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Application of chloroplast
genome in the identification of
Phyllanthus urinaria and its
common adulterants

Hui Fang, Guona Dai, Binbin Liao, Ping Zhou* and Yinglin Liu*

College of Pharmaceutical Science, Dali University, Dali, China
Background: Phyllanthus urinaria L. is extensively used as ethnopharmacological

material in China. In the local marketplace, this medicine can be accidentally

contaminated, deliberately substituted, or mixed with other related species. The

contaminants in herbal products are a threat to consumer safety. Due to the

scarcity of genetic information on Phyllanthus plants, more molecular markers

are needed to avoid misidentification.

Methods: In this study, the complete chloroplast genome of nine species of the

genus Phyllanthus was de novo assembled and characterized.

Results: This study revealed that all of these species exhibited a conserved

quadripartite structure, which includes a large single copy (LSC) region and

small single copy (SSC) region, and two copies of inverted repeat regions (IRa

and IRb), which separate the LSC and SSC regions. And the genome structure,

codon usage, and repeat sequences were highly conserved and showed

similarities among the nine species. Three highly variable regions (trnS-GCU-

trnG-UCC, trnT-UGU-trnL-UAA, and petA-psbJ) might be helpful as potential

molecular markers for identifying P. urinaria and its contaminants. In addition,

the molecular clock analysis results showed that the divergence time of the

genus Phyllanthus might occur at ~ 48.72 Ma.

Conclusion: This study provides valuable information for further species

identification, evolution, and phylogenetic research of Phyllanthus.

KEYWORDS

Phyllanthus urinaria, chloroplast genome, species identification, molecular
marker, phylogenetic
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1 Introduction

Phyllanthus urinaria L. belongs to the family Euphorbiaceae,

is listed in the dictionary of Chinese ethnic medicine, and the

Chinese name is “Yexiazhu” (Guo et al., 2017). The herbal

P. urinaria has crucial medicinal value in anti-diarrheal, anti-

inflammatory, jaundice, diabetes, malaria, hepatitis B, and liver

diseases (Chudapongse et al., 2010; Geethangili and Ding, 2018).

The previous survey has revealed that P. urinaria is generally

contaminated with other common adulterants, such as P. acidus

(L.) Skeel, P. amarus Schumacher & Thonning, P. reticulatus

Poir., P. niruri L., P. emblica L., P. pulcher Well. ex Muell. Arg.,

and P. debilis Klein ex Willd. (Manissorn et al., 2010; Srirama

et al., 2010; Kiran et al., 2021). These adulterants are usually of

poor quality, and some might even be toxic (Adedapo et al., 2005;

Geng et al., 2021). As the morphology of these species are

interchangeable, similar, and indistinguishable, the identification

of these species remains controversial, which may impair their

clinical safety and efficacy (Sarin et al., 2013; Kiran et al., 2021).

Therefore, it is essential to develop a method for accurately

identifying P. urinaria and its common contaminants.

With the rapid development of molecular technology,

molecular identification has made significant progress in

Chinese medicine, especially molecular markers, a technique

that involves sequencing specific sections of the genome to

identify differences between individuals of different species or

populations (Xiong et al., 2018). Recent studies have revealed

high levels of genetic diversity and a lack of phylogenetic

resolution within species of Phyllanthus (Pruesapan et al.,

2012; Bouman et al., 2021). Universal DNA barcodes, such as

ITS, psbA-trnH, trnL, psbK-psbI, rpoC1, and trnL-trnF, have

been used to identify P. urinaria and its adulterants (Manissorn

et al., 2010; Srirama et al., 2010; Inglis et al., 2018; Kiran et al.,

2021). However, some common adulterants were not included in

these investigations, and there are inherent limitations to single-

locus DNA barcodes (Heinze, 2007; Li et al., 2015). Therefore,

more scientific and accurate identification methods must be

developed. The chloroplast (cp) is an essential organelle that

plays a crucial role in plant photosynthesis and several other

critical biochemical processes (Neuhaus and Emes, 2000).

Compared with the traditional DNA fragments, the cp

genome was relatively conserved and slightly varied, which has

been applied to many research fields, such as species

identification and the development of molecular markers

(Abdullah et al., 2020; Li et al., 2022; Wang et al., 2022). The

method has been widely used for identifying Paris, Polygonatum,

Vicatia, and their adulterants (Guan et al., 2022; Jiang et al.,

2022; Wang et al., 2022). Recently, although the complete cp

genomes of Phyllanthaceae species have been reported and the

high-resolution phylogenetic tree was reconstructed (Rehman

et al., 2021), the purpose of this study was to clarify the genome

evolution in Phyllanthaceae and identify the polymorphic loci
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for phylogenetic inference. To our knowledge, no reports use cp

genomes to compare P. urinaria with its common adulterants.

Our study aims to: (i) contribute new fully-sequenced cp

genomes of Phyllanthus and improve the understanding of the

overall structure of these genomes, (ii) perform comparative

analyses and elucidate the phylogenetic evolution of the

Phyllanthus, and (iii) screen potential molecular markers to

distinguish P. urinaria from its contaminants. In the current work,

the complete cp genomes of nine Phyllanthus species were sequenced,

de novo assembled, and annotated. These genomes were then used in

a comparative analysis of genome structure and evolution

relationships. This research expands the genomic resources

available for Phyllanthus and provides valuable information support

for the phylogenetic analysis and identification of the Phyllanthus, as

well as for the safe applications of P. urinaria.
2 Material and methods

2.1 Plant and DNA sources

The fresh and healthy leaves for nine species of P. acidus, P.

amarus, P. reticulatus, P. urinaria, P. niruri, P. niruri subsp.

lathyroides, P. emblica, P. pulcher, and P. franchetianus were

collected from Dali and Xishuangbanna, Yunnan Province,

China. The detailed information per sample is available in

Supplementary Table 1. The samples were identified following

the taxonomic key and external morphology diagnosis proposed

by related literature (Webster and Carpenter, 2008). The

voucher specimens were preserved at the herbarium of Dali

University. The fresh leaf of nine species was frozen in liquid

nitrogen and stored in a 4°C refrigerator for DNA extraction.

Total DNA was extracted using a modified cetyl trimethyl

ammonium bromide (CTAB) procedure (Allen et al., 2006).

DNA quality and quantity were assessed using a NanoDrop

spectrophotometer (ND-2000; Thermo Fisher Scientific, USA)

and agarose gel electrophoresis.
2.2 DNA sequencing, assembly
and annotation

Purified high-quality genomic DNA was broken into short

fragments of approximately 350 bp, and paired-end (PE) libraries

were constructed by adding A-tails, PCR amplification, and other

steps, followed by sequencing in 150 bp paired-end mode on an

Illumina NovaSeq 6000 platform. The high-quality reads were

assembled using GetOrganelle v1.7.5 (Jin et al., 2020) and then

annotated by cpGAVAS2 (http://47.96.249.172:16019/analyzer/

annotate) and (GeSeq, RRID : SCR_017336) (https://chlorobox.

mpimp-golm.mpg.de/geseq.html) (Tillich et al., 2017; Shi et al.,

2019). The annotations of tRNA genes were confirmed by using
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(tRNAscan-SE v.2.03, RRID : SCR_010835) (http://lowelab.ucsc.

edu/tRNAscan-SE/) (Schattner et al., 2005). Annotated cp

genomes sequences were submitted to GenBank and are

available under accession numbers OP009343-OP009351

(Table 1). Fully annotated cp genome circular diagrams were

drawn by OrganellarGenomeDRAW (OGDRAW, RRID :

SCR_017337) (https://chlorobox.mpimp-golm.mpg.de/OGDraw.

html) (Greiner et al., 2019).
2.3 Genome structure and
comparisons analysis

Forward (F), pal indromic (P), reverse (R), and

complementary (C) were identified using the REPuter (https://

bibiserv.cebitec.uni-bielefeld.de/reputer/) tool (Kurtz et al.,

2001). The criteria for identifying repeats include a minimum

repetition size of 30 bp and a 90% similarity between repeat

pairs, calculated by assigning a value of 3 to the altered sequence.

In addition, (MISA, RRID : SCR_010765) (http://pgrc.ipk-

gatersleben.de/misa/) software was used to identify simple

sequence repeats (SSRs) (Beier et al., 2017). We followed

conventional standards for identifying chloroplast and

mitochondrial SSRs, including a minimum stretch of 10 for
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mono-, 5 for di-, 4 for tri-, and 3 for tetra-, penta- and

hexanucleotide repeats and a minimum distance of 100 bp

between compound SSRs. Relative synonymous codon usage

(RSCU) was analyzed by CodonW v.1.4.2 (Sharp et al., 1986).

Also, Tbtools v1.098761 used a heatmap to show the values of

RSCU (Chen et al., 2020).

For comparative analysis of genes, tRNA, repeat content,

genome size, and GC content were assessed by (Geneious

v.2022.2.1, RRID : SCR_010519) (http://www.geneious.com/)

software (Kearse et al., 2012). The software mVISTA (https://

genome.lbl.gov/vista/index.shtml) (Frazer et al., 2004) in

Shuffle-LAGAN mode (Brudno et al., 2003) was used to

compare the nine de novo cp genome sequences, P. amarus

(GenBank OP009344) was used as the reference genome.

IRscope (https://irscope.shinyapps.io/irapp/) was used to

analyze inverted repeat region contraction and expansion at

the junctions of cp genomes (Amiryousefi et al., 2018). The cp

genomes were aligned in (MAFFT, RRID : SCR_011811)

(https://mafft.cbrc.jp/alignment/server/). Additionally, the

nucleotide variability (Pi) across the cp genome sequences was

performed in (DnaSP v.6.12.03, RRID : SCR_003067) (http://

www.ub.edu/dnasp/) (Rozas et al., 2017), with a window length

of 600 bp and step size of 200 bp. A value of Pi higher than 0.05

was recommended as mutational hotspots (Ren et al., 2022).
TABLE 1 Cp genomes features of nine species of Phyllanthus.

Genome
features

P.
acidus

P.
amarus

P.
reticulatus

P.
urinaria P. niruri P. niruri subsp.

lathyroides
P.

emblica
P.

pulcher
P.

franchetianus

Genome size (bp) 156,331 155,790 156,610 153,850 155,900 143,563 155,841 155,589 155,598

LSC size (bp) 85,807 85,185 85,868 83,714 85,307 91,305 85,721 85,533 85,533

SSC size (bp) 19,262 19,015 19,182 18,780 19,015 18,986 18,950 18790 18,799

IRa/IRb size (bp) 25,631 25,795 25,780 25,678 25,789 16,771 25,585 25,633 25,633

Total GC
content (%)

36.9 36.6 36.6 36.9 36.6 36.8 36.8 36.8 36.8

GC content in
LSC (%)

34.6 34.3 34.3 34.5 34.2 34.9 34.5 34.4 34.4

GC content in
S.S.C. (%)

30.6 30.0 30.2 30.6 30.0 30.1 30.4 30.9 30.9

GC content in
IRa/IRb (%)

43.1 42.9 42.9 43.0 42.9 45.6 43.1 42.9 42.9

Number of genes 126 125 125 122 125 118 126 123 123

Protein-coding
genes

82 81 82 79 81 75 82 79 79

tRNA genes 36 36 35 35 36 35 36 36 36

rRNA genes 8 8 8 8 8 8 8 8 8

Accession
numbers in
GenBank

OP009343 OP009344 OP009345 OP009346 OP009347 OP009348 OP009349 OP009350 OP009351
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2.4 Phylogenetic analysis and
divergence times analysis

For the phylogenetic analysis, 38 Euphorbiaceae taxa initially

consisted of 29 species downloaded from NCBI (Table S2) and

the 9 species presented here (Table 1). At the same time, two

species, Daphniphyllum oldhamii (GenBank NC037883) and D.

macropodum (GenBank MN496060) were selected as outgroups

(Chase et al., 2016). A total of 40 cp genomes were aligned using

MAFFT with the default parameters and trimmed using (TrimAl

v.1.4, RRID : SCR_017334) (http://trimal.cgenomics.org/) with

an automated option (Katoh and Standley, 2013). The best-

fit model of nucleotide substitution was selected using

ModelFinder (Kalyaanamoorthy et al., 2017) with the Bayesian

information criterion as implemented in (IQ-tree v.1.6.12, RRID

: SCR_017254) (http://www.iqtree.org/) (Nguyen et al., 2015).

The alignment was also evaluated using bootstrap analysis on

1,000 in a maximum likelihood (ML) by IQ-tree v.1.6.12, with

the following parameters: iqtree -s input -m TVM+F+R3 -bb

1000 -alrt 1000 -nt AUTO -o NC_037883, MN_496060. Besides,

the neighbor-joining (NJ) tree was constructed using (MEGA X

v.10.2.6, RRID : SCR_000667) (http://megasoftware.net/), and

the bootstrap testing was performed with 1,000 repetitions

(Kumar et al., 2018).

For analysis of divergence times, the molecular clock tree was

constructed based on an ML tree using MEGA X v.10.2.6 (Kumar

et al., 2018; Mello, 2018). The relevant divergence times were

executed in the (TimeTree, RRID : SCR_021162) (http://www.

timetree.org/) Resource (Kumar et al., 2017). Four calibration

points were used to restrict each node: (F1) 110.9–121.0 Ma for

the root node, (F2) 48.6–55.8 Ma for Phyllanthoideae stem age, (F3)

3.5–74.3 Ma for Acalyphoideae crown age, and (F4) 21.4–89Ma for

Euphorbioideae + Crotonoideae.
3 Results

3.1 Genome structure

The raw data of nine species were filtered to remove adapters

and low-quality reads. Approximately 2.24–4.09 Gb data were

obtained for each species. The cp genomes of these nine species

are small circular DNA molecules with sizes in the range of

143,563 bp (P. niruri subsp. lathyroides) to 156,610 bp (P.

reticulatus) (Figure 1), with the typical quadripartite structure

of land plant cp genomes consisting of two inverted repeats (IRa

and IRb) separated by large single copy (LSC) and small single

copy (SSC) regions, respectively. The size of LSC ranged from

83,714 bp (P. urinaria) to 91,305 bp (P. niruri subsp.

lathyroides), SSC ranged from 18,780 bp (P. urinaria) to

19,262 bp (P. acidus), and the size of each IR region ranged

from 16,771 bp (P. niruri subsp. lathyroides) to 25,795 bp (P.

amarus). Moreover, the GC content in the IR region (42.9%–
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45.6%) was higher than LSC (34.2%–34.9%) and SSC (30.0%–

30.9%) (Table 1).

In addition, a total of 118–126 genes were identified, which

comprised 75–82 protein-coding genes, 35–36 tRNAs, and 8

rRNAs (Table 1), whereas the number of genes varies in species

due to IRs contraction and expansion. These genes were divided

into three parts, of which 45 genes belong to photosynthesis-

related genes (photosystem I, photosystem II, NADPH

dehydrogenase, cytochrome b/f complex ATP synthase, and

rubisco), 27 genes belong to self-replication (the large subunit

of the ribosome, small subunit of the ribosome, and DNA

dependent RNA polymerase), and the remaining genes belong

to other genes (acetyl-CoA-carboxylase, c-type cytochrome

synthesis genes, envelop membrane proteins, proteases, and

maturase) (Table S3). Moreover, 17 genes each contained one

intron, among them rpl2 (×2), ndhB (×2), trnI-GAU (×2), and

trnA-UGC (×2), which were located in the IR, and the genes

(trnK-UUU, rps16, trnG-UCC, rpoC1, ycf3, trnL-UAA, trnV-

UAC, and clpP) were located in the LSC, while the ndhA was

only present in the SSC region. In addition, the ycf3 and clpP

each contain two introns (Table S3).
3.2 Repeat analysis

Repetitive sequences in cp genomes play a critical role

in genome evolution and rearrangements. Analysis of

oligonucleotide repeat revealed that the number of repeat types

varied among the nine cp genomes and presented random

permutations, and most repeat sequences were within 30–39 bp
FIGURE 1

Cp genomes map of Phyllanthus. Genes inside and outside the
circle are transcribed clockwise and counter-clockwise.
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(Figure S1). Meanwhile, the frequency of F and P repeats was

greater than that of R and C repeats. The structural analysis of the

repetition sequence is shown in Figure S1. The minimum number

of repeats was found in P. niruri subsp. lathyroides (26), whereas the

maximum was found in P. niruri (49).

SSRs, also known as microsatellites, consists of repeating

units of 1–6 bp in length. 56, 98, 62, 80, 97, 54, 81, 69, and 69

SSRs were identified in P. acidus, P. amarus, P. reticulatus, P.

urinaria, P. niruri, P. niruri subsp. lathyroides, P. emblica, P.

pulcher, and P. franchetianus, respectively (Table S4). The

number of SSRs showed the highest in P. amarus (98) and the

lowest in P. niruri subsp. lathyroides (54). Most SSRs were found

in LSC regions instead of SSC and IR regions (Figure S2). More

than half of the SSRs (51.85%–66.67%) were mononucleotides

with the A/T motif, followed by dinucleotides (16.25%–31.48%)

with a predominant motif of AT/TA, trinucleotides (1.85%–

6.25%) with a predominant motif of AAT/ATT, tetranucleotide

repeats (1.61%–4.35%) with a predominant motif of AAAT/

ATTT, pentanucleotides (0–1.61%), and hexanucleotides (0–

1.25%) that only exist in the cp genome of P. urinaria.
3.3 Codon usage bias of cp genomes

The analyses of RSCU provide information about the

encoding frequency of codons for an amino acid. There were 64

codons in the coding sequence of nine Phyllanthus species genes,

among which 61 codons encoded 20 amino acids, and the other

three codons (UAA, UAG, and UGA) were stop codons (Table

S5). Amino acid frequency analyses revealed that the highest

frequencies were leucine and isoleucine, whereas cysteine was a

rare amino acid. The codon exhibited a strong bias toward an A or

T at the third position. An RSCU value below 1.00 indicates that

the codon usage frequency is lower than expected, whereas an

RSCU value above 1.00 indicates that the codon usage frequency is

higher than expected. In this study, the RSCU values of 30 codons

were greater than 1, whereas the RSCU value of 32 codons was less

than 1, and 2 codons were equal to 1 (Figure 2).
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Moreover, the results showed that the GC content of

synonymous third codon positions (GC3s) is closely related to

codon bias, and the values of GC3s ranged from 25.0% to 31.1%,

suggesting that the genus Phyllanthus had a greater preference

for the A/U ending codons. And the GC content of these cp

genomes was highly conserved. In addition, the values for the

effective number of codons ranged from 48.43% to 52.93%. Both

the codon adaptation index and optimal frequency were less

than 0.5. These findings indicated a slight bias toward codon

usage in the nine Phyllanthus species.
3.4 Inverted repeats

Expansion and contraction at the borders of IR regions are

common evolutionary phenomena that may explain variations

in the size of cp genomes. As illustrated in Figure 3, the rps3

genes existed entirely in the LSC regions of all species, and rpl2

existed entirely in the IR region except for P. niruri subsp.

lathyroides. A truncated copy of the rpl22 gene was observed at

the junction of LSC/IRb in three species (P. reticulatus, P.

pulcher, and P. franchetianus), which starts in LSC regions and

integrates into the IRb region with a size ranging from 2 to 23 bp,

whereas the remaining six species were present entire in the LSC

region. Another truncated copy of the rps19 gene was found at

the junction of IRa/SSC in two species (P. acidus and P. emblica).

Notably, rps19 exists entirely in the LSC region for P. niruri

subsp. lathyroides, and rps19 is present entirely in the IR region

in the remaining six species. Besides, the ndhF gene was found in

the SSC regions except for three species (P. acidus, P. pulcher,

and P. franchetianus), which start in the SSC regions and

integrate into the IRb region in those species. Moreover, the

ycf1 gene was observed at the IRa/SSC junction except for P.

urinaria. In all other species, the ycf1 gene starts in SSC regions

and integrates into the IRa. However, in P. urinaria, the ycf1

gene is completely present in the SSC region. Both psbA and

trnN exist entirely in the LSC and IRa, respectively. Notably, the

trnL gene exists only in the IR region of P. niruri subsp.

lathyroides. These results show that the cp genomes of nine

Phyllanthus species display a unique IR contraction and

expansion type.
3.5 Genome comparison and
nucleotide diversity

A comparison of overall sequence variation showed that the cp

genome of Phyllanthus is quite different. The sequence divergence

of IR regions was lower than that of SSC and LSC regions, and the

coding region was more conserved than the non-coding regions.

Except for the more remarkable mutations in the ndhF, ycf1, and

ycf2 genes, all protein-coding genes showed a highly conserved

character. The highest divergence was mainly found in intergenic
FIGURE 2

The RSCU values of nine Phyllanthus cp genomes. Color key:
the red values indicate higher RSCU values, and the blue values
indicate lower RSCU values (For interpretation of the references
to color in this Figure legend, the reader is referred to the web
version of this article).
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spacers (IGS), such as rps16-trnQ-UUG, trnS-GCU-trnG-UCC,

trnG-UCC-trnR-UCU, trnE-UUC-trnT-GGU, trnD-GUC-trnY-

GUA, trnT-UGU-trnL-UAA, trnL-CAA-ndhB, trnN-GUU-trnR-

ACG, and rps15-ycf1 (Figure 4). Besides, the sliding window

analysis demonstrated that the nine regions, including rps16,

trnS-GCU-trnG-UCC, trnG-UCC-trnR-UCU, petA-psbJ, rps3,

rrn5S-trnR-ACG, ndhF, ndhE-ndhG, and ycf1, had higher

nucleotide diversity values (Pi > 0.05) (Figure S3). The results

above show that 12 highly variable sites (rps16-trnQ-UUG, trnS-

GCU-trnG-UCC, trnG-UCC-trnR-UCU, trnE-UUC-trnT-GGU,

trnD-GUC-trnY-GUA, trnT-UGU-trnL-UAA, trnL-CAA-ndhB,

trnN-GUU-trnR-ACG, rps15-ycf1, petA-psbJ, rrn5S-trnR-ACG, and

ndhE-ndhG) might be able to be used as molecular markers to

identify P. urinaria and its contaminants.
3.6 Species authentication analysis
based on IGS

IGS regions are the most commonly used markers

for phylogenetic studies at plant taxonomic levels, as they

are regarded as more variable and may provide more

phylogenetically informative characters. To find candidate

sequences for identifying P. urinaria and its adulterants, 12 IGS

were extracted from 13 Phyllanthus species using PhyloSuite v1.2.2.

And each of them is subject to ML analyses in IQtree. As shown in

Figure S4.1-4.12, P. urinaria could be distinguished from its
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common adulterants based on trnS-GCU-trnG-UCC, trnT-UGU-

trnL-UAA, and petA-psbJ, whereas the remaining IGS cannot be

distinguished, and the bootstrap values for the relationship among

these clades were weak (<70%). Furthermore, the ML phylogenetic

tree was also inferred using a combination of these three IGS. The

results (Figure S5) showed that P. urinaria (Genbank OP009346)

was located in independent branches and that there was a well-

supported sister relationship between P. urinaria (Genbank

OP009346) and P. amarus (Genbank OP009344) + P. urinaria

(Genbank NC060522) + P. niruri (Genbank OP009347). These

results indicated that combining three IGS could effectively

discriminate P. urinaria from its common adulterants.
3.7 Phylogenetic analysis and divergence
time analysis

The ML and NJ phylogenetic trees were inferred using 40

species, with two Daphniphyllum species as outgroups. The

consensus trees obtained from the inference analyses showed

that most nodes resolved with high support (Figure 5, Figure S6).

The phylogenetic trees generated by the ML and NJ alignments

have similar topologies. Each subfamily of the Euphorbiaceae

family forms a monophyletic clade. Acalyphoideae and

Euphorbioideae + Crotonoideae were sister taxa within

the four subfamilies, and Phyllanthoideae was a sister group

to the clade containing Acalyphoideae + Crotonoideae +
FIGURE 3

Comparisons of the borders of LSC, SSC, and IRa/b regions among the nine Phyllanthus cp genomes. The numbers represent the distance
between the gene ends and the border sites, and the numbers below represent the length of the LSC, SSC, and IRa/b regions.
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Euphorbioideae. In addition, the subfamily Phyllanthoideae is

further divided into three clades: (i) clade A, including

Glochidion wrightii (Genbank MW801302), G. eriocarpum

(Genbank MW801303), G. chodoense (Genbank NC042906),

G. puberum (Genbank MW801304), P. amarus (Genbank

NC047474), P. emblica (Genbank MN122078, Genbank OP0

09349, Genbank NC047477), P. acidus (Genbank OP009343),

and P. niruri subsp. lathyroides (Genbank OP009348); (ii) clade

B, including P. amarus (Genbank OP009344), P. urinaria

(Genbank NC060522), P. niruri (Genbank OP009347), and P.

urinaria (Genbank OP009346); (iii) clade C, including P.

franchetianus (Genbank OP009351), P. pulcher (Genbank

OP009350), and P. reticulatus (Genbank OP009345).

In addition, 34 cp genomes of Euphorbiaceae family plants

(including 13 Phyllanthus species) and two outgroups are

used to estimate the divergence times. Phyllanthus were

estimated to have originated 48.72 million years ago (Ma).

The two main lineages, clade A + clade B and clade C, seem to

have radiated since the Oligocene (clade A + clade B: 36.85 Ma;

clade C: 30.89 Ma; Figure 6). The extant subfamilies of the

Euphorbioideae and Acalyphoideae shared a common ancestor

at the beginning of the Cretaceous (91.91 Ma), while the split

between the Euphorbioideae and Crotonoideae is estimated to

have occurred at 75.64 Ma. Moreover, the divergence times of
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the Daphniphyllum occurred at 120.77 Ma, having shared a

common ancestor with the Euphorbiaceae.
4 Discussion

4.1 Cp genome structure and
comparative analysis

In thepresent study, the cp genomesofnine species ofPhyllanthus

were assembled de novo and analyzed comparatively. The observed

genome size is within the size range known for most angiosperms,

ranging from 107 kb in Cathaya argyrophylla (Pinaceae) to 218 kb in

Pelargonium (geraniums; Geraniaceae) (Daniell et al., 2016). Besides,

our findings revealed that the total length, GC content, and gene

composition of the cp genomes were almost identical in all species.

Previous studies have shown that the cp genome of angiosperms is

highly conserved at the genus level (Khan et al., 2020; Villanueva-

Corrales et al., 2021; Feng et al., 2022). Moreover, previous research

demonstratedthat the rps19geneexisted in theIRregion(Ahmedetal.,

2012; Wang et al., 2022). In contrast, the rps19 of P. niruri subsp.

lathyroides is located entirely in the LSC Region, possibly due to IR

contraction. The same pattern was reported in Anchomanes hookeri,

and Peucedanum (Henriquez et al., 2020; Liu et al., 2022).
FIGURE 4

Comparison of nine cp genomes using P. amarus annotation as a reference. The vertical scale indicates the percentage of identity, ranging from
50% to 100%. The horizontal axis shows the coordinates within the cp genome. Genome regions are color-coded as exons, introns, and IGS,
and the gray arrows indicate the direction of transcription of each gene. Annotated genes are displayed along the top.
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4.2 Species identification and
phylogenetic analysis

Previous molecular studies of the Rheum, Hedyotis, and

Curcuma species showed that cp genetic markers had high

identification capabilities (Zhou et al., 2018; Gui et al., 2020;

Yik et al., 2021). Our study revealed that three regions (trnS-

GCU-trnG-UCC, trnT-UGU-trnL-UAA, and petA-psbJ) might be

potential molecular markers for identifying P. urinaria and its

common adulterants. Bouman et al. (2021) found that the trnS-

GCU-trnG-UCC could distinguish Phyllanthus species. Notably,

Zhang et al. (2021) also found that the trnS-GCU-trnG-UCC

could be potential molecular markers for distinguishing Alpinia

species. Moreover, trnT-UGU-trnL-UAA or petA-psbJ were

reported as potential markers for other species identification

(Dong et al., 2021; Wu et al., 2021). Although these previous

studies revealed that universal DNA barcode (e.g., psbA-trnH)

could differentiate P. urinaria from their related species

(Srirama et al., 2010; Inglis et al., 2018), some common

adulterants were not included in these studies. Furthermore,

the comparative analysis showed that the screened IGS exhibited

higher variability than psbA-trnH. Theoretically, these IGS

could differentiate nine selected species, whereas a much
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more thorough investigation of identification accuracy

and amplification efficiency is required, as well as more

experimental evidence.

Moreover, ML analysis demonstrated that P. urinaria

(Genbank OP009346) was located in independent branches in the

phylogeny and strongly supported the sister relationship between P.

urinaria (Genbank OP009346) and the well-supported clade (P.

amarus, Genbank OP009344; and P. niruri, Genbank OP009347).

The results indicated that the cp genome could discriminate P.

urinaria from P. amarus and P. niruri, which was supported by the

findings of other researchers based on ITS, matK, psbA-trnH, trnL,

and trnL-trnF (Inglis et al., 2018). However, the samples of P.

urinaria (Genbank OP009346) and P. urinaria (Genbank

NC060522) were not recovered as monophyletic and were placed

in different branches. In the previous study, some researchers found

that intraspecific diversity existed in Isodon rubescens and Artemisia

argyi from different geographical areas (Zhou et al., 2022; Chen

et al., 2022). Therefore, the difference in geographical origins may

explain why the two species are split in these clades. Besides, both

NJ and ML analyses found strong support for a sister relationship

between P. reticulatus (Genbank OP009345) and P. pulcher

(Genbank OP009350), which agreed with the findings of Hidalgo

et al. (2020) based on trnK-matK, matK, ITS, and matK+ITS
FIGURE 5

Maximum likelihood phylogenetic tree based on complete cp genomes. Daphniphyllum oldhamii and D. macropodum were used as outgroups.
Numbers at nodes are bootstrap support values.
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(Pagare et al., 2016). In a previous study, Rehman et al. (2021) also

found that the polymorphic protein-coding genes, including rpl22,

ycf1, matK, ndhF, and rps15, may help reconstruct the high-

resolution phylogenetic tree of the family Phyllanthaceae. In

general, our results provide a valuable reference and a foundation

for using cp genomes in species identification and aid in the

understanding of the phylogeny of Phyllanthus.
4.3 Divergence time of Phyllanthus

According to divergence time estimates, the early divergence

of Phyllanthus occurred at approximately 48.72 Ma during the

early Eocene, which is congruent with other studies (Kawakita

and Kato, 2009; Welzen et al., 2015). Since the late Eocene, the

previous study reported that the global climate started to have a

notable change; as the humidity and precipitation gradually

increased (Zachos et al., 2001) and slowly cooled within this

timeframe. These climate changes may have promoted the

dispersals/migrations, and diversification of land plants (Zuo

et al., 2017). In addition, Dynesius and Jansson (2000) and

Zachos et al. (2001) also found that the temperature increase

affected various plant and animal communities and groups at the
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Oligocene/Miocene boundary (~23 Ma). Among the effects of

climate change, there was likely increased speciation in the

niches that opened after the end of the climatic fluctuations

(Bouman et al., 2021). Therefore, we can conclude that the

climatic changes may have contributed to the diversification of

Phyllanthus during the Eocene.
5 Conclusion

In the present study, the complete cp genomes of nine species

of Phyllanthus were de novo assembled from high throughput

sequencing reads, and the cp genomes of P. acidus, P. reticulatus,

P. niruri, P. niruri subsp. lathyroides, P. pulcher, and P.

franchetianus were reported for the first time. These cp genomes

were generally conserved and exhibited similar gene content and

genomic structure. Three highly variable cp loci, including trnS-

GCU-trnG-UCC, trnT-UGU-trnL-UAA, and petA-psbJ were

identified and could serve as candidate markers for identifying

P. urinaria and its common adulterants. Meanwhile, the complete

cp genome was considered a reliable molecular marker for

identifying these species, which may have virtual significance for

protecting their diversity and making management decisions
FIGURE 6

Divergence times estimation based on cp genomes. The node ages are given for each node.
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for this species. The divergence of Phyllanthus from ancestral taxa

occurred in the early Eocene, whichmight be due to geological and

climatic changes. In conclusion, our study provides a powerful tool

and valuable scientific reference for the safety and effectiveness of

clinical drug use, and it also contributes to the bioprospecting and

conservation of Phyllanthus species.
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