs (50mg/l–1 and 100mg/l–1) were selected by following the

application levels of a recent report (Manzoor et al., 2021). In

addition, (Tanveer et al., 2022) 14 different strains of PGPB were

studied, and P. vermicola was selected on the basis of 16S rRNA

gene sequencing and it showing maximum resistance against As

stress. The extracellular biosynthesis of FeO-NPs using the RNT4

strainwas carried out according to Fatemi et al. (Fatemi et al., 2018).

Specifically, the RNT4 strain was cultivated with a broth (NB)

media in a shaker incubator at 28 ± 2°C and 170 rpm for 24 h.

Afterwards, the supernatant was obtained after centrifugation at

6000 g for 10 min. For the biosynthesis of FeO-NPs, 50 ml of the

supernatant of RNT4 culture was added into an equal volume of 5-

mM ferric chloride hexahydrate (FeCl3.6H2O) solution in a 250-ml

Erlenmeyer flask. The reaction mixture was incubated under dark

condition in a shaking incubator at 28 ± 2°C and 170 rpm for 24 h.

The yielded FeO-NPs were collected using centrifugation at 10,000

g for 15 min after a color change from pale yellow to turbid brown.

Irrigation with As-free water and other intercultural operations

were performed when needed. All pots were placed in completely

randomized design, having five plants in each pot with four

replicates of each treatment. The total duration of experimental

treatments was 4 weeks under controlled conditions. All plants in

the glass house territory received natural light, with a day/night

temperature of 35/40°C and a day/night humidity of 60/70%. All

chemicals used were of analytical grade, procured from Sinopharm

Chemical Reagent Co., Ltd (Shanghai, China).
2.2 Analysis of samples and
data collection

After 4 weeks, the remaining three seedlings were uprooted

and washed gently with the help of distilled water to eliminate

the aerial dust and deposition. Hohai University laboratories

were employed for the determination of soil parameters.

Functional leaf in each treatment was picked at a rapid growth

stage during 09:00–10:30. The sampled leaves were washed with
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distilled water, immediately placed in liquid nitrogen, and stored

in a freezer at –80°C for further analysis. All of the harvested

plants were divided into two parts (i.e., roots and shoots) to

study different physio-biochemical traits. Leaves from each

treatment group were picked for chlorophyll, carotenoid,

oxidative stress, and antioxidants analysis. Root and shoot

lengths were measured straightway after the harvesting by

using measuring scale and digital weighting balance to

measure fresh biomass. Roots were uprooted and immersed in

20-mM ethylenediaminetetraacetic acid disodium salt

(Na2EDTA) for 15–20 min to remove As adhered to the root

surfaces. Then, roots were washed thrice with distilled water and,

finally, once with de-ionized water, and dried for further

analysis. The different parts of the plant (i.e., roots and shoots)

were oven-dehydrated at 65°C for 72 h for As determination,

and the total plant dry weight was also measured. Although this

experiment was conducted in pots, for the collection of organic

acids, two seedlings were transferred to the rhizoboxes, which

consist of a plastic sheet, a nylon net and wet soil (properties of

soil are given in Table S1) (Javed et al., 2013). After 48 h, plants

were taken from the rhizoboxes and the roots were washed with

redistilled water to collect the exudates from root surface. The

samples were filtered through a 0.45-mm filter (Millex-HA,

Millipore) and collected in eppendorf tubes (Greger and

Landberg, 2008). The collected samples were mixed with

sodium hydroxide (NaOH) (0.01 M) to analyze the organic

acids. However, the samples used for analysis of oxalic acid were

not treated with NaOH.
2.3 Determination of photosynthetic
pigments and gas exchange characteristics

Leaves were collected for the determination of chlorophyll

and carotenoid contents. For chlorophylls, 0.1 g of fresh leaf

sample was extracted with 8 ml of 95% acetone for 24 h at 4°C in

the dark. The absorbance was measured by a spectrophotometer

(UV-2550; Shimadzu, Kyoto, Japan) at 646.6 nm, 663.6 nm, and

450 nm. Chlorophyll content was calculated by the standard

method (Mehmood et al., 2021).

Net photosynthesis (Pn), leaf stomatal conductance (Gs),

transpiration rate (Ts), and intercellular carbon dioxide

concentration (Ci) were measured from four different plants in each

treatment group. Measurements were conducted between 11:30 and

13:30 on days with a clear sky. Rates of leaf Pn, Gs, Ts, and Ci were

measured with a LI-COR gas-exchange system (LI-6400; LI-COR

Biosciences, Lincoln, NE, USA) with a red-blue LED light source on

the leaf chamber. In the LI-COR cuvette, carbon dioxide (CO2)

concentration was set as 380 mmol/mol–1 and LED light intensity

was set at 1000 mmol m–2 s–1, which was the average saturation

intensity for photosynthesis in Spinacia oleracea (Austin, 1990).
Frontiers in Plant Science 04
2.4 Determination of oxidative
stress indicators

The degree of lipid peroxidation was evaluated as

malondialdehyde (MDA) contents. Briefly, 0.1 g of frozen

leaves were ground at 4°C in a mortar with 25 ml of 50-mM

phosphate buffer solution (pH 7.8) containing 1% polyethene

pyrrole. The homogenate was centrifuged at 10,000 × g at 4°C for

15 min. The mixtures were heated at 100°C for 15–30 min and

then quickly cooled in an ice bath. The absorbance of the

supernatant was recorded by using a spectrophotometer

(xMark™ Microplate Absorbance Spectrophotometer; Bio-

Rad, Hercules, CA, USA) at wavelengths of 532 nm, 600 nm,

and 450 nm. Lipid peroxidation was expressed as l mol g−1 by

using the formula: 6.45 (A532 – A600) – 0.56 A450. Lipid

peroxidation was measured by using a method previously

published by Heath and Parker (Heath and Packer, 1968).

To estimate the H2O2 content of plant tissues (i.e., root and

leaf), 3 ml of sample extract was mixed with 1 ml of 0.1%

titanium sulfate in 20% (v/v) H2SO4 and centrifuged at 6000 × g

for 15 min. The yellow color intensity was evaluated at 410 nm.

The H2O2 level was computed by the extinction coefficient of

0.28 mmol−1 cm−1. The contents of H2O2 were measured by the

method presented by Jana and Choudhuri (Jana and

Choudhuri, 1981).

Stress-induced electrolyte leakage (EL) of the uppermost

stretched leaves was determined by using the methodology of

Dionisio-Sese and Tobita (Dionisio-Sese and Tobita, 1998). The

leaves were cut into minor slices (5 mm in length) and placed in

test tubes of 8 ml of distilled water. The tubes were incubated

and transferred into a water bath for 2 h prior to measuring the

initial electrical conductivity (EC1). The samples were

autoclaved at 121°C for 20 min and then cooled down to 25°C

before measuring the final electrical conductivity (EC2). EL was

calculated by the following formula:

EL = (EC1=EC2)� 100
2.5 Determination of antioxidant enzyme
activities and relative gene expression

To evaluate enzyme activities, fresh leaves (0.5 g) were

homogenized in liquid nitrogen and 5 ml of 50-mmol sodium

phosphate buffer (SPB) (pH 7.0), including 0.5-mmol

ethylenediaminetetraacetic acid (ETDA) and 0.15-mol sodium

chloride. The homogenate was centrifuged at 12,000 × g for 10

min at 4°C, and the supernatant was used for measurement of

SOD and POD activities. SOD activity was assayed in 3-ml

reaction mixture, containing 50-mM SPB (pH 7), 56-mM nitro

blue tetrazolium, 1.17-mM riboflavin, 10-mM methionine, and
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100-ml enzyme extract. Finally, the sample was measured by

using a spectrophotometer (xMark™ Microplate Absorbance

Spectrophotometer; Bio-Rad). Enzyme activity was measured by

using a method by Chan and Pan, (Chen and Pan, 1996) and

expressed as U g−1 FW.

POD activity in the leaves was estimated by using the

method of Sakharov and Ardila (Sakharov and Ardila, 1999)

and by using guaiacol as the substrate. A reaction mixture (3 ml)

containing 0.05 ml of enzyme extract, 2.75 ml of 50-mM

phosphate buffer (pH 7.0), 0.1 ml of 1% H2O2, and 0.1 ml of

4% guaiacol solution was prepared. Increases in the absorbance

at 470 nm because of guaiacol oxidation was recorded for 2 min.

One unit of enzyme activity was defined as the amount of

the enzyme.

CAT activity was analyzed according to Aebi (Zainab et al.,

2021). The assay mixture (3.0 ml) comprised 100 ml of enzyme

extract, 100 ml of H2O2 (300 mM), and 2.8 ml of 50-mM

phosphate buffer with 2 mM ETDA (pH 7.0). CAT activity

was measured from the decline in absorbance at 240 nm as a

result of H2O2 loss (ϵ = 39.4 mM−1 cm−1).

APX activity was measured according to Nakano and Asada

(Nakano and Asada, 1981). The mixture containing 100 ml of
enzyme extract, 100 ml of ascorbate (7.5 mM), 100 ml of H2O2

(300 mM), and 2.7 ml of 25-mM potassium phosphate buffer

with 2-mM EDTA (pH 7.0) was used for measuring APX

activity. The oxidation pattern of ascorbate was estimated

from the variations in wavelength at 290 nm (ϵ = 2.8

mM−1 cm−1).

Quantitative real-time PCR (RT-qPCR) assay was applied to

investigate the expression levels of four stress-related genes [i.e.,

iron superoxidase dismutase (Fe-SOD), POD, CAT, and APX].

Total RNA was extracted from leaf tissue samples using RNeasy

Plant Mini kits (Qiagen, Manchester, UK). Contaminating DNA

was then removed and first-strand copy DNAs were prepared

using reverse transcription kits (Qiagen). RT-qPCR analysis was

conducted in accordance with the protocol of the QuantiTect

SYBR Green PCR kit (Qiagen). Reaction volume and PCR

amplification conditions were adjusted as mentioned by El-

Esawi et al. (El-Esawi et al., 2020). The gene amplifications of

Sirhindi et al. (Sirhindi et al., 2016) are given in Table S2.
2.6 Determination of non-
enzymatic antioxidants, sugars,
and proline contents

Plant ethanol extracts were prepared for the determination

of non-enzymatic antioxidants and some key osmolytes. For this

purpose, 50 mg of dry plant material was homogenized with 10

mL of ethanol (80%) and filtered through Whatman No. 41 filter

paper. The residue was re-extracted with ethanol, and the two

extracts were pooled together to a final volume of 20 ml. The
Frontiers in Plant Science 05
determination of flavonoids (Pękal and Pyrzynska, 2014),

phenolics (Ali et al., 2022c), ascorbic acid (Azuma et al., 1999),

anthocyanin (Lewis et al., 1998), and total sugars (Dubois et al.,

1956) was performed from the extracts.

Fresh leaf material (0.1 g) was mixed thoroughly in 5 ml of

aqueous sulphosalicylic acid (3%). The mixture was centrifuged

at 10000 × g for 15 min, and an aliquot (1 ml) was poured into a

test tube having 1 ml of acidic ninhydrin and 1 ml of glacial

acetic acid. The reaction mixture was first heated at 100°C for 10

min and then cooled in an ice bath. The reaction mixture was

extracted with 4 ml of toluene, and test tubes were vortexed for

20 s and cooled. Thereafter, the light absorbance at 520 nm was

measured by using a UV-VIS spectrophotometer (Hitachi U-

2910, Tokyo, Japan). The free proline content was determined

on the basis of the standard curve at 520 nm absorbance and

expressed as µmol (g FW)−1 (Bates et al., 1973).
2.7 Determination of nutrient content

For nutrient analysis, plant roots and shoots were washed twice

in redistilled water, dipped in 20 mM of EDTA for 3 s, and then,

again, washed with deionized water twice for the removal of

adsorbed metal on the plant surface. The washed samples were

then oven-dried for 24 h at 105°C. The dried roots and shoots were

digested by using a wet digestion method in nitric acid (HNO3) :

perchloric acid (HclO4) (7 : 3 V/V) until clear samples were

obtained. Each sample was filtered and diluted with redistilled

water up to 50 ml. The root and shoot contents of iron, calcium,

magnesium, and phosphorus were analyzed by using atomic

absorption spectrophotometer (AAS) model Agilent 240FS-AA.
2.8 Determination of root exudates
analysis and arsenic concentration

To determine the concentration of organic acids, freeze-

dried exudates were mixed with ethanol (80%), and 20 ml of the
solutions were injected into the C18 column (Brownlee

Analytical C-183 µm; length 150 mm × 4.6 mm2, USA).

Quantitative analysis of organic acids in root exudates was

executed with high-performance liquid chromatography

(HPLC), having a Flexer FX-10 UHPLC isocratic pump

(PerkinElmer, Waltham, MA, USA). The mobile phase used in

HPLC comprised an acidic solution of aceto-nitrile, containing

aceto-nitrile : H2SO4 : acetic acid in ratios of 15 : 4 : 1,

respectively, and pH of 4.9. The samples were analyzed at a

flow rate of 1.0 ml min−1 for a time period of 10 min. The inner

temperature of the column was fixed at 45°C, and quantification

of organic acids was carried out at 214 nm wavelength with the

help of a detector (UV-VIS Series 200, USA), as described by

UdDin et al. (Uddin et al., 2015). Freeze-dried samples were
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dissolved in redistilled water, and the pH of the exudates was

recorded with LL micro-pH glass electrode by using a pH meter

(ISTEK Model 4005–08007, Seoul, South Korea).

For the determination of total As concentration in shoots

and roots, samples were oven-dried at 65°C for 24 h and ashed in

a muffle furnace at 550°C for 20 h. Then, the ash was incubated

with 31% (m/v) HNO3 and 17.5% (v/v) H2O2 at 70°C for about 2

h, and added to distilled water. The As concentration in the

digest was determined using an AAS.
2.9 Transmission electron microscopy

For transmission electron microscopy (TEM), leaf samples

were collected and placed in liquid nitrogen. Small sections of

the leaves (1–3 mm in length) were fixed in 4% glutaraldehyde

(v/v) in 0.2 mol/l of SPB (pH 7.2) for 6–8 h, post-fixed in 1%

osmium tetroxide for 1 h, and then in 0.2-mol/l SPB (pH 7.2) for

1–2 h. Samples were dehydrated in a graded ethanol series (50%,

60%, 70%, 80%, 90%, 95%, and 100%) followed by acetone,

filtered, and embedded in Spurr resin. Ultra-thin sections (80

nm) were prepared and mounted on copper grids for

observation under a transmission electron microscope (JEOL

TEM-1200EX) at an accelerating voltage of 60.0 kV or 80.0 kV.
2.10 Statistical analysis

The normality of data was analyzed using IBM SPSS

software (version 21.0. IBM Corporation, Armonk, NY, USA)

through a multivariate post-hoc test, followed by a Duncan’s test

to determine the interaction among significant values. Thus, the

differences between treatments were determined by using

ANOVA, the least significant difference test (p< 0.05) was

used for multiple comparisons between treatment means and,

where significant, Tukey’s honestly significant difference post-

hoc test was used to compare the multiple comparisons of

means. The analysis showed that the data in this study were

almost normally distributed. The graphical presentation was

carried out using Origin-Pro 2017 (OriginLab Corporation,

Northampton, UK).
3 Results

3.1 Ameliorative effects of iron oxide
nanoparticles and Providencia vermicola
on growth and photosynthetic efficiency
under arsenic stress

In the present study, various growth and photosynthetic

parameters were also measured in T. ammi seedlings grown
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under the different levels of As [i.e., 0 µM (no As), 50 µM, and

100 µM] in the soil, which was also supplemented with the

different levels of P. vermicola (i.e., 5 ppm and 10 ppm) and FeO-

NPs (i.e., 50 mg/l−1 and 100 mg/l−1). The data regarding shoot

length, root length, shoot fresh weight, root fresh weight, shoot

dry weight, and root dry weight are presented in Figure 1, and

the data regarding the content of chlorophyll-a, chlorophyll-b,

total chlorophyll, carotenoid content, net photosynthesis,

stomatal conductance, transpiration rate, and intercellular CO2

are presented in Figure 2. According to the results, it was noticed

that the increasing levels of As in the soil significantly (p< 0.05)

decreased plant growth and biomass and photosynthetic

pigments in T. ammi seedlings without the application of P.

vermicola and FeO-NPs (Figures 1, 2). According to the given

results, increasing levels of As (i.e., 50 µM and 100 µM) in the

soil significantly (p< 0.05) decreased shoot length, root length,

shoot fresh weight, root fresh weight, shoot dry weight, root dry

weight, chlorophyll-a, chlorophyll-b, total chlorophyll,

carotenoid content, net photosynthesis, stomatal conductance,

and transpiration rate in T. ammi seedlings, compared with the

plants grown without the treatment of As in the soil. The

exogenous application of P. vermicola and FeO-NPs was also

performed to measure various growth (Figure 1) and

photosynthetic attributes (Figure 2) in T. ammi seedlings

under the elevating levels of As in the soil. The application of

P. vermicola and FeO-NPs non-significantly increased shoot

length, root length, shoot fresh weight, root fresh weight,

shoot dry weight, root dry weight, chlorophyll-a, chlorophyll-

b, total chlorophyll, carotenoid content, net photosynthesis,

stomatal conductance, and transpiration rate at all levels of As

in the soil, compared with the plants that were grown without

the application of P. vermicola and FeO-NPs. Our results also

showed that the FeO-NPs was more severe and showed better

results when we compared with PGPB (P. vermicola) under the

same treatment of As in the soil. We also noticed that As toxicity

did not significantly affect the intercellular CO2 levels, and that

application of P. vermicola and FeO-NPs did not significantly

influence the intercellular CO2 levels in T. ammi seedlings under

all levels of As in the soil (Figure 2H).
3.2 Ameliorative effects of iron oxide
nanoparticles and Providencia vermicola
on oxidative stress and antioxidant
capacity under arsenic stress

MDA content, H2O2 initiation, and EL (%) increased in the

roots and shoots of T. ammi seedlings with the increasing

concentrations of As (i.e., 50 µM and 100 µM) in the soil

medium without P. vermicola and FeO-NPs when compared

with plants grown in 0 µM of As in the soil. The data regarding

oxidative stress indicators in roots and shoots of T. ammi seedlings
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are presented in Figure 3. It was observed that the contents (%) of

MDA, H2O2, and EL were increased in the roots and also in the

shoots grown in 100 µM of As without the application of P.

vermicola and FeO-NPs when compared with plants grown in 0

µM of As in the soil without the application of P. vermicola and

FeO-NPs. Application of P. vermicola and FeO-NPs significantly

(p< 0.05) decreased the contents (%) of MDA, H2O2, and EL in the

roots and also in the shoots of the plants grownwithAs level of 100

µM under P. vermicola and FeO-NPs application when compared

with plants grown with 100 µM of chromium (Cr) without the

application of P. vermicola and FeO-NPs.

The activities of various antioxidant enzymes, such as SOD,

POD, CAT, and APX, in the roots and shoots of T. ammi

seedlings and their specific gene expression (i.e., Fe-SOD, POD,

CAT, and APX), and the content of non-enzymatic compounds,

such as phenolic, flavonoid, ascorbic acid, and anthocyanin, were

also measured in the present study. The data regarding the

activities of enzymatic antioxidants (SOD, POD, CAT, and
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APX) are presented in Figure 4, and their specific gene

expression are presented in Figure 5. The results regarding the

content of non-enzymatic antioxidants (phenolic, flavonoid,

ascorbic acid, and anthocyanin) are presented in Figure 6. The

results showed that the activities of enzymatic antioxidants (SOD,

POD, CAT, and APX) and their specific gene expression and also

the contents of non-enzymatic antioxidants (phenolic, flavonoid,

ascorbic acid, and anthocyanin) were increased up to an As level

of 50 µM in the soil, but decreased gradually after an As level of

100 µM in the soil, compared with the control treatment. The

results also showed that the addition of P. vermicola and FeO-NPs

non-significantly increased the activities of enzymatic

antioxidants (SOD, POD, CAT, and APX), their specific gene

expression, and the content of non-enzymatic antioxidants

(phenolic, flavonoid, ascorbic acid, and anthocyanin) at all levels

of As [i.e., 0 µM (no As), 50 µM, and 100 µM] in the soil,

compared with plants that were grown in the soil not

supplemented with P. vermicola and FeO-NPs.
A B

C D

E F

FIGURE 1

Effect of combined application of various levels of iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on root length (A), shoot length (B), root fresh weight (C), shoot fresh
weight (D), root dry weight (E), and shoot dry weight (F) of Ajwain (Trachyspermum ammi seedlings) grown under various stress levels of arsenic
(i.e., 0 mM, 50 mM, and 100 mM). Values are demonstrated as means of four replicates, along with standard deviation (SD; n = 4). Two-way
ANOVA was performed and means differences were tested by Tukey’s highly significant difference post-hoc test (p< 0.05). Different lowercase
letters on the error bars indicate significant difference between the treatments.
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3.3 Ameliorative effects of iron oxide
nanoparticles and Providencia vermicola
on sugar and nutrient uptake under
arsenic stress

The content of soluble sugar, reducing sugar, non-reducing

sugar, proline, and various nutrients, such as calcium (Ca2+),

magnesium (Mg2+), iron (Fe2+), and phosphorus (P), were also

measured in the roots and shoots of T. ammi seedlings in the

present study under the different levels of As [i.e., 0 µM (no As),

50 µM, and 100 µM] in the soil that was also supplemented with

P. vermicola and FeO-NPs. The data regarding the content of

soluble sugar, reducing sugar, non-reducing sugar, and proline

are presented in Figure 6, and the data regarding the content of

Ca2+, Mg2+, Fe2+, and P in the roots and shoots of the plants are
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presented in Figure 7. The results of the present study show that

the increasing levels of As in the soil significantly (p< 0.05)

decreased the content of nutrients (Ca2+, Mg2+, Fe2+, and P) in

the roots and shoots of the plants, and also decreased the content

of sugars (soluble sugars, reducing sugars, and non-reducing

sugars), compared with plants that were grown in soil that was

not treated with As. However, the content of proline was

increased by increasing the levels of As in the soil, when

compared with plants not treated with As (Figure 5). The

content of various sugars, phenolic acids, and nutrients in the

roots and shoots of the plants was determined after the

application of P. vermicola and FeO-NPs. The results

suggested that the application of P. vermicola and FeO-NPs

non-significantly increased the sugar content (soluble sugars,

reducing sugars, and non-reducing sugars) and proline content
A B

C D

E F

G H

FIGURE 2

Effect of combined application of various levels of iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on chlorophyll-a content (A), chlorophyll-b content (B), total chlorophyll
content (C), carotenoid content (D), net photosynthesis, (E) stomatal conductance (F), transpiration rate (G), and intercellular CO2 (H) of Ajwain
(Trachyspermum ammi seedlings) grown under various stress levels of arsenic (i.e., 0 mM, 50 mM, and 100 mM). Values are demonstrated as
means of four replicates along with standard deviation (SD; n = 4). Two-way ANOVA was performed and means differences were tested by
Tukey’s highly significant difference post-hoc test (p< 0.05). Different lowercase letters on the error bars indicate significant difference between
the treatments.
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in the shoots, and significantly increased the content of nutrients

(Ca2+, Mg2+, Fe2+, and P) in the roots and shoots of the plants,

compared with plants grown without the treatment of

P. vermicola and FeO-NPs at all levels of As in the soil.
3.4 Ameliorative effects of iron oxide
nanoparticles and Providencia vermicola
on organic acids, transmission electron
microscopy, and arsenic uptake under
arsenic stress

The content of fumaric acid, formic acid, acetic acid, citric

acid, malic acid, and oxalic acid in the roots, and As

concentration in the roots and shoots, of T. ammi seedlings
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grown under toxic levels of As in the soil, with or without the

application of P. vermicola and FeO-NPs, are presented in

Figure 8. According to the given results, we have noticed that

elevated concentrations of As in the soil (i.e., 50 µM and 100 µM)

induced a significant (p< 0.05) increase in the content of fumaric

acid, formic acid, acetic acid, citric acid, malic acid, and oxalic

acid in the roots, and also As concentration in the roots and

shoots, of T. ammi seedlings, compared with plants that were

grown in the soil treated with 0 µM of As. The results also

illustrated that the application of P. vermicola and FeO-NPs

decreased the content of fumaric acid, formic acid, acetic acid,

citric acid, malic acid, and oxalic acid in the roots, and also As

concentration in the roots and shoots, of T. ammi seedlings,

compared with plants that were grown without the exogenous

application of P. vermicola and FeO-NPs in the soil.
A B

C D

E F

FIGURE 3

Effect of combined application of various levels of iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on malondialdehyde (MDA) contents in the roots (A), MDA contents in the
leaves (B), hydrogen peroxide (H2O2) contents in the roots (C), H2O2 contents in the leaves (D), EL percentage in the roots (E), and EL
percentage in the leaves (F) of Ajwain (Trachyspermum ammi seedlings) grown under various stress levels of arsenic (i.e., 0 mM, 50 mM, and 100
mM). Values are demonstrated as means of four replicates along with standard deviation (SD; n = 4). Two-way ANOVA was performed and
means differences were tested by Tukey’s highly significant difference post-hoc test (p< 0.05). Different lowercase letters on the error bars
indicate significant difference between the treatments.
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The As toxicity profoundly influenced the double

membrane-bound organelles in the cells of T. ammi seedlings

(Figure 9). The ultra-structure of the chlorophyll and other

membrane-bound organelles of T. ammi seedlings were

significantly affected by As toxicity in the soil. The TEM of the

leaf cells of T. ammi seedlings showed that the progression in the

exogenous As levels substantially destructed the ultra-structure

of membrane-bound organelles. For instance, organelles, such as

chloroplast, starch grain, food vacuole, mitochondria, nucleus,

peroxisomes, and plastoglobuli, were clearly visible under 0 mM
of As and combined application of FeO-NPs and P. vermicola.

However, when increasing the As concentration in the soil, the

cellular organelles in the plasma of T. ammi seedlings were

destroyed considerably and ultimately disappeared by elevating

levels of As in the soil (Figure 9).
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4 Discussion

Heavy metal contamination of agricultural lands has become

an emerging environmental issue worldwide (Saleem et al.,

2020b; Saleem et al., 2020f; Afzal et al., 2021; Amna Ali et al.,

2021; Farooq et al., 2022). This problem is becoming a serious

threat to humans and animals because of the entry of heavy

metals in the food web (Salam et al., 2022; Tariq et al., 2022;

Ullah et al., 2022). High concentrations of heavy metals

significantly reduce plant productivity and crop yields (Javed

et al., 2020; Rana et al., 2020; Saleem et al., 2020c; Alsafran et al.,

2022a). Arsenite (+3) and arsenate (+5) are toxic anions of As that

are readily absorbed by plants (Shahid et al., 2019) because both

arsenate and phosphate share the same transport pathway: As

(V) interferes with metabolic processes, and As (III) reacts with
A B

C D

E F

G H

FIGURE 4

Effect of combined application of various levels of iron oxide nanoparticle (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on superoxide dismutase (SOD) activity in the roots (A), SOD activity in the
shoots (B), peroxidase (POD) activity in the roots (C), POD activity in the shoots (D) catalase (CAT) activity in the roots (E), CAT activity in the
shoots (F), ascorbate peroxidase (APX) activity in the roots, (G) and APX activity in the shoots (H) of Ajwain (Trachyspermum ammi seedlings)
grown under various stress levels of arsenic (i.e., 0 mM, 50 mM, and 100 mM). Values are demonstrated as means of four replicates along with
standard deviation (SD; n = 4). Two-way ANOVA was performed and means differences were tested by Tukey’s highly significant difference
post-hoc test (p< 0.05). Different lowercase letters on the error bars indicate significant difference between the treatments.
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sulfhydryl groups (−SH) and tissue proteins, thereby disturbing

the enzymatic activities (Irshad et al., 2020; Faizan et al., 2021;

Faryal et al., 2022). As has no known essential function in plant

growth, and generally causes damaging effects to the plant

growth and photosynthetic pigments. Similar results were

observed in the present study, which showed that increasing

levels of As in the soil (i.e., 50 µM and 100 µM) decreased plant

growth and biomass (Figure 1), and also decreased the

photosynthetic pigments and gas exchange characteristics

(Figure 2). It is well known that As is non-essential for plants

and causes toxicity even at low and moderate concentrations

(Bhat et al., 2022; Saleem et al., 2022; Tanveer et al., 2022). As has

been described to decrease the chlorophyll biosynthesis in

plants, and it has been well-identified that As causes

chlorophyll degradation, growth inhibition, nutrient depletion,

photosynthesis activity diminution, and membrane

disintegration (Liu et al., 2018; Faryal et al., 2022). As also

affects the membrane system of chloroplasts, chlorophyll

fluorescence, and photosynthetic pigments, thereby reducing

photosynthetic activity (Mushtaq et al., 2020; Bhat et al., 2022).

Heavy metals are considered a primary source of injury to the

cell membrane, frequently attributing to lipid peroxidation. As a
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result of metal accumulation, a large number of active free oxygen

radicals are formed, which may be the main cause of cell

membrane lipid peroxidation, and may also harm the

functioning and structure of the cell membrane (Kamran et al.,

2019; Rehman et al., 2019; Afridi et al., 2022a; Afridi et al., 2022b).

Excessive ROS production causes oxidative stress, as reported for

many crops under heavy metals treatment, and is likely to be

commenced by molecular oxygen excitation (O2) to generate

singlet oxygen or by electron transfer to O2 and genesis of free

radicals (i.e., O2− and OH−) (Mfarrej et al., 2021; Bibi et al., 2024).

Plant response to oxidative stress also depends on plant species and

cultivars, and this ROS production in plants is removed by a variety

of antioxidant enzymes, such as SOD, POD, CAT, and APX

(Murtaza et al., 2021; Akhtar et al., 2022; Ali et al., 2022a).

However, the reduction in antioxidants under severe levels of As

in soil might be due to alterations in gene expression and function

of various proteins in plant tissues (Figures 4, 5). Plants produce a

variety of secondary metabolites, such as proline, flavonoids, and

phenolics, that improve tolerance against metal toxicity (Saadullah

et al., 2022; Wahab et al., 2022). Previously, an increase in

antioxidant activities under elevated levels of As in the soil/

medium was found in Triticum aestivum (Alamri et al., 2022),
A B

C D

FIGURE 5

Effect of combined application of various levels of iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on iron superoxidase dismutase (Fe-SOD) (A), peroxidase (POD) (B),
catalase (CAT) (C), and ascorbate peroxidase (APX) (D) of Ajwain (Trachyspermum ammi seedlings) grown under various stress levels of arsenic
(i.e., 0 mM, 50 mM, and 100 mM). Values are demonstrated as means of four replicates along with standard deviation (SD; n = 4). Two-way
ANOVA was performed and means differences were tested by Tukey’s highly significant difference post-hoc test (p< 0.05). Different lowercase
letters on the error bars indicate significant difference between the treatments.
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brinjal (Alamri et al., 2021), Brassica napus (Farooq et al., 2015),

and Myracrodruon urundeuva (Gomes et al., 2014).

Furthermore, As has been shown to change the nutrient

balance and their assimilation, protein metabolism, and

oxidative phosphorylation (Mondal et al., 2021; Alsafran et al.,

2022b). Excess As decreased the Ca2+, Mg2+, Fe2+, and P in the

roots and shoots of the numerous plant species, which may cause

ions deficiency in plants (Figure 7). Roots exclude especially

organic acids, which are regarded as active ligands under the

excess concentration of metals in the soil. Acidification of

mucilage after uptake of As is likely due to the release of

protons when plant roots release more cations than anions to

maintain their charge balance (Javed et al., 2020; Sayadi et al.,

2022). The exudation of organic acids in the roots of T. ammi

seedlings (Figure 8), accelerating metal transport from roots to

the aboveground parts, is possibly due to the formation of metal-

chelated ions, as suggested by Javed et al. (Javed et al., 2017)

when they cultivated Zea mays in Cd-polluted soil. However,
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using TEM technology, it was revealed that excess As mainly

affected many membrane-bound organelles of T. ammi

seedlings (Figure 9).

As compared with their metal oxides NPs, the FeO-NPs

are very eco-friendly, non-invasive, low cost, and a safer

option to use for various purposes, especially in alleviating

the heavy metal-induced oxidative stresses (Mukherjee et al.,

2014; Mushtaq et al., 2020). Furthermore, it is reported that

the FeO-NPs enhance the nano-fertilizers and nano-materials

in the soil that help the plants in the uptake of essential

nutrients from the soil (Nair and Chung, 2015; Tanveer et al.,

2022). Recently, it was shown that the FeO-NPs could

minimize the oxidative stresses in Cd-stressed Triticum

aestivum (Rizwan et al., 2019) and As-stressed Oryza sativa

(Rai et al., 2022). On exposure to different levels of FeO-NPs,

the plants experienced lower metal uptake and, thus, resulted

in lower cellular damage (Hussain et al., 2019; Mushtaq et al.,

2020). A study on various parts of the plants demonstrated
A B
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FIGURE 6

Effect of combined application of various levels of iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on phenolic contents (A), flavonoid contents (B), ascorbic acid contents (C),
anthocyanin contents (D), soluble sugar contents (E), reducing sugar contents (F), non-reducing sugar contents (G), and proline contents (H) of
Ajwain (Trachyspermum ammi seedlings) grown under various stress levels of arsenic (i.e., 0 mM, 50 mM, and 100 mM). Values are demonstrated
as means of four replicates along with standard deviation (SD; n = 4). Two-way ANOVA was performed and means differences were tested by
Tukey’s highly significant difference post-hoc test (p< 0.05). Different lowercase letters on the error bars indicate significant difference between
the treatments.
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that the exogenous application of nano-iron (II, III) oxide (200

mg/l−1) alleviated the Pb-, Zn-, Cd-, and Cu-induced toxic

effects by stimulating the various antioxidant activities that

resulted in reduced metal uptake (Konate et al., 2017). In a

hydroponic study, the exogenous application of nano-iron (II)

oxide (50 ppm) to mung bean (Vigna radiate L.) induced the

increment in growth and biomass, indicating significant roles

of the nano-particles in improving plant growth under normal

and various stress conditions (Dhoke et al., 2013). Our

outcomes are corroborated with the aforementioned studies,

as exogenous application of FeO-NPs improved the plant

growth (Figure 1), photosynthetic characteristics (enzymatic

and non-enzymatic antioxidants), gene expression, sugars,

and essential nutrients, and maintained the ultra-structure

of the membrane-bound organelles by considerably

scavenging the ROS levels, organic acid in the roots, and

As accumulation.
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Like NPs, PGPB have been identified to cope with various

heavy metal-induced toxicity by improving plant growth and

development in metal-contaminated soil (Kaushal and Wani,

2016). Generally, it was noticed that the PGPB are involved in

the chlorophyll formation, protein biosynthesis, activating the

antioxidant potential, up-regulating the production of osmolytes,

root formation, extend leaf area, and greater nutrients uptake, and,

therefore, increases crop productivity (Kasim et al., 2013; Danish

et al., 2019; Mondal et al., 2021). Various PGPB, such as

Pseudomonas, Bacillus, Streptomyces and Agrobacterium, are

commercialized and easily available in the market, and produce

antibiotics that enable plants to resist any pathogen attack (Hussain

et al., 2015). Earlier, the same strains of P. vermicola were used by

Islam et al. (Islam et al., 2016) in lentil plants. Islam et al. noticed

that the P. vermicola exhibited multiple growth-promoting

characteristics by improving photosynthetic machinery and

increasing plant yield, which helped the lentil plants to mitigate
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FIGURE 7

Effect of combined application of various levels of iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on iron contents in the roots (A), iron contents in the shoots (B),
magnesium contents in the roots (C), magnesium contents in the shoots (D), calcium contents in the roots (E), calcium contents in the shoots
(F), phosphorus contents in the roots (G), and phosphorus contents in the shoots (H) of Ajwain (Trachyspermum ammi seedlings) grown under
various stress levels of arsenic (0 i.e., 0 mM, 50 mM, and 100 mM). Values are demonstrated as means of four replicates along with standard
deviation (SD; n = 4). Two-way ANOVA was performed and means differences were tested by Tukey’s highly significant difference post-hoc test
(p< 0.05). Different lowercase letters on the error bars indicate significant difference between the treatments.
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the toxic effects of Cu-induced oxidative stress. The same strains of

P. vermicola coupled with NPs were also used by Tanveer et al.

(Tanveer et al., 2022). Tanveer et al. found that the application of

(10-ppm) P. vermicola considerably enhanced the proline content,

relative water content, sugar protein, and indole acetic acid in As-

stressed Luffa acutangula. The authors further noticed that the P.

vermicola substantially decreased the relative EL and As

concentration in Luffa acutangula and, thus, improved the

overall growth of the plants. P. vermicola also has the ability to

produce siderophores and the ability to uptake essential ions, such

as P, K and, Ca, to produce efficient bioinoculants, which were

revealed under the biochemical analysis of P. vermicola (Hussain

et al., 2015). Soil inoculation with P. vermicola enhanced the

activities of enzymatic and non-enzymatic antioxidant

compounds by producing defensive enzymes, such as glutathione

reductase, which captures the extra ROS produced under metal

toxicity (Zuo et al., 2018). Like the aforementioned reports, our

study revealed that the use of PGPB (P. vermicola) coupled with
Frontiers in Plant Science 14
FeO-NPs remarkably improved the nutrient uptake and efficacy of

the photosynthetic machinery that assisted the T. ammi seedlings

in maintaining their cellular structure under As-induced oxidative

stress, thus, potentially activating the antioxidant potential and

their respective transcript levels, which ultimately led to the

improved plant growth. Similar results were obtained by

Ahemad, Hofmann et al., and Tanveer et al. (Ahemad, 2019;

Hofmann et al., 2020; Tanveer et al., 2022) under different

environmental conditions, signifying the fact that the effects of

various PGPB and NPs mainly depend on the plant species, soil

composition, method of application, and amount and length of the

treatments. These results further open the doors for future

scientists to focus on the aforementioned factors to gain deeper

insights into the role of PGPB and NPs in ameliorating the

oxidative damage caused by heavy metal-induced toxicity. The

schematic presentation of mechanistic role of P. vermicola and

FeO-NPs alleviating the As toxicity in T. ammi seedlings is

presented in Figure 10.
A B

C D

E F

G H

FIGURE 8

Effect of combined application of various levels of iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-
promoting bacteria (Providencia vermicola) (i.e., 5 ppm and 10 ppm) on oxalic acid contents (A), malic acid contents (B), citric acid contents (C),
acetic acid contents (D), formic acid contents (E), fumaric acid contents (F), in the roots and As contents in the roots (G), and As contents in the
shoots (H) of Ajwain (Trachyspermum ammi seedlings) grown under various stress levels of arsenic (i.e., 0 mM, 50 mM, and 100 mM). Values are
demonstrated as means of four replicates along with standard deviation (SD; n = 4). Two-way ANOVA was performed and means differences
were tested by Tukey’s highly significant difference post-hoc test (p< 0.05). Different lowercase letters on the error bars indicate significant
difference between the treatments.
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FIGURE 9

Transmission electron microscopy (TEM) photos of Ajwain (Trachyspermum ammi seedlings) grown under various stress levels of As (i.e., 0 mM,
50 mM, and 100 mM). Different lowercase abbreviations in the TEM photos are presented as: C, chloroplast; CW, cell wall; M, mitochondria; FV,
food vacuole; SG, starch grain; Po, peroxisome; and Pl, plastoglobuli. Different uppercase abbreviations are used for the various treatments of
iron oxide nanoparticles (FeO-NPs) (i.e., 50 mg/l−1 and 100 mg/l−1) and plant growth-promoting bacteria [Providencia vermicola (P. vermicola)]
(i.e., 5 ppm and 10 ppm) grown under various stress levels of As (i.e., 0 mM, 50 mM, and 100 mM). For example: (A) FeO-NPs 0 mg/l−1, P.
vermicola 0 ppm, and As concentration 0 mM; (B) FeO-NPs 50 mg/l−1, P. vermicola 0 ppm, and As concentration 0 mM; (C) FeO-NPs 100 mg/
l−1, P. vermicola 0 ppm, and As concentration 0 mM; (D) FeO-NPs 0 mg/l−1, P. vermicola 5 ppm, and As concentration 0 mM; (E) FeO-NPs 0 mg/
l−1, P. vermicola 10 ppm, and As concentration 0 mM; (F) FeO-NPs 0 mg/l−1, P. vermicola 0 ppm, and As concentration 50 mM; (G) FeO-NPs 50
mg/l−1, P. vermicola 0 ppm, and As concentration 50 mM; (H) FeO-NPs 100 mg/l−1, P. vermicola 0 ppm, and As concentration 50 mM; (I) FeO-
NPs 0 mg/l−1, P. vermicola 5 ppm, and As concentration 50 mM; (J) FeO-NPs 0 mg/l−1, P. vermicola 10 ppm, and As concentration 50 mM;
(K) FeO-NPs 0 mg/l−1, P. vermicola 0 ppm, and As concentration 100 mM; (L) FeO-NPs 50 mg/l−1, P. vermicola 0 ppm, and As concentration
100 mM; (M) FeO-NPs 100 mg/l−1, P. vermicola 0 ppm, and As concentration 100 mM; (N) FeO-NPs 0 mg/l−1, P. vermicola 5 ppm, and As
concentration 100 mM; and (O) FeO-NPs 0 mg/l−1, P. vermicola 10 ppm, and As concentration 100 mM.
FIGURE 10

Schematic presentation of the findings from this study under the application of Providencia vermicola (P. vermicola) and iron oxide
nanoparticles (FeO-NPs) in arsenic (As)-stressed Ajwain [Trachyspermum ammi (T. ammi)] seedlings grown under different levels of As stress
(i.e., 50 mM and 100 mM) in sandy loam soil. The figure shows As sources in the natural soil and its toxic effects on the plants. The figure also
shows that As toxicity can be overcome by the application of P. vermicola and FeO-NPs, which decreased oxidative stress in membrane-bound
organelles by decreasing As content in various parts of the plants. Overall, this scheme presents the complete description of this experiment
and the important findings that we have evaluated from the application of P. vermicola and FeO-NPs in As-stressed Ajwain (T. ammi) seedlings.
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5 Conclusion

On the basis of these findings, it can be concluded that the

negative impact of As toxicity can be overcome by the external

application of P. vermicola and FeO-NPs. Our results depict that

As toxicity induced severe metal toxicity in T. ammi seedlings by

increasing the generation of ROS in the form of oxidative stress,

and also increased the concentration of As in the roots and

shoots of the plants. Furthermore, As toxicity also increased

organic acids exudation and imbalance the nutritional status of

the plants and destroy the ultra-structure of the plants, which

ultimately decrease plant growth and yield and photosynthetic

efficiency. Hence, As toxicity was eliminated by the application of

P. vermicola and FeO-NPs, which also decreased the As

concentration in the plant tissues, degenerated ROS, induced

ultra-structure alterations and organic acids exudation, and

increased the activities of antioxidants and essential nutrients

in the plants. Therefore, long-term field studies should be

executed to draw parallels among plants/crops root exudations,

metal stress, Fe fertigation regimes, nutrients mobility patterns,

and plant growth to gain insights into underlying mechanisms.
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