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Regulation of gene expression underpins gene function and is essential for

regulation of physiological roles. Epigenetic modifications regulate gene

transcription by physically facilitating relaxation or condensation of target

loci in chromatin. Transcriptional corepressors are involved in chromatin

remodeling and regulate gene expression by establishing repressive

complexes. Genetic and biochemical studies reveal that a member of the

Groucho/Thymidine uptake 1 (Gro/Tup1) corepressor family, HIGH

EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), is recruited

via the evening complex (EC) to the GIGANTEA (GI) promoter to repress gene

expression, and modulating flowering time. Therefore, HOS15 connects

photoperiodic pathway and epigenetic mechanism to control flowering time

in plants. In addition, growing body of evidence support a diverse roles of the

epigenetic regulator HOS15 in fine-tuning plant development and growth by

integrating intrinsic genetic components and various environmental signals.
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Introduction

Plants are the most fundamental organisms on earth that sustain global ecosystem

and food production (Raven, 2019; Eckardt et al., 2022). The changing environmental

conditions, however, has threatened the plants. Unfortunately, land plants as sessile

organisms are unable to choose or change environment for their development and

growth. Plants as multicellular organisms are strikingly plastic and have evolved the

ability to coordinate their growing phenotype in response to the changing environment

(Pierik et al., 2021). For instance, the timing of flowering is a highly plastic phenomenon.
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A variety of external signals, such as day length and temperature,

may induce endogenous physiological changes and accelerate

flowering, the critical switch from vegetative to reproductive

growth (Srikanth and Schmid, 2011; Freytes et al., 2021). Cells of

a complex multicellular organism are homogeneous at genomic

level but are physiologically and functionally heterogeneous due

to the dynamic expression of genes. The spatiotemporal

regulation of gene expression, which determines the timing

and pattern of gene function, supports the phenotypic

plasticity of plant development and growth (Nicotra et al.,

2010; Jong and Leyser, 2012). Epigenetic regulation of

chromatin status has become one of the most exciting frontiers

of gene expression research in plant science. Epigenetic

modification influences chromatin conformation and related

transcriptional states by means of DNA methylation and histone

modifications (Jaenisch and Bird, 2003; Gibney and Nolan, 2010;

Eriksson et al., 2020).

Corepressors are transcriptional regulators (Courey and Jia,

2001). These transcriptional corepressors epigenetically repress

target genes by forming a multi-protein complex with other

transcription factors, adapters and accessory proteins. HIGH

EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15

(HOS15) belongs to the most prominent and evolutionarily

conserved Groucho/Thymidine uptake 1 (Gro/Tup1) family

corepressors, which include the Gro protein in nematodes, the

Tup1 protein in yeasts, and the transducin beta-like protein 1

(TBL1) protein in mammals. They contain a N-terminal

glutamine (Q)-rich motif and a C-terminal region comprising

multiple-repeat of approximately forty amino acids enriched for

tryptophan-aspartic acid dipeptide (WD40). In Arabidopsis, at

least 13 members of the Gro/Tup1 family corepressor have been

identified, including TOPLESS (TPL) and four TPL-related

proteins (TPRs), LEUNIG (LUG) and LUG HOMOLOG

(LUH), HOS15 and other uncharacterized members (Liu and

Karmarkar, 2008; Lee and Golz, 2012). Among them, the TPL/

TPR sub-family proteins selectively interact with HDA19. The

TPL-HDA19 module has been implicated in regulating a broad

range of developmental and environmental processes by

association with different transcription factors (Long et al.,

2006; Causier et al., 2012; Krogan et al., 2012; Wang et al.,

2013; Oh et al., 2014; Plant et al., 2021). Thus, it was not

surprising when HOS15 was found to be involved in a variety

of biological processes, like TPL/TPRs, through connecting with

histone deacetylases. However, neither HOS15 nor TPL/TPRs

contains a DNA binding domain, therefore, the corepressors

require additional patterners to reach promoter regions of target

genes. Recent study revealed that HOS15 was recruited by a

protein complex consisting of transcription factors to the

promoter region of GIGANTEA (GI) to repress photoperiodic

pathway which accelerates Arabidopsis flowering under long

days (Hammond, 2019; Park et al., 2019). This review focus on

the molecular mechanism of HOS15-mediated epigenetic

regulation of flowering and highlights the role of HOS15 in
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integration of both endogenous physiological cues and

exogenous environmental stimuli stresses.
HOS15 is involved in regulating
photoperiodic flowering

Previously, an elegant high-throughput genetic screening

system was designed to decipher the complex osmotic and

cold stress signaling cascade in Arabidopsis using the chimeric

gene construct as reliable reporter, in which the stress-

responsive RD29A (also known as COR78 for cold regulated

78) gene promoter was used to control the expression of the

firefly luciferase gene that quantitatively and faithfully reflecting

the RD29A promoter activity (Ishitani et al., 1997). A large

number of different categorized mutants with altered expression

of the reporter gene was identified, such as cos, los, and hos,

named after constitutive, low, and high expression of osmotically

responsive genes, respectively. Interestingly, some of those

mutants also displayed a plethora of developmental

phenotypes, for examples, the hos1 mutant with defect in a

RING finger E3 ubiquitin ligase coding gene (gene locus:

AT2G39810) flowers remarkably earlier than wild-type (Jung

et al., 2012; Lee et al., 2012); while the hos2 [also designated

fiery1 (fry1) for strong expression of firefly luciferase reporter

activity] mutant with defect in a bifunctional phosphoadenosine

phosphatase coding gene (AT5G63980) has fewer lateral roots,

shorter petioles, crinkly leaves, and flowers later (Xiong et al.,

2001; Chen and Xiong, 2010). The pleiotropic developmental

phenotypes of the HOS family mutants manifest that the

developmental and stress response signaling pathways are

genetically interactive.

The casual gene responsive for hos15 mutant phenotype was

identified to encode a WD40-repeat protein belonging to the

Gro/Tup1 family corepressor (Zhu et al., 2008), which includes a

dozen of members in Arabidopsis (Figure 1). However, neither

HOS15 interacting proteins nor its role in plant development has

been described. While studying the molecular function of

HOS15, Park et al. noticed, by coincidence, that HOS15 loss-

of-function (hos15) plants flower earlier than wild-type (WT)

plants. By contrast, the flowering time of HOS15 gain-of-

function plants become delayed. Hooked by this robust and

interesting phenotype, the authors set out to elucidate the

molecular mechanism underlying HOS15-mediated control of

flowering time.

Regulation of flowering time has been a hot topic studied

intensively over the past 100 years. These studies implicated that

the initiation of flowering was controlled by multiple genetically

defined pathways that integrate both exogenous environmental

cues and endogenous developmental signals (Andrés and

Coupland, 2012). The vernalization pathway refers to the

establishment of competence to flower after a prolonged

exposure of plants to cold. The gibberellic pathway refers to
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the requirement of the phytohormone, gibberellin (GA), to

promote normal flowering patterns. The photoperiodic

pathway refers to the regulation of flowering by day length

and light quality (Shim et al., 2017). CONSTANS (CO) plays a

central role in the photoperiodic flowering pathway, in which

the rhythmic expression pattern of CO is regulated by

GIGANTEA (GI) (Fowler et al., 1999; Park et al., 1999;

Mizoguchi et al., 2005; Park et al., 2013). The endogenous

regulators that promote flowering in a photoperiod- and GA-

independent way often referred to as the autonomous pathway.

To first crack the mystery by determining which pathway was

affected in hos15 mutants, a high-throughput RNA sequencing

experiment was performed to identify if any genes of specific

pathway were differentially expressed in hos15 mutants when

compared to WT. The expression of key floral pathway

integrator genes, such as FLOWERING LOCUS T (FT)

(Corbesier et al., 2007), SUPPRESSOR OF OVEREXPRESSION

OF CONSTANS 1 (SOC1) (Samach et al., 2000; Yoo et al., 2005),

APETALA1 (AP1) (Mandel et al., 1992), AGAMOUS-LIKE 19

(AGL19) and AGL24 (Yu et al., 2002; Schönrock et al., 2006), was

higher in hos15 mutants. This unbiased analysis also revealed

that the expression of photoperiodic flowering pathway genes,
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including GI, CO, and FLAVIN-BINDING KELCH REPEAT F-

BOX 1 (FKF1) (Ito et al., 2012), was specifically upregulated;

whereas the expression of other flowering pathway genes was

unchanged in hos15 mutants. The results strongly indicate that

the photoperiodic pathway is provoked in hos15mutants leading

to early flowering.
HOS15 is recruited to the GI
promoter by the evening complex

As mentioned above, genes such as GI and CO are involved

in promoting flowering in response to photoperiod. GI is a key

circadian integrator and a master regulator of CO expression.

Under long-day condition, light promotes the expression of GI

and a ubiquitin-ligase FKF1 peak at the same time, leading to the

optimal formation of the GI–FKF1 complex, which, in turn,

promotes the degradation of transcriptional repressors of CO

(Imaizumi et al., 2005; Sawa et al., 2007). CO is a floral activator

that directly activates FT expression. Therefore, GI controls

flowering time through regulating the CO-FT module. Indeed,

GI protein stability is controlled by light and circadian clock.
FIGURE 1

A phylogenetic tree of the Gro/Tup1 corepressor gene family in Arabidopsis. The gene names were followed by TAIR locus numbers. An
unrooted neighbor- joining tree was generated by MEGA X with full-length sequences (1, 000 bootstrap replicates).
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The clock-associated protein EARLY FLOWERING 3 (ELF3)

acts as a substrate adaptor, enabling a RING-type E3 ubiquitin-

ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to

target GI for the ubiquitin-26S proteasome-mediated proteolysis

(Yu et al., 2008). Interestingly, GI transcript levels were

consistently increased in elf3 mutants, which displays an early-

flowering phenotype (Kim et al., 2005). Therefore, ELF3 controls

GI protein abundancy at both transcriptional and post-

transcriptional levels. But how ELF3 represses GI expression

remain mysterious. ELF3 is a constituent component of a

protein complex (called the evening complex [EC]), consisting

of ELF3, ELF4 and a transcription factor, LUX ARRHYTHMO

(LUX, also termed PHYTOCLOCK1), which directly binds to

the GI promoter through LUX binding site (LBS) to repress GI

transcription in the night (Mizuno et al., 2014).

Since GI transcription is repressed by both the evening

complex and the transcriptional corepressor HOS15, the

authors wondered whether the evening complex brings HOS15

to the GI promoter. A pilot chromatin Immunoprecipitation

(ChIP) assay revealed that like LUX, HOS15 associated with the

GI promoter via binding to the same LBS regions (Park et al.,

2019). This result promoted the author to further investigate

whether HOS15 can bind to the evening complex. Both in vitro

Y2H and in vivo experiments confirmed that HOS15 interacted

with the evening complex components, LUX and ELF3 as well. A

gel-filtration analysis showed the presence of a high-order

complex containing HOS15-LUX-ELF3 (Park et al., 2019).

Further ChIP assays with loss-of-function mutants indicated

that HOS15 and LUX were interdependent in terms of binding

to GI promoter; HOS15 was unable to bind to GI promoter in

lux mutants, and vice versa. Thus, it become clear that the

transcriptional corepressor HOS15 was recruited to the GI

promoter via direct association with the evening complex to

silence GI expression. Now, there comes another question where

is the real core repressor of the repression-complex established

on the target promoter.
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HOS15 interacts with a histone
deacetylase HDA9

HOS15 contains a WD40 repeat motif and is ortholog to

TBL1 in mammals (Zhu et al., 2008). TBL1 coordinates the

formation of transcriptional repression complexes comprising

either nuclear receptor corepressor (N-CoR, also known as

NCOR1) or silencing mediator for retinoic acid and thyroid

receptor (SMRT, also known as NCOR2), which function in

chromatin modification of target gene promoter regions. TBL1

selectively deploys histone deacetylases (HDACs) of the Reduced

potassium dependency 3 (Rpd3)-like superfamily that is broadly

conserved in all eukaryotes (Yoon et al., 2005). HDACs are

responsible for catalyzing histone deacetylation modification. In

Arabidopsis genome the class I Rpd3-like HDAC family is

composed of HDA6, HDA7, HDA9, and HDA19.

Interestingly, HDA9 and HDA19 were found in a mass

spectrometry-based proteomic approach aimed to identify

HOS15-interacting proteins (Park et al., 2018a).

Genetic evidence that both hda9 single and hda9 hos15

double mutants phenocopied the early-flower phenotype of

hos15 mutants, suggested that HDA9 was a strong candidate

that functioned in association with HOS15. The authors

biochemically confirmed that HDA9 interacted with HOS15

and HDA9 bond to GI promoter regions in a HOS15-dependent

manner, by harnessing co-IP and ChIP analysis, respectively.

Consistently, the Histone H3 on the GI locus was hyper-

acetylated in hos15 mutants. Therefore, it appears evident that

the EC complex recruits the HOS15-HDA9 module to the GI

promoter and represses GI transcription by modulating the

epigenetic status, and thereby delaying flowering time

(Figure 2). The corepressor HOS15 connects photoperiodic

pathway regulated by GI and epigenetic modification at

histones catalyzed by HDA9 to control flowering time in plants.

As broached above, the Arabidopsis Rpd3-like HDACs in

general were believed to be involved in different plant biological
FIGURE 2

Molecular model of HOS15-mediated higher-order repressive complex in GI promoter region to inhibit GI expression via histone deacetylation.
Inhibition of GI expression delays flowering time. EFLS, EARLY FLOWERINGS; GI, GIGANTEA; HDA9, HISTONE DEACETYLASE 9; HOS15, HIGH
EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15; LUX, LUX ARRHYTHMO.
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processes by regulating gene expression through histone

deacetylation. The mechanisms by which HDACs are

selectively recruited to specific target gene loci in chromosome

are not well understood. Notably, HDACs may have non-

histone substrates (Zheng et al., 2020; Xu et al., 2021). In an

immunoaffinity purification assay to identify protein complex

associated with HDA9 revealed that the WRKY53 transcription

factor could co-purified with HDA9 (Chen et al., 2016). A

domain-swapping experiment further demonstrated that the

deacetylase domain of HDA9 mediated the interaction with

WRKY53. Biochemical analysis using an anti-acetylated lysine

antibody revealed that WRKY53 lysine acetylation levels were

increased and decrease in HDA9 loss- and gain-of-function

mutants, respectively, as compared to the wild-type

background (Chen et al., 2016). HDA9 might inhibit WRKY53

transcriptional activity through deacetylation modification,

thereby regulating downstream gene expression. Interestingly,

through a large-scale protein acetylome analysis, ribosomal

proteins were identified as substrates of HDA714, a member

of Rpd3-like HDACs in rice (Xu et al., 2021). Contrary to the

long-held belief that histone deacetylases act only on the tails of

histone proteins, HDACs might form distinct protein complexes

and regulate gene expression through various mechanisms in

different physiological contexts, which offers the possibility of

complicate crosstalk and delicate balance among diverse

signaling pathways.
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The loose ends: A versatile role of
HOS15 in development and more

The role of HOS15-mediated regulation of flowering time

has been clearly elucidated in Arabidopsis. However, as a

universal corepressor, it is not unexpected that HOS15 is

involved in a myriad of physiological processes through

interacting with corresponding transcription factors.

Mutation of HOS15 massively affects histone acetylation and

methylation levels, which subsequently alters expression of a large

number of genes involved in developmental programs and

environmental responses (Mayer et al., 2019). In addition to

regulate flowering time, Suzuki et al. reported that HOS15 plays a

critical role in the specification and definition of aerial lateral organ

size by promoting cell proliferation during leaf developmental

program (Fujikura et al., 2009; Suzuki et al., 2018). HOS15 also

promotes age-associated leaf senescence via differential regulation of

senescence- and photosynthesis-related genes (Zareen et al., 2022).

HOS15 not only regulates plant development and growth but

also participates in plant response and adaptation to

environmental changes. Several lines of evidence supported that

HOS15 interacts with histone deacetylase 2C (HD2C) and induces

HD2C degradation via the CULLIN4-based E3 ubiquitin ligase in

a cold-dependent manner, which releases the expression of cold

responsive genes to enhance cold tolerance (Zhu et al., 2008; Park

et al., 2018b; Lim et al., 2020; Lim et al., 2021). HOS15 negatively
FIGURE 3

Schematic diagram of HOS15 regulated developmental processes and response to environmental stresses. So far, HOS15 was found to play
multiple roles in plant organ development, such as leaf, flower, seed and senescence; and plant response to various abiotic and biotic stresses,
such as drought, temperature, and pathogens.
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regulates Snf1-Related Kinases (SnRKs) activity of the abscisic

acid (ABA) signaling pathway (Ali and Yun, 2020; Khan et al.,

2022). In addition to be involved in abiotic stress response, HOS15

also regulates plants resistance to pathogen infections. Shen et al.

revealed that HOS15 sophisticatedly manipulates plant defense

response by destabilizing the transcriptional activity of

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1

(NPR1), the master regulator of plant immunity networks (Shen

et al., 2020). Yang et al. revealed that HOS15 intercepts plant

defense response by repressing the expression of nucleotide-

binding leucine rich repeat/NOD-like receptors, which recognize

invading pathogen effectors to provoke effector-triggered

immunity; therefore, mutation of HOS15 confers plants more

resistant to pathogen infection (Yang et al., 2020). They also

noticed that mutation of HOS15 results in enlarged siliques, the

seed capsules of cruciferous plants (Mayer et al., 2019; Shen et al.,

2020). In addition to acetylation, histone methylation, another

type of post-translational modification may also be involved in

fine-tuning the trade-off between growth and defense in plants.

For example, the members of the histone methyltransferase

family, SET DOMAIN GROUP 8 (SDG8) and ARABIDOPSIS

TRITHORAX 1 (ATX1, also known as SDG27), positively

regulate plant immune response to phytopathogens while

actively repress plant flowering time (Berr et al., 2010; S., Y.,

Kim et al., 2005; Zhao et al., 2005; Pien et al., 2008; Lee et al.,

2016). Regulation of histone modification is a gigantic platform

for different pathways convergence and interaction that deserves

further exploration.

The so far identified biological roles of Arabidopsis HOS15

were summarized in Figure 3. Studies of HOS15 function will

elucidate the molecular mechanism underlying how plants

epigenetically regulate development and environmental

adaptations and trade-off between these two processes, which

will eventually provide insights on how to develop novel high

quality, high yield and stress resilient crops by innovative

bottom-up molecular breeding technologies to sustain

agriculture under global climate change.
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