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Towards greenhouse cultivation
of Artemisia annua: The
application of LEDs in regulating
plant growth and secondary
metabolism

Ningyi Zhang1*†, Haohong Yang1, Tianqi Han1, Hyoung Seok Kim2

and Leo F. M. Marcelis1*

1Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University,
Wageningen, Netherlands, 2Smart Farm Convergence Research Center, Korea Institute of Science and
Technology (KIST), Gangneung, Republic of Korea
Artemisinin is a sesquiterpene lactone produced in glandular trichomes of

Artemisia annua, and is extensively used in the treatment of malaria. Growth and

secondary metabolism of A. annua are strongly regulated by environmental

conditions, causing unstable supply and quality of raw materials from field

grown plants. This study aimed to bring A. annua into greenhouse cultivation

and to increase artemisinin production by manipulating greenhouse light

environment using LEDs. A. annua plants were grown in a greenhouse

compartment for five weeks in vegetative stage with either supplemental

photosynthetically active radiation (PAR) (blue, green, red or white) or

supplemental radiation outside PAR wavelength (far-red, UV-B or both). The

colour of supplemental PAR hardly affected plant morphology and biomass,

except that supplemental green decreased plant biomass by 15% (both fresh and

dry mass) compared to supplemental white. Supplemental far-red increased final

plant height by 23% whereas it decreased leaf area, plant fresh and dry weight by

30%, 17% and 7%, respectively, compared to the treatment without supplemental

radiation. Supplemental UV-B decreased plant leaf area and dry weight (both by

7%). Interestingly, supplemental green and UV-B increased leaf glandular trichome

density by 11% and 9%, respectively. However, concentrations of artemisinin,

arteannuin B, dihydroartemisinic acid and artemisinic acid only exhibited

marginal differences between the light treatments. There were no interactive

effects of far-red and UV-B on plant biomass, morphology, trichome density and

secondary metabolite concentrations. Our results illustrate the potential of

applying light treatments in greenhouse production of A. annua to increase

trichome density in vegetative stage. However, the trade-off between light

effects on plant growth and trichome initiation needs to be considered.

Moreover, the underlying mechanisms of light spectrum regulation on

artemisinin biosynthesis need further clarification to enhance artemisinin yield in

greenhouse production of A. annua.
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1 Introduction

Artemisinin is a sesquiterpene lactone produced in glandular

trichomes of Artemisia annua, and is widely used in anti-malaria

therapeutics (Greenwood and Mutabingwa, 2002). Artemisinin and

its derivates are also found to be effective in treatments of several

cancers and inflammatory and viral diseases (Efferth, 2007; Efferth

et al., 2008; Ho et al., 2014), and may also be used in treatment at the

early stage of mild-moderate COVID-19 (review in Uckun et al.,

2021). Currently, plant material is the most important and almost the

only source for extracting artemisinin (Ferreira et al., 2018; Shen et al.,

2018). Given the low artemisinin content in A. annua plants (0.01% to

1%, on dry weight basis, Liu et al., 2006), many studies focused on

elucidating the artemisinin biosynthesis pathway and the mechanisms

underlying the transcriptional regulations of the genes involved in

this pathway (review in Hassani et al., 2020). Recently, A. annua

transgenic lines were reported to have high artemisinin content up to

3.2% of dry weight (Shen et al., 2018). Alternatively, artemisinin can

also be produced using semi-synthetic approach (e.g. yeast), or by

other crops engineered with genes involved in artemisinin

biosynthesis. However, the semi-synthetic approach via yeast is

only able to produce artemisinic acid, which needs to be further

converted to artemisinin, resulting in a high cost for producing

artemisinin via yeast (Peplow, 2016). The artemisinin content in

transgenic plants of other species (e.g. tobacco) is even lower than

artemisinin content in A. annua plants (Farhi et al., 2011). Moreover,

plant-based delivery of artemisinin (e.g. using dried leaves or plants,

or as a tea infusion) is more effective than using a comparable dose of

pure artemisinin and can overcome resistance to pure artemisinin

(Suberu et al., 2013; Elfawal et al., 2015; Daddy et al., 2017). Therefore,

the demand for A. annua plant materials is rather high.

A. annua plants are generally cultivated in the field or directly

collected from the wild (Ferreira et al., 2005). The environmental

fluctuations (e.g light, temperature, water and nutrient levels) in the

field strongly affect plant growth and artemisinin biosynthesis in A.

annua. For example, the seasonal variation (during summer and

autumn) of artemisinin content in field-grown plants fluctuates

between 0.2% to 0.9% (Ferreira et al., 2018). Seasonal variations in

plant growth and artemisinin content cause problems such as

unstable supply of raw plant materials, unstable quality and

quantity of secondary metabolites, and fluctuations in the market

price. Furthermore, collecting plant materials from the wild threatens

the survival of wild species and biodiversity in specific regions. In

contrast to the field environment, greenhouses provide more stable

plant growth conditions given the precise climate control and water

and nutrient supply. Such a production system is widely used in

producing horticultural products to allow all-year-round production

and to achieve stable yield and standardized product quality (Marcelis

et al., 2019). For example, a Dutch tomato greenhouse produces a

fresh yield of 60-70 kg m-2 for year-round production, and is

appreciated for constant product quality and reliable delivery; this

further helps to achieve a well-organised market, with ~85% of the

production is sold via growers’ associations and ~90% is exported

(Heuvelink, 2018). The success of horticultural crop production in

greenhouses shows a great potential in such an indoor plant

production system for cultivating A. annua to achieve continuous
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supply of raw plant materials, stable product quality, and a less

fluctuating market price.

In greenhouse production, supplemental lighting (e.g. LEDs) is

frequently used as an additional light source when solar radiation is

low in order to increase light intensity and to change light spectrum to

improve yield and product quality (Kaiser et al., 2019; Affandi et al.,

2020; Ji et al., 2020). Thus, supplemental LEDs also have potential to

improve A. annua greenhouse cultivation. Light plays an important

role in the activation of artemisinin biosynthesis. The expression of

key artemisinin biosynthesis genes e.g. AaADS, AaCYP71AV1,

AaDBR2 and AaALDH1 are strongly upregulated by light, leading

to increased artemisinin biosynthesis (Hao et al., 2017; Zhang et al.,

2018; Hao et al., 2019). Furthermore, red and blue light result in a

higher artemisinin content compared with white light by enhancing

the expression levels of several relevant genes (e.g. AaHY5,

AaWRKY9, AaDBR2 and AaGSW1) (Zhang et al., 2018; Hao et al.,

2019; Fu et al., 2021). Additionally, ultraviolet-B (UV-B) radiation has

been found to increase artemisinin content by upregulating the

expressions of artemisinin biosynthesis genes and transcriptional

factors (e.g. AaADS, AaCYP71AV1, AaDBR2, AaCPR and

AaMYB4) (Rai et al., 2011; Pandey and Pandey-Rai, 2015; Ma et al.,

2020; Li et al., 2021). Nevertheless, most studies focused on the light

regulation of artemisinin biosynthesis. The effect of light conditions

on A. annua growth, morphology and biomass production has been

overlooked, yet these aspects are important in greenhouse A.

annua production.

The objective of this study was to explore the potential of

manipulating the light environment using LEDs to improve

artemisinin biosynthesis. Furthermore, we aimed to elucidate

whether supplemental LEDs leads to adverse (e.g. adding UV-B) or

positive (e.g. adding red light) effects on plant biomass production. To

this end, two experiments were conducted in a greenhouse, with the

first experiment exploring the effects of adding supplemental red,

blue, green and white light and the second investigating the

interactive effects of UV-B and far-red radiation on plant biomass

production, trichome formation and biosynthesis of artemisinin and

its precursors.
2 Materials and methods

2.1 Plant material and growth conditions

Two experiments were conducted between January and July 2021

in a compartment (8 m × 8 m) of a Venlo-type glasshouse located in

Wageningen, The Netherlands (52°N, 6°E). There were four rolling

growth tables (1.7 m × 6.5 m) in the compartment. A. annua seeds

(provided by Hortus Alkmaar, The Netherlands) were sown on the

surface of potting soils filled in a plastic tray and then covered by

vermiculite. When the first two true leaves were visible, individual

seedlings were separated and transplanted to plastic pots (diameter =

19 cm) filled with potting soil. The plants were put on the rolling

growth tables with a plant distance of 23 cm, resulting in a plant

density of 19 plants m-2.

The photoperiod was 16 hours (from 4:00 to 20:00 hours). High-

pressure sodium (HPS) lamps (600W, Philips, Eindhoven, The
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Netherlands) were used during light period when global radiation

outside the greenhouse dropped below 150 W m-2 and were switched

off when outside global radiation increased to values above 250 W m-2.

Light intensity from the HPS lamps was on average 127 mmol m-2 s-1 at

crop level (Supplementary Figure S1). The shading screen (Harmony

4215 O FR, Ludvig Svensson, Hellevoetsluis, The Netherlands) was

closed when outside global radiation increased to values above 600 W

m-2 and was opened when outside global radiation dropped below 500

W m-2. CO2 was kept at ambient. Setpoints of day and night

temperature were 18 °C and 22 °C. Relative air humidity was set at

65%. Daily light integral of photosynthetically active radiation (PAR)

from the sun, HPS lamps and the treatment LEDs, temperature and

relative air humidity in the greenhouse compartment during the

experiment are presented in Supplementary Figure S2.
2.2 Light treatments

Light treatments were started at transplanting the seedlings to

pots and lasted for five weeks before the plants were harvested for

destructive measurements. Two experiments were conducted, with

each including four light treatments.

2.2.1 Experiment 1
Four treatments were applied in Exp. 1 by adding LED modules

that respectively provide supplemental red (Res Module, Philips. NL),

green (Lumileds, NL), blue (Res Module, Philips, NL) and white (Res

Module, Philips, NL) light in each treatment. In each plot, four LED

modules were attached on a wooden frame such that the LED

modules were distributed evenly in the plot. The LED frame was

surrounded by a plastic film (with white colour facing the plot and

black colour facing outside) with 20 cm depth from the frame top to

minimize light treatments affecting each other (Supplementary Figure

S3). The LED frame was kept at a distance of 50 cm from the plant

canopy and the height of the frame was adjusted accordingly with the

growing of plant height. The LEDs were kept on during the whole

photoperiod (16 hours) and provided an irradiance of approximately

23 mmol m-2 s-1 at the canopy level. This irradiance was the

maximum level reached by adding four green LED modules. For

the other three treatments, part of the LED modules was covered by

aluminium foil to lower the output to the same level as the

green LEDs.

2.2.2 Experiment 2
Four treatments were applied, including supplemental far-red,

supplemental UV-B, supplemental far-red and UV-B and a control

without any supplemental radiation (except for the radiation

provided by supplemental HPS lamps that was received by all

treatments). The LED modules were attached on a wooden frame

and arranged in the same way as described in Exp. 1. In the control, a

wooden frame without any LED modules was used to create a similar

level of shading by the LED frames in the other three treatments

(Supplementary Figure S4). In treatments in which supplemental far-

red was used, four far-red modules (GreenPower far-red -production

modules, Philips, NL) were attached on each frame, resulting a red

(655-665 nm) to far-red (725-735 nm) ratio of approximately 0.3 at
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the plant level. The far-red modules were kept on during the whole

16-hour photoperiod. In treatments in which supplemental UV-B was

used, one UV-B module (UV-B broadband lamps, Philips, NL) was

attached on each frame, resulting in an intensity of 0.53 W m-2 at

plant level. The UV-B lamps were turned on for 30 min daily (from

00:00 to 00:30 AM).
2.3 Measurements on light conditions

In Exp. 1, light spectrum of the LED modules used in each

treatment was measured in darkness using a spectrometer (Type

3000, Apogee Instrument, USA) (Supplementary Figure S5).

Distribution of PAR from the LEDs used in each treatments was

measured by a quantum sensor (Li-250A Quantum meter, LI-COR,

USA) (Supplementary Figure S6). Measurements were conducted in

darkness with only the supplemental LEDs being turned on (i.e. no

light from the sun and HPS lamps). In total 64 positions were

measured in each plot, with a distance of 20 cm between each

measurement spot.

In Exp. 2, distribution of the red to far-red ratio in each treatment

was measured by a spectrometer (Type 3000, Apogee Instrument, USA)

(Supplementary Figure S7). Measurements were conducted on 25

positions in each plot. Spectrum of the UV-B lamps was measured by

a spectral-radiometer (BTS2048-UV-S, Gigahertz-Optik, Germany), and

distribution of the UV-B light was measured at nine positions in a plot

using ILT2400 (ILT, USA) (Supplementary Figure S8).
2.4 Non-destructive measurements

Five plants per plot were randomly chosen after two weeks from

transplanting. Those plants were used to measure plant architectural

traits twice per week, including plant height, leaf number and leaf

length on the main stem. Plant height was measured from soil level to

apex. Given that leaf senescence of the first two true leaves happened

in early stage of plant development (usually before starting

architectural measurements), the third true leaf was labelled and

defined as the first leaf for measurements. Leaf length was measured as

the distance along the midrib from the insertion point the leaf petiole

on the main stem to the leaf tip. Leaf length was used to calculate leaf

area non-destructively according to the relationship established from

the destructive measurements (Supplementary Figure S9).
2.5 Destructive measurements

Plants used for destructive measurements in each plot were

separated into three groups: three plants were used for trichome

density measurement, six plants were sampled for measuring

secondary metabolite content, and 15 plants were harvested by end

of the experiment.
2.5.1 Trichome density
Measurements were taken in week 3 (seedling stage) and week 5

(branching stage) after transplanting. For each measurement, three
frontiersin.org
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newly fully developed leaves were taken from each plant. A small part

of the leaf was cut and put on a glass slide, followed by putting another

glass slide on top of the leaf and gently pressing the top slide to make

the leaf surface flat. Then the slides were put under a stereo

microscope (MZ APO, Leica, Germany, with camera from Axiocam

305 color, Carl Zeiss, Germany) to take images from the adaxial leaf

surface using a magnification of 8×. Trichomes in each image were

counted and area of the leaf samples were analysed using ImageJ

(National Institute of Health, Bethesda, MD, USA).

2.5.2 Secondary metabolites
Plant samples were taken in week 3 and week 5, with three plants

per plot being sampled each time. Leaves and stems were collected

and frozen in liquid nitrogen, and then were separately stored in 20

ml tubes in -80°C freezer. Once all samples were collected, they were

grinded (in the liquid nitrogen environment) and put in the freeze-

dryer for five days at a temperature of -60°C and a pressure of 0.2 atm.

Those freeze-dried samples were then used for measuring secondary

metabolites including artemisinin, dihydroartemisinic acid,

arteannuin B and artemisinic acid based on high performance

liquid chromatography, following the protocols developed by

Lapkin et al. (2009).

2.5.3 Final harvest
In week 5, a total of 15 plants per plot, including the five plants

used for non-destructive measurements, were harvested (exact

harvest dates of different blocks and experiments were given in

Supplementary Table S1). In addition to the architectural traits

measured during non-destructive measurements, internode length

and elevation angle of individual leaves on the main stem were

measured on the day of final harvest. Internode length was

measured as the distance between the insertion points of two

successive leaves on the main stem. Leaf elevation angle was

defined as the angle between the leaf midrib and the horizontal

level. Then, the plant was sampled to measure leaf area from the main

stem and side shoots separately, and fresh and dry weights of leaves

and stem separately. Leaf area was measured by a leaf area meter (Li-

3100, LICOR, Lincoln, NE, USA). Dry weight was measured after

drying the samples for 72 hours at 70°C in an oven.
2.6 Statistical set-up and analysis

The experiments had a randomized block design, with four blocks for

each experiment. 49 plants (7 × 7 plants) were grown in each plot, with

the outer plants serving as border plants, resulting in a total of 25

experimental plants being used for measurements. The position of

individual experimental plants were randomized weekly to avoid any

possibly effects from the uneven light distribution. To optimize

greenhouse space and labouring, the transplanting date (i.e. the start of

light treatments) for each block in each experiment was spread during the

whole experimental period (Supplementary Table S1).

Statistical analyses were conducted using R (http://www.r-project.

org/). First, normality was tested using the Shapiro-Wilk test and
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homogeneity was tested using Levene’s test to determine whether

residuals showed equal variances. For traits that did not show equal

variance, log transformation of data was applied. For Exp. 1,

differences between the four treatments were detected using one-

way ANOVA (p < 0.05) with considering the block effects. When a

significant difference was detected, a post-hoc test was conducted for

pairwise comparisons between treatments, using Fisher’s Protected

Least Significant Difference (LSD) test (p < 0.05). For Exp. 2,

treatment effects were tested using two-way ANOVA (p < 0.05)

with considering the block effects.
3 Results

3.1 Effects of supplemental radiation
within and outside PAR on plant
architectural development

The colour of supplemental radiation within PAR range (blue,

green, red, or white) did not significantly affect plant architectural

development. The time courses of leaf number, leaf area of main stem

and plant height during the experimental period were hardly affected

by the colour of the supplemental PAR (Figure 1). Supplemental

green tended to slow down the development of leaf area but the effect

was not significant (Figure 1C). At final harvest, total leaf area

(including leaves from both the main stem and side branches) was

significantly reduced by supplemental green compared with other

colours of supplemental PAR (Figure 2A), whereas specific leaf area

was hardly affected (Figure 2C). Final length of individual internodes

and leaves on the main stem, as well as elevation angle (compared

with horizontal) of each leaf, were not significantly affected by the

colour of supplemental PAR (Figures 3A, C, E). The longest

internodes and leaves appeared at the middle of the stem

(Figures 3A-C), whereas leaf elevation angle kept increasing with

leaf rank, indicating more flat leaves at the bottom of the plant and

more steeper leaves at the top (Figure 3E).

Supplemental radiation outside PAR range (far-red and/or UV-B)

had strong impacts on plant architectural traits, however, there were

no significant interactive effects between far-red and UV-B on plant

architecture. Both supplemental far-red and UV-B significantly

reduced leaf area development during the experimental period, and

lead to significant reductions in total leaf area at final harvest

compared to control treatment without supplemental radiation

(Figures 1D, 2B). Specific leaf area was reduced by supplemental

far-red but not affected by UV-B, whereas leaf number was not

affected by either far-red or UV-B (Figures 1B, 2D). Supplemental far-

red significantly increased plant height during the whole experimental

period, as well as internode length (Figures 1F, 3B). Supplemental

UV-B did not affect plant height nor internode length (Figures 1F,

3B); however, it significantly reduced leaf length at the middle and

bottom of the plant (Figure 3D). Supplemental far-red significantly

increased elevation angle for nearly all leaves, leading to relatively

evenly distributed leaf angle on the plant, whereas supplemental UV-

B only had a marginal effect on leaf angle (Figure 3F).
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3.2 Effects of supplemental radiation within
and outside PAR on plant biomass

In general, the colour of supplemental radiation within PAR

range had smaller effects on plant biomass compared with the

effects from supplemental far-red and UV-B. Supplemental green

significantly reduced fresh and dry weights of both leaves and stem,

compared with other colours of supplemental PAR, leading to lower

plant fresh and dry weights (Figure 4A; Supplementary Table S2).

However, plant fresh and dry weights from treatments with

supplemental blue, red and white did not significantly differ from

each other (Figure 4A; Supplementary Table S2). The colour of

supplemental PAR only induced marginal effects on plant dry

matter partitioning (~ 2% difference) (Supplementary Table S2).

There were no significant interactive effects between supplemental

far-red and UV-B on plant fresh weight, dry weight, and dry matter

partitioning. Both supplemental far-red and supplemental UV-B

significantly reduced plant dry weight, which was due to the
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reductions in leaf dry weight but not stem dry weight (Figure 4B).

Supplemental far-red significantly reduced fresh weights of leaves and

stem, resulting in a lower plant fresh weight compared with treatments

without supplemental far-red, whereas supplemental UV-B hardly

affected plant fresh weight (Supplementary Table S2). Supplemental

far-red significantly increased dry matter partitioning to stem (up to

8%) (Figure 4B; Supplementary Table S2). Supplementary UV-B also

tended to increase dry matter partitioning to stem, but the effect was not

significant (Figure 4B; Supplementary Table S2).
3.3 Effects of supplemental radiation
within and outside PAR on glandular
trichome density and secondary
metabolite biosynthesis

At seedling stage, the colour of supplemental PAR hardly

affected leaf trichome density, nor did the supplemental far-red or
A B

D

E F

C

FIGURE 1

Leaf number (A, B), leaf area on the main stem (C, D) and plant height (E, F) during the experiment in treatments of supplemental radiation within (A, C,
E; Exp. 1) and outside (B, D, F; Exp 2) the range of photosynthetically active radiation (PAR) (values are mean ± s.e.; n = 4, with five plants in each
statistical replicate). The supplemental radiation of different colours in panels A, C and E had an intensity of 23 mmol m-2 s-1. The control in panels B, D
and F is treatment without supplemental radiation; supplemental far-red radiation resulted in a red to far-red ratio of 0.3 at the plant level, and
supplemental UV-B had an intensity of 0.53 W m-2. “F” and “U” respectively indicate a significant effect of far-red and UV-B on a specific day after
transplanting (p < 0.05). “NS” indicates non-significant effect was found.
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UV-B (Figures 5A, B). Trichome density was much higher in

branching stage than in seedling stage, and treatment effects

became significant (Figure 5). At branching stage, supplemental

green resulted in the highest trichome density compared with

other treatments, whereas supplemental blue resulted in the

lowest trichome density (Figure 5C). Supplemental UV-B

significantly increased trichome density at branching stage,

whereas supplemental far-red did not have a significant effect

(Figure 5D). There were no interactive effects between far-red and

UV-B on trichome density.

Secondary metabolites, including dihydroartemisinic acid

(DHAA), artemisinin, artemisinic acid (AA) and arteannuin B (AB),

were hardly affected by the light treatments (Table 1; Supplementary

Tables S3, S4). Leaf artemisinin concentration was generally higher in

Exp.1 (0.2% ~ 0.4%) than in Exp. 2 (0.04% ~ 0.15%). In both

experiments, AA concentration was relatively high, indicating a lack

of photo-oxidative conversion to AB; in contrast, DHAA concentration

was relatively low, indicating that most DHAA has been converted to

artemisinin successfully. Artemisinin concentration was relatively low

in the stem, especially in Exp. 2 that no artemisinin was found in the

stem (Supplementary Table S3). Total amounts of secondary

metabolites in the plant were not significantly affected by the light

treatments (Supplementary Table S4).
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4 Discussion

4.1 Supplemental green and UV-B increased
leaf glandular trichome density

Artemisinin is biosynthesized in glandular trichomes of A. annua,

which are commonly composed of 10 symmetrical cells (Olofsson

et al., 2012). The biosynthetic pathway of artemisinin has been almost

completely elucidated (Tang et al., 2014; Chen et al., 2017). In short,

farnesyl diphosphate (FPP) is formed through mevalonate (MVA)

pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway,

which is then converted into AA or DHAA via four trichome-specific

enzymes (AaADS, AaCYP71AV1, AaDBR2 and AaALDH1) (Tang

et al., 2014; Chen et al., 2017). DHAA is then transported to the

trichome subcuticular space and converted to artemisinin via a

photo-oxidative process (Brown and Sy, 2004). Studies have shown

that overexpressing genes encoding trichome-related transcriptional

factors (e.g. AaTAR2 and AaMIXTA1) increased artemisinin

biosynthesis (Shi et al., 2018; Zhou et al., 2020), suggesting the

potential of increasing trichome density for enhancing artemisinin

production. Recently, increasing trichome density also has been

considered as a new plant breeding strategy to enhance the yield of

bioactive compounds for the pharmaceutical industry (Xiao et al.,
A B

DC

FIGURE 2

Total leaf area (from both main stem and side shoots) per plant (A, B) and specific leaf area (calculated as leaf area divided by leaf dry weight; average
value from all leaves) (C, D) measured at final harvest in treatments of supplemental radiation within (A, C; Exp 1) and outside (B, D; Exp 2) the range of
PAR (values are mean ± s.e.; n = 4, with 15 plants in each statistical replicate). Details on the treatment abbreviations can be found in Figure 1. In panel A
and C, letters indicate significant differences (p < 0.05) and “NS” indicates non-significant difference. In panel (B and D, “F” and “U” respectively indicate a
significant effect of far-red and UV-B (p < 0.05).
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2016). Here, we showed that trichome density could be increased by

manipulating light conditions for A. annua growth, more specifically,

by adding supplemental green or UV-B to background light in the

greenhouse for A. annua production.
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Trichome formation generally tends to increase in adverse

environments to better cope with these conditions. This increase in

trichome density may reduce transpiration rate, prevent from

photodamage by reflecting sunlight, produce specialized secondary
A B

D

E F

C

FIGURE 3

Internode length (A, B), leaf length (C, D) and leaf elevation angle compared with horizontal (E, F) for each phytomer rank on the main stem at final
harvest in treatments of supplemental radiation within (A, C, E; Exp. 1) and outside (B, D, F; Exp. 2) the range of PAR (values are mean ± s.e.; n = 4, with
15 plants in each statistical replicate). Details on the treatment abbreviations can be found in Figure 1. “F” and “U” respectively indicate a significant effect
of far-red and UV-B on the traits measured at a specific rank (p < 0.05). “NS” indicates non-significant effects for all ranks.
A B

FIGURE 4

Plant dry weight at final harvest in treatments of supplemental radiation within (A, Exp. 1) and outside (B, Exp. 2) the range of PAR (values are mean ± s.e.;
n = 4, with 15 plants in each statistical replicate). Solid bars are stem dry weight. Dashed bars are leaf dry weight. Details on the treatment abbreviations
can be found in Figure 1. In panel (A), letters indicate significant differences (p < 0.05). In panel (B), “F” and “U” respectively indicate a significant effect of
far-red and UV-B (p < 0.05).
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metabolites for defense responses to pests and pathogens, and absorb

UV radiations to protect photosynthetic tissues (reviewed in Hauser,

2014). Many abiotic stresses – such as cold, heat, drought, salinity,

heavy metal, and UV radiations – have been found to upregulate

trichome initiation in different species (Filella and Peñuelas, 1999;

Yan et al., 2012; Ning et al., 2016; Zhou et al., 2018; Zhang et al., 2019;
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Zheng et al., 2020). We also showed a positive effect of UV-B on

trichome density in A. annua (Figure 5D). However, artemisinin

concentration was not significantly affected by UV-B (Table 1), which

is different from previous studies showing positive effects of UV

radiations on artemisinin biosynthesis (Rai et al., 2011; Pan et al.,

2014; Pandey and Pandey-Rai, 2015). Despite that many studies focus
TABLE 1 Leaf secondary metabolite concentrations (mg g-1 leaf dry weight) in treatments with supplemental blue, green, red and white (Exp. 1), and in
treatments with supplemental far-red and ultraviolet-B (UV-B) (Exp. 2). Values are mean ± s.e. (n = 4, with three plants in each statistical replicate). None
of the data showed significant treatment effects.

Arteannuin B (AB) Artemisinin Dihydroartemisinic acid (DHAA) Artemisinic acid (AA)

Exp. 1

Blue 0.032 ± 0.018 0.425 ± 0.412 0.053 ± 0.005 0.884 ± 0.236

Green 0.033 ± 0.020 0.225 ± 0.181 0.052 ± 0.006 0.714 ± 0.088

Red 0.029 ± 0.014 0.292 ± 0.277 0.063 ± 0.004 0.864 ± 0.158

White 0.043 ± 0.015 0.320 ± 0.245 0.039 ± 0.005 0.802 ± 0.206

Exp. 2

Control 0.053 ± 0.009 0.149 ± 0.074 0.039 ± 0.010 0.321 ± 0.070

Far-red 0.064 ± 0.003 0.144 ± 0.031 0.033 ± 0.009 0.309 ± 0.088

UV-B 0.060 ± 0.006 0.121 ± 0.042 0.030 ± 0.004 0.231 ± 0.036

Far-red + UV-B 0.059 ± 0.007 0.043 ± 0.028 0.037 ± 0.013 0.363 ± 0.143
A B

DC

FIGURE 5

Trichome density measured at three weeks (seedling stage; (A, B) and five weeks (branching state; (C, D) after transplanting in treatments with
supplemental radiation within (A, C; Exp. 1) and outside (B, D; Exp. 2) PAR wavelength range (values are mean ± s.e.; n = 4, with three plants in each
statistical replicate). Details on the treatment abbreviations can be found in Figure 1. “NS” in panel A and B indicates non-significant treatment effects.
Different letters in panel C indicate significant differences between treatments (p < 0.05; ANOVA test was done using log transformed data). “U” in panel
D indicates significant effects from supplemental UV-B (p < 0.05).
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on trichome initiation responses to environmental factors including

UV radiations, effects of other light wavelength than UV radiations

have hardly received any attentions. Trichome initiation is known to

be regulated by phytohormones especially jasmonates (JA) (reviewed

in Chalvin et al., 2020), while JA signaling is further regulated by light

signals (reviewed in Kazan and Manners, 2011; Ballaré, 2014). This

suggests possible influences of light spectrum on trichome initiation

via regulating JA signaling pathways.

Far-red is often found to involve in JA signaling pathways to

regulate the production of secondary metabolites relevant with plant

defense (Cerrudo et al., 2012; Leone et al., 2014), and potentially also

interacts with UV-B (Mazza and Ballaré, 2015). However, we did not

observe any significant effects of supplemental far-red on trichome

initiation and artemisinin biosynthesis, nor any interactive effects

between far-red and UV-B (Figures 5A, B; Table 1). Interestingly, we

found a positive effect of supplemental green on trichome density

(Figure 5C). To the best of our knowledge, we are the first to reveal the

role of green light in trichome initiation, given that green light has long

been considered as irrelevant for plant functioning as plants reflect

relatively more irradiance in the wavelength range of green than other

colors. Recently, green light has received more attentions, especially on

regulating plant morphogenesis (Johkan et al., 2012; Schenkels et al.,

2020; Zhang et al. 2021; Zhang et al., 2022), but few research focuses on

secondary metabolites (reviewed in Landi et al., 2020). It seems that

green light acts antagonistically to blue light, and reduces anthocyanin

biosynthesis (Zhang and Folta, 2012). We found a negative effect of

supplemental blue on trichome density (Figure 5C), suggesting an

antagonistic role of green and blue in regulating trichome initiation

given their opposite effects on trichome density. Nevertheless,

artemisinin content was hardly affected by the color of supplemental

radiation (Table 1). Generally, cryptochromes are proposed to be the

receptor of green light, and senses green via FADH which is an

intermediate form of fully oxidized chromophore excited by blue

light (Kottke et al., 2006; Bouly et al., 2007; Liu et al., 2010; Sato

et al., 2015). This is also relevant with the antagonistic effect of blue and

green given that sensing of these two light signals is via the

interconversion of flavin redox states of cryptochrome. Chico et al.

(2014) showed that cryptochrome is involved in stabilizing the JA-

related transcriptional factor MYC2. This could further affect any JA

involved processes, including trichome initiation. Given the increasing

interest in regulating trichome density in the pharmaceutical industry,

more studies are needed to reveal the underlying mechanisms of light

spectrum regulation on trichome initiation.
4.2 Supplemental green, UV-B and far-red
decreased plant growth

In practise, the whole aerial part ofA. annua is harvested as raw plant

material for artemisinin production (Ferreira et al., 2005). Although plant

artemisinin concentration heavily influences the price, the total payment

is determined by the weight of the harvested plant materials (Ferreira

et al., 2005). However, currently many studies have focused on increasing

the artemisinin content in the plant, agronomic traits relevant with
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biomass production has been overlooked. Our results suggest that there

was potentially a trade-off between increasing trichome density and

biomass production, as supplemental green andUV-B, which were found

to increase trichome density, decreased plant dry weight (Figures 4, 5C,

D). Despite that previous studies normally show increased artemisinin

content by applying UV-B (Rai et al., 2011; Pan et al., 2014; Pandey and

Pandey-Rai, 2015; Ma et al., 2020; Li et al., 2021), its effects on agronomic

traits and plant biomass are less studied. In many plant species, UV-B is

found to inhibit plant growth (reviewed in Yadav et al., 2020), but the

effects of UV-B on artemisia growth are inconsistent. Pan et al. (2014)

showed no effects of applying UV-B on plant biomass. Rai et al. (2011)

found an increased biomass under UV-B treatment even with reduced

leaf area; the increased number of mesophyll cells and spongy

parenchyma found in the UV-B treated plants may suggest a higher

leaf photosynthetic capacity, resulting in higher biomass. In our study,

supplemental UV-B decreased plant dry weight, possibly because plant

leaf area was reduced (due to shorter leaves on themain stem) (Figure 2B,

3D), resulting in lower light interception and consequently less carbon

assimilation. The inconsistency of UV-B effects on artemisia growth may

be caused by the different intensity, duration and developmental stage of

applying UV-B.

Green light may penetrate deeper inside the leaf tissue and in the

plant canopy and may therefore enhance plant growth (Smith et al.,

2017). Despite some studies showing a positive effect of green on

biomass production (Kim et al., 2004; Schenkels et al., 2020) and

others suggesting non-significant effects (Snowden et al., 2016; Zhang

et al., 2021), we found that supplemental green decreased plant dry

weight of A. annua (Figure 4A), which is possibly due to reduced leaf

area (Figure 2A). Some studies suggested that green induced shade

avoidance responses (Zhang et al., 2011; Schenkels et al., 2020).

However, typical shade avoidance responses – such as increased

internode length and steeper leaf elevation angle – were not found

in A. annua grown under supplemental green (Figures 3A–E). Given

the negative effects of supplemental green and UV-B on plant growth,

their applications in greenhouse production of A. annua need critical

evaluations to achieve a balance between increasing trichome density

and maintaining biomass production.

Recently, there is an increasing interest of applying far-red in

regulating plant growth and product quality in greenhouse crops.

Adding supplemental far-red has been found to increase lettuce yield

by increasing biomass partitioning to shoot to promote leaf area

development (Jin et al., 2021), increase tomato yield by increasing

fruit sink strength (Ji et al., 2020), and improve postharvest cold

tolerance in tomato (Affandi et al., 2020). However, we found that in

medicinal crop A. annua, far-red decreased plant growth (Figure 4B),

likely due to the changes in the vertical distribution of leaf elevation

angles (Figure 3F). The natural distribution of leaf angle in A. annua

followed a very efficient pattern, i.e. leaf elevation angle gradually

increased with increasing phytomer rank (Figures 3E, F). This results

in more steeper leaf angle at the top, allowing more light penetration

to the lower part of the plant, which is then captured by the more

horizontally arranged leaves at the bottom. Supplemental far-red

changed this leaf angle distribution by increasing angles of the

lower leaves (Figure 3F), reducing the projected leaf area which
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potentially decreases light interception. Additionally, far-red reduced

plant leaf area (Figure 2B), likely caused by the increase of biomass

partitioning to stem (Figure 4B), which could potentially reduce plant

light interception and carbon assimilation. We conclude that for

greenhouse production of A. annua, supplemental far-red may not

bring positive effects on plant growth.
4.3 Limitations and future perspectives

In general, plant artemisinin concentration is found to be the

highest around flowering stage (Ferreira et al., 2005; Mannan et al.,

2011; Rai et al., 2011). Short-day condition (a photoperiod of ~13

hours) is required for A. annua transitioning from vegetative to

generative stage (Ferreira et al., 2005). Thus, flowering time – as well

as harvest time – of field grown A. annua follows the seasonal changes

of day length during the year. It is possible to provide short-day

photoperiods in the greenhouse (even when natural daylength is

long) to achieve all-year-round production. However, mostly this also

means a smaller daily light integral, resulting in reductions in daily

assimilation and final biomass. Therefore, although artemisinin

concentration is higher in flowering stage (e.g. ~0.7%) than in

vegetative stage (e.g. ~0.2%) (Rai et al., 2011), final yield of

artemisinin may not necessarily be higher due to the reduction in

biomass production. Our study only focused on vegetative plants grown

under long-day conditions. Further studies are needed to evaluate the

benefits between the relatively higher artemisinin concentration from

short-day condition and more biomass growth from long-day

condition for A. annua greenhouse production. Additionally, studies

have shown that floral induction in chrysanthemum (a short-day

species) can be induced under blue light extended long-day (Jeong

et al., 2014; SharathKumar et al., 2021). It is worth to investigate the

potential of using blue LEDs in A. annua production to induce

flowering for higher artemisinin concentration while keeping long

photoperiod for biomass production.

We hardly found any effects of light spectrum on artemisinin

concentration, which is inconsistent with several previous studies (e.g.

Rai et al., 2011; Pan et al., 2014; Zhang et al., 2018). However, it is

worth to note that in our experiment, A. annua plants were grown in

a greenhouse with high-pressure sodium (HPS) lamps installed,

which are regular supplemental lights that are often used in

commercial greenhouse production. These HPS lamps provided a

light intensity that was much higher than the light intensity from the

treatment LEDs. Therefore, the treatment LEDs with different colours

worked more as a light signal instead of a direct resource for plant

growth. Nevertheless, we found clear effects of treatment LEDs on

plant morphology and trichome density, suggesting the importance of

light signals in regulating artemisia photomorphogenesis and

trichome formation. Given that the effects of light signals on

artemisinin biosynthesis were not substantial, further studies are

needed to investigate the effects of LEDs (providing different

colours) with higher intensities to elucidate the effects of light as a

direct resource for A. annua growth and secondary metabolism.
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Moreover, the underlying mechanisms of light regulations on

expressions of key genes involved in artemisinin biosynthesis need

to be clarified. These types of work could provide a comprehensive

understanding and evaluation of supplemental lights on A. annua

growth, development and secondary metabolism, which are needed

before bringing A. annua into commercial greenhouse cultivation.
5 Conclusions

Bringing medicinal plant cultivation into the greenhouse has

great potential to ensure stable supply and high quality of raw plant

materials, and provide opportunities for manipulating growth

conditions to enhance production of bioactive compounds. We

attempted greenhouse production of A. annua and manipulated

light environment for regulating artemisinin biosynthesis and plant

growth. Supplemental green and UV-B increased leaf glandular

trichome density, whereas plant growth was decreased possibly due

to reduced leaf area. Supplemental far-red decreased plant growth,

possibly due to increased leaf elevation angle in the lower leaves that

reduced plant light capture efficiency. Artemisinin concentration

was hardly affected by the spectrum of supplemental radiation. We

conclude that there is a potential of manipulating supplemental

radiation for increasing trichome density, however, the trade-off

between increasing trichome density and plant growth needs to be

considered. Furthermore, the underlying mechanisms of light

spectrum regulation of artemisinin biosynthesis need to be

clarified to further improve artemisinin biosynthesis for

greenhouse production of A. annua.
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