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Ondřej Plı́hal

ondrej.plihal@upol.cz

SPECIALTY SECTION

This article was submitted to
Plant Physiology,
a section of the journal
Frontiers in Plant Science

RECEIVED 19 November 2022

ACCEPTED 29 December 2022
PUBLISHED 18 January 2023

CITATION
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To cope with biotic and abiotic stress conditions, land plants have evolved several

levels of protection, including delicate defensemechanisms to respond to changes

in the environment. The benefits of inducible defense responses can be further

augmented by defense priming, which allows plants to respond to a mild stimulus

faster and more robustly than plants in the naïve (non-primed) state. Priming

provides a low-cost protection of agriculturally important plants in a relatively safe

and effective manner. Many different organic and inorganic compounds have been

successfully tested to induce resistance in plants. Among the plethora of

commonly used physicochemical techniques, priming by plant growth

regulators (phytohormones and their derivatives) appears to be a viable

approach with a wide range of applications. While several classes of plant

hormones have been exploited in agriculture with promising results, much less

attention has been paid to cytokinin, a major plant hormone involved in many

biological processes including the regulation of photosynthesis. Cytokinins have

been long known to be involved in the regulation of chlorophyll metabolism,

among other functions, and are responsible for delaying the onset of senescence.

A comprehensive overview of the possible mechanisms of the cytokinin-primed

defense or stress-related responses, especially those related to photosynthesis,

should provide better insight into some of the less understood aspects of this

important group of plant growth regulators.
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Introduction

The crisis of feeding the world’s rapidly growing population with annual growth of

around 80 million (Roser et al., 2013) is compounded by a plethora of conflicting issues, such

as limited water availability or insufficient allocation of agricultural land. Moreover, various

biotic and abiotic stresses resulting from long-term exposure to high temperatures and

osmotic stress significantly limit crop yields. Water stress and salinity are considered to be the

biggest challenges of present-day agriculture (Abhinandan et al., 2018), leading to poor seed
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germination rates, poor seedling emergence and poor stand

establishment, thereby significantly limiting global crop production

(Reed et al., 2022). Sustainable agriculture under the pressure of

climatic change is one of the priorities of developed countries across

the globe. The crop productivity is expected to have increased by

approximately 60-100% by 2050; achieving such a goal without

damaging the agricultural soil is challenging (Lau et al., 2022).

Environmental stresses may be prevented by optimizing plant

growth conditions and applying plant growth regulators (Yakhin

et al., 2016). Seed priming – a process that involves seed imbibition

with small amount of water to allow distribution of the priming

agent – is recognized as an innovative and affordable technology to

counteract harmful effects of abiotic stress by enhancing plant defense

responses (Arun et al., 2022).

Similar to immunization in animals and humans, where an

infectious agent or vaccine helps the immune system develop

immunity to a disease, plants can also be immunized. This type of

“acquired physiological immunity” in plants is now referred to as

priming and can generally be described as the ability to elicit a faster

and/or stronger defense response after a prior exposure to a biotic or

an abiotic stress condition (Bruce et al., 2007; Hilker and Schmülling,

2019). Both biotic and abiotic stressors can elicit an adaptive response

of the plant immune system, including changes at the epigenetic level,

transcriptional reprogramming, and changes in protein

phosphorylation (Conrath, 2011; Mauch-Mani et al., 2017). In

general, priming allows plants to remember past stress events and

prepare them for future attacks (Tsuda et al., 2013; Bjornson et al.,

2014; Choi et al., 2014; Campos et al., 2016; de Zelicourt et al., 2016;

Ariga et al., 2017; Chen et al., 2021). Linked multilevel processes

generate a stress imprint or stress memory of a given priming event so

that when a plant encounters the same specific condition, it can reach

a primed state of enhanced and faster responsiveness and effectively

regulate the relevant defense signaling cascade(s) (Conrath et al.,

2006). Some excellent reviews address the molecular mechanisms

underlying stress memory and priming formation upon various stress

conditions in different plant species (Conrath, 2011; Conrath

et al., 2015).

While defense priming is typically associated with bacterial and

fungal pathogens or other biotic stressors, an altered response to

abiotic stressors (also called hardening) is no less important. Previous

exposure to a mild abiotic stress including heat, cold, osmotic or water

stress can also improve resistance of various environmental stresses

(Thomashow, 2010; Amooaghaie and Tabatabaie, 2017; Fan et al.,

2018; Lemmens et al., 2019). Priming with plant hormones

(hormopriming) is another popular and effective approach how to

improve overall plant development (Iqbal et al., 2006; Nawaz et al.,

2013; Chipilski et al., 2021; Vedenicheva et al., 2022), with cytokinins

(CKs) emerging as a potentially interesting new group of

hormopriming regulators that have been repeatedly shown to

influence several developmental processes, including photosynthesis

and senescence (Sobol et al., 2014; Vylıč́ilová et al., 2016; Hönig et al.,

2018; Kučerová et al., 2020). In this review, we focus on possible CK

effects in stress priming, with particular emphasis on the maintenance

of photosynthesis, which is likely the backbone of the adaptive

response mediated by this plant hormone.
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Cytokinin priming to increase crops
growth and yield
It has been recently reported that priming of wheat seeds with

benzylaminopurine (BAP) and kinetin (KIN) applied by spraying the

wheat plants during the grain filling stage resulted in up to 14% higher

productivity, higher fresh and dry weight, and chlorophyll content

index of flag leaves (Chipilski et al., 2021). In addition to the positive

impact on photosynthesis, another way in which CKs can influence

plant fitness and yield is their natural ability to suppress oxidative

stress, which has been also repeatedly associated with defense priming

in plants (Kerchev et al., 2020). The offspring of CK-treated plants

during the grain filling stage showed a lower accumulation of stress

markers in field conditions demonstrating the transgenerational effect

of this stress imprint (Chipilski et al., 2021). The CK-primed

enhanced protection against oxidative damage was demonstrated

on 15-day-old seedlings of wheat (cv. Geya-1) and these results

positively correlated with a 25% lower average accumulation of

malondialdehyde and hydrogen peroxide in 5-day-old seedlings of

such wheat. In addition, the exogenous CK application in field

conditions enhances the wheat seed viability after a low-

temperature storage, which is an essential feature for practical

agriculture (Chipilski et al., 2021). Moreover, KIN improved tomato

shoot lengths after seed priming (Nawaz et al., 2013). As outlined

above, the CK treatment can reasonably influence seed germination.

This may be correlated with increased activity of hydrolytic enzymes

in developing seeds, which can neutralize the impact of seed aging

(Nawaz et al., 2013).

CK priming becomes particularly important when dealing with

the consequences of climate change, such as temperature changes,

increased solar radiation, drought, or salinity. The priming of rye

seeds (cv. Boguslavka) with zeatin resulted in significant changes of

endogenous CK pools in both shoots and roots of 7-day-old seedlings

(Vedenicheva et al., 2022). Also, rye plants grown from CK-primed

seeds were more resistant to hyperthermia stress than untreated

control (Vedenicheva et al., 2022). Two cultivars of hexaploid

spring wheat (Triticum aestivum L.) seeds were pre-soaked in BAP

and KIN solutions, and the primed and non-primed seeds of salt-

intolerant MH-97, as well as salt-tolerant Inqlab-91, were compared.

KIN was effective in increasing the germination rate in the salt-

intolerant cultivar and early seedling growth when compared with

hydropriming under salt stress. Furthermore, the KIN-primed seeds

showed a consistent promoting effect in the field and improved

growth and grain yield in both cultivars under salt stress (Iqbal

et al., 2006). The authors explain the priming effect by a complex

crosstalk regulatory mechanism involving levels of active CK, abscisic

acid (ABA) and indoleacetic acid (IAA) in developing plant leaves.

CKs applied on the seeds can enhance the future shoot regeneration

efficiency, as it activates the dedication of the shoot progenitor at later

stages and allows chromatin to maintain shoot identity genes (Fathy

et al., 2022; Wu et al., 2022).

Many CK-based compounds have already found application in

micropropagation techniques and protection of plants against various

types of abiotic stress, some were also tested experimentally in in field
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trials (Koprna et al., 2016; Plıh́alová et al., 2016). Regarding seed

priming, it may be interesting to note that the application of some

CK-based derivatives, such as 2-substituted-6-anilino-9-

heterocyclylpurine derivatives, has already been patented for seed

dressing/coating of various crops, mainly cereals (Zatloukal et al.,

2015). Their application led to increase of yield and quality of the

agricultural product in harmful conditions (Zatloukal et al., 2015).

Purine based (CK) derivatives were applied on maize, winter wheat

and rapeseed. Other CK derivatives derived from urea were applied to

fight stress caused by drought, heat or cold stress and salinity (Nisler

et al., 2015). Such urea-based derivatives were applicated on winter

wheat Triticum aestivum cv Hereward and spring barley (Hordeum

vulgare), malting variety Bojos or winter oilseed rape treated by

picking with a 50 µM solution of urea-based CK derivatives (Nisler

et al., 2015). Since even seed coating where the active substances

remain on the surface of the seed can cause such an impact on the

crop productivity as described above, soaking the seed in the priming

agents (although more technically demanding) may produce earlier

and more consistent responses. Thus, it can have a more significant

impact on crop yield.
Mechanisms of cytokinin-mediated
effects on photosynthesis

The reduction in photosynthetic capacity is associated with the

reduced growth in many plant species exposed to stressful

environments, demonstrating a direct relation between the

photosynthetic capacity and crop yield (Moradi and Ismail, 2007;

Naeem et al., 2010; Wu et al., 2012; Wu et al., 2019). Among the

various biochemical processes, photosynthesis is highly sensitive to

any environmental stress, with the photosynthetic apparatus being

one of the most stress-sensitive plant components. Thus,

photosynthetic capacity determined through the gaseous exchange

(von Caemmerer and Farquhar, 1981) and chlorophyll fluorescence

(Roháček, 2002; Lazár, 2015) measurements provides an excellent

way to analyze the effects of stress on plants. In addition, monitoring

photosynthetic variables by non-invasive techniques can be used to

assess whether priming effects have been achieved and to determine

the potential fitness benefits of the process. Optimization of the

photosynthesis through transcriptomic reprogramming of target

components of photosynthetic protein complexes or specific

regulation of chlorophyll-related and other metabolic processes

could, on the other hand, provide us with a powerful tool to

increase yield under certain stress conditions, resulting in an overall

improvement of agricultural production.

Priming, due to an inherently relatively high stability of

photosystems and their high recovery response, offers a role in

reducing the severity of stress and can therefore promote a rapid

and complete recovery of plant physiological functions. Although

different priming methods undoubtedly improve photosynthetic

parameters and overall photosynthetic efficiency of plants exposed

to various environmental stresses (Vincent et al., 2020; Sorrentino

et al., 2021; Aswathi et al., 2022; Johnson and Puthur, 2022), the

control mechanisms that govern the photosynthetic protection are

still poorly understood. Recently, a major role in both the direct and
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indirect regulation of the photosynthetic protection under stress

conditions has been attributed to various plant hormones (Müller

and Munné-Bosch, 2021), which have long been known as effective

priming agents (Kauss and Jeblick, 1995; Mur et al., 1996; Ton and

Mauch-Mani, 2004; Hirao et al., 2012; Wang et al., 2014; Ji et al.,

2021). We observed that CKs and their derivatives have important

protective effects on the photosynthetic apparatus, which is

manifested by the upregulation of photosystem components PSII

(and more rarely PSI), upregulation of Calvin cycle components

(RuBisCO, glyceraldehyde-3-phosphate dehydrogenase, etc.) and

maintenance of chlorophyll through the downregulation of

chlorophyll catabolism (chlorophyll b reductase coded by NOL,

NYE1, NYE2, etc.; Vylıč́ilová et al., 2016) and the upregulation of

chlorophyll biosynthesis, presumably through upregulation of

protochlorophyllide oxidoreductase (Kusnetsov et al., 1998). This

leads to a significantly better plant fitness and a delayed onset

of senescence.

CKs are non-volatile plant hormones that reside mostly within

plant vascular tissues and are unable to provide defense responses in

neighboring plants (Dervinis et al., 2010). However, this does not

seem to lessen their potential as effective priming agents. Apart from

the relatively decent knowledge about their mode of action under

optimal developmental and growth conditions, their role in plant

defense priming related especially to photosynthesis is still a mosaic of

individual findings. CKs play a central role in the chloroplast

development and function and in chlorophyll biosynthesis

(Cortleven and Schmülling, 2015). They are known to regulate

many genes associated with photosynthesis (Brenner and

Schmülling, 2012) and protect the photosynthetic machinery and

productivity of plants exposed to various stresses (Chernyad’ev,

2009). CKs appear to act in the protection of photosynthesis at

both levels, light and dark photosynthetic reactions, including the

control of gas exchange.

Regarding the control of gas exchange by CKs, they are often

considered as an ABA antagonist. Generally, exogenous CKs can

inhibit ABA-induced stomatal closure in diverse species (Tanaka

et al., 2006). The increased CK concentration in the xylem sap

promotes the opening of stomata and reduces sensitivity to ABA

(Daszkowska-Golec and Szarejko, 2013). Wild-type tomato leaves

treated with CK showed enhanced transpiration and increased

numbers of stomata per leaf area than untreated leaves (Farber

et al., 2016). Mohammadi et al. (2015) demonstrated that BAP

foliar application can significantly increase stomatal conductance in

wheat under drought stress. An increase in internal CO2

concentration and water use efficiency (WUE) or increase in CO2

assimilation rate, stomatal conductance and transpiration was

recorded under salt stress in eggplant after seedlings’ exposition to

BAP (Wu et al., 2012) or in Panax ginseng plants at a later growth

stage after inserting the stem base into BAP solution (Li and Xu,

2014). The naturally occurring zeatin-type bases, ribosides and O-

glucosides supplied to the leaf in xylem sap regulated transpiration in

planta in oat (Badenoch-Jones et al., 1996). Wheat priming by seed

pretreatment with cis-zeatin or trans-zeatin significantly increased

stomatal conductance, photosynthetic efficiency, shoot biomass with

grain yield upon salt and drought stress (Alharby et al., 2020).

Applying synthetic cytokinin, KIN, to Tradescantia albiflora leaves
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induced stomatal opening (Pharmawati et al., 1998). Seed priming

with KIN alleviated the adverse effect of salt stress on gas exchange

characteristics of wheat leading to improving growth and grain yield

(Iqbal and Ashraf, 2005). Similarly, foliar spray of KIN on salinized

mulberry plants increased the net photosynthetic rate (Pn), WUE,

carboxylation efficiency and leaf yield (Das et al., 2002). KIN could act

as an effective priming agent also upon waterlogging stress, as reduced

levels of reactive oxygen species (ROS), better water status, osmotic

adjustment and an increased Pn, WUE, improved growth and

biomass under waterlogging were detected in primed mungbean

plants (Islam et al., 2022a). Foliar-applied KIN remarkably

improved maize performance by modulating growth, gas exchange

and water related parameters under drought stress (Islam

et al., 2022b).

The mechanism of direct action of CK on guard cells may involve

the induction of membrane hyperpolarization by stimulation of the

electrogenic H+-pump (Pospıśǐlová, 2003). The internal cytosolic free

calcium concentration may mediate interactions between CK and

ABA (Hare et al., 1997). In Kentucky Bluegrass, BAP has been

proposed to promote stomatal opening through its effect on ABA

balance leading to improved photosynthetic recovery from drought

(Hu et al., 2012). CKs may promote stomatal opening also by

scavenging H2O2 in guard cells as demonstrated in Vicia faba

plants (Song et al., 2006). In addition, a higher carboxylation

efficiency (Pn/Ci) was observed in Anthurium plants sprayed with

KIN along with its possible effects on gas exchange and antioxidant

enzyme activities (de Moura et al., 2018). Farber et al. (2016)

proposed that CKs can act indirectly in stomata movement – CK

levels reduced during adaptation to water deficiency suppress growth

and reduce stomatal density, both of which reduce transpiration,

thereby increasing the tolerance to drought. Priming by exogenous

application of BAP to nutrient solution upregulated the RuBisCO

large subunit content in some leaves of wheat plants (Criado et al.,

2009). An incubation of wheat leaves in BAP solution reduced the

degradation of the large and small subunits of RuBisCO (Zavaleta-

Mancera et al., 2007). Foliar spraying of rice by synthetic CK (N-2-

(chloro-4-pyridyl)-N-phenyl urea) reversed the drought mediated

suppression of RAF1 and the RuBisCO activase proteins, implied in

the assembly and activation of RuBisCO complex (Gujjar et al., 2020).

Thus, CKs may also enhance photosynthesis at the molecular level by

modulating the abundance of proteins related to stomatal

conductance, chlorophyll content, and RuBisCO activity (Gujjar

et al., 2020).

CKs may also protect the primary photochemistry processes of

photosynthesis. An improved photosynthetic performance at donor

and acceptor sides of the photosystem II reaction centre (RCII) was

detected in wheat plants sprayed with BAP, which simultaneously

increased their endogenous zeatin levels. A higher effective and

maximal quantum yields of PSII photochemistry in the light

(FPSII) and dark (Fv/Fm) adapted state, better transfers of electrons

beyond QA, enhanced electron transport rate and lower relative

variable fluorescence intensity at the J-step were detected in the

BAP primed wheat (Yang et al., 2018). In drought stressed maize

seedlings, exogenous BAP priming regulated transient rise of

fluorescence and increased the electron donation capacity of PSII

(Shao et al., 2010). Application of BAP to the nutrient solution
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alleviated the detrimental effect of salt stress on primary

photochemistry of eggplant by increasing Fv/Fm, Fv´/Fm´ (maximal

quantum yield of PSII photochemistry in light adapted state), FPSII

and increase of qp (parameter of photochemical quenching) at the

expense of non-photochemical quenching (NPQ) leading to a lower

dissipation of excitation energy in the PSII antennae (Wu et al., 2012).

The protection of primary photochemistry by CKs can be

attributed to their positive effect on the maintenance of

chlorophyll pigments and the integrity of chloroplast membranes.

Priming with BAP prior to water stress resulted in increased content

of xanthophyll cycle pigments and their degree of de-epoxidation in

four drought-exposed plant species (Haisel et al., 2006). Exogenously

applied BAP significantly reduced the senescence-induced decrease

in Chl, car, xanthophyll content and in the Chl/car ratio which was

reflected in a lower impairment of PSII function in barley segments

(Janečková et al., 2019). Seed priming by BAP significantly increased

the content of photosynthetic pigments (chl a+b), car and

carbohydrates in a salt stressed soybean (Mangena, 2020). Other

mechanisms by which CKs maintain PSII functionality could be to

stabilize Chl-protein complexes, both Light-harvesting complex II

(LHCII) and RCII, as demonstrated during dark-induced senescing

Arabidopsis leaves floating in BAP solution (Oh et al., 2005). In line

with this, several genes encoding the light-harvesting chlorophyll a/

b-binding proteins and various proteins of PSII are regulated by CKs

in Arabidopsis (Brenner and Schmülling, 2012; Vylıč́ilová et al.,

2016). CKs may also protect the cell membranes and the

photosynthetic machinery from oxidative damage. Exogenous BAP

reduced levels of ROS and enhanced the activity of antioxidant

enzymes (CAT, APX) in dark senescing wheat leaves (Zavaleta-

Mancera et al., 2007). Exogenously applied BAP alleviated the

harmful effects of salt stress by increasing photosynthetic efficiency

and activity of antioxidant enzymes (SOD, POD, APX, CAT) and by

reducing malonaldehyde contents and O2
.- production in eggplant

(Wu et al., 2012). Foliar application of KIN to Vigna radiata plants

regulated antioxidant enzyme activities and reduced the increase in

total peroxide, leading to suppression of the adverse effect of salt

stress (Chakrabarti and Mukherji, 2003).

In addition to naturally occurring CKs or the notorious synthetic

derivatives, a new avenue opens up for the possibility of studying the

priming of the photosynthetic apparatus using purposefully modified

CK derivatives. Exogenous KIN and its synthetic derivatives

significantly protected lipid membranes from the negative effects of

accumulated ROS in detached wheat leaves in the dark (Mik et al.,

2011). Synthetic purine based halogenated CK derivatives increased

PSII photochemistry efficiency, chlorophyll and carotenoid levels, and

abundance of some LHCII components during Arabidopsis leaf

senescence (Vylıč́ilová et al., 2016). Aromatic CK arabinosides

(BAPAs) presumably act as a new type of priming agents that

promote the plant innate immunity (PAMP-like responses) and

positively affect leaf longevity (Bryksová et al., 2020). BAPAs

treatment in detached Arabidopsis leaves indicated its action as a

priming agent for the PTI (PAMP-triggered immunity) response

(Bryksová et al., 2020) and at the same time markedly reduced the

high light-induced cell membrane damage, accumulation of lipid

hydroperoxides as well as PSII photoinhibition (Kučerová

et al., 2020).
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Cytokinin crosstalk with other
phytohormones in priming
At first glance, the role of CKs in plant defense and priming may

seem auxiliary compared to other plant hormones and volatile

compounds. The traditional plant defense response related to the

hormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET)

are interlinked in a complex network regulating plant immunity

(Conrath, 2006; Mishina and Zeier, 2007; Pieterse et al., 2009;

Engelberth et al., 2011; Fragnière et al., 2011; Pieterse et al., 2014).

These compounds and their volatile derivatives are well-documented

as priming agents in many physiological processes (Farmer and Ryan,

1990; Engelberth et al., 2011; Song and Ryu, 2018; Avramova, 2019;

Zhao et al., 2020; Singewar et al., 2021). In last decades, the

participation of CKs in biotic (Choi et al., 2011; Cortleven et al.,

2019) and abiotic (Barciszewski et al., 2000; Wani et al., 2016) stress

responses has also been demonstrated; however, less is known about

the molecular aspects of CKs in priming. Similarities in the defense

mechanisms mediated by CKs and other hormones or Green Leaf

Volatiles (GLVs) suggest that CKs play a more important role in the

priming process than previously thought.

CKs are essential in orchestrating an immune response, most

likely through the crosstalk mechanisms with other hormonal

pathways. Importantly, CKs are significantly involved in plant-

pathogen interactions through crosstalk with the SA pathway

(reviewed in Choi et al., 2011). The CK transcription factor ARR2

confers resistance to Pseudomonas syringae in Arabidopsis via

interaction with SA response factor TGA3 and binding to the PR1

promoter. In addition to the direct activation of defense responses by

ARR2, CK pretreatment led to a hyperactivation of PR1 transcription

after pathogen inoculation (Choi et al., 2010). It was also shown that

high concentrations of CK primed defense responses in Arabidopsis

seedlings against the Hyaloperonospora arabidopsidis (Argueso et al.,

2012). CK treatment alone resulted in slightly increased SA-related

defense pathway gene expression. However, following the pathogen

inoculation, it was further potentiated. The CK-responsive gene

expression was diminished in eds16 mutant plants with impaired

SA biosynthesis. Thus, this crosstalk mechanism may help plants fine-

tune the defense responses against biotrophic pathogens and adjust

the effects of CK on plant immunity (Argueso et al., 2012).

In addition to the well-documented crosstalk with the SA

pathway, the connection of the CK pathway with the JA pathway

has also been reported. CKs can prime an immune response against

herbivory through a crosstalk with the JA pathway, resulting in

reduced emission of GLVs (Schäfer et al., 2015). GLVs were among

the first well-documented compounds to effectively prime a plant’s

defense system (Engelberth et al., 2004). In planta exposure to GLV

cis-3-hexenyl acetate caused a rapid accumulation of JA and linolenic

acid (LNA) in poplar leaves after herbivory (Frost et al., 2008). In line

with this, Dervinis et al. (2010) reported higher JA and LNA levels

after the CK pretreatment following wounding, while the CK

treatment alone did not alter the JA and LNA levels in unwounded

leaves. In addition, wounding and CK priming resulted in reduced

larval weight gain (Dervinis et al., 2010).

Elevated levels of JA were also measured in a recent study on a

CK-mediated resistance against brown planthopper in rice
Frontiers in Plant Science 05
(Zhang et al., 2022). Using the CRISPR-Cas9 genome-editing

approach, the authors generated two independent rice knock-out

lines of cytokinin oxidase/dehydrogenase 1 (OsCKX1). Consequently,

the mortality dropped to 30% in the case of OsCKX1 knock-out plants

upon an infestation by brown planthopper, compared to the 90%

wild-type mortality upon infestation. A simple CK treatment

positively regulated JA biosynthetic and an expression of JA-

responsive genes. In addition, the CK-mediated resistance against

the brown planthopper infestation was diminished in JA-deficient

mutant og1 (Zhang et al., 2022). Although previous studies have

shown an antagonistic relationship between these two hormones, in

the case of biotic stress defense responses and priming, the roles of CK

and JA may be rather synergistic (Zhang et al., 2022).

The mechanisms of a crosstalk between GLV and CK pathways

are much less understood but offer a significant potential for further

study. It is tempting to speculate that there should be a regulatory

mechanism to maintain a balance in leaf mining processes during

herbivory. The existence of “green islands” with elevated levels of

zeatins, isopentenyl adenine and other CKs has been reported during

leaf-mining by galling insects (Giron et al., 2007). Colonization of

plants by endophagous organisms thus requires a hormonal crosstalk,

with GLVs playing a possible role in the process due to their volatile

nature, which allows them to prime defense responses in places where

CKs cannot overcome the natural barriers given by vascular

constraints. Interestingly, after the treatment of Nicotiana attenuata

leaves with the oral secretion of Manduca sexta, the CK pathway

suppressed GLV esters emission (Schäfer et al., 2015). While JA

concentrations are positively correlated with the activity of the CK

pathway (Dervinis et al., 2010; Schäfer et al., 2015), the release of GLV

esters was negatively correlated, suggesting that CKs control the

balance between these two oxylipin classes (Schäfer et al., 2015).

As outlined by Schäfer et al. (2015), the activation of the classic

CK signaling pathway after a CK application does not exclude the

possibility of an alternative CK pathway involved in plant defense and

priming. Priming enables plants to retain a “stress memory” and the

priming state can last for multiple generations (Holeski et al., 2012;

Hilker and Schmülling, 2019). For this reason, CK priming may also

trigger various epigenetic modifications. CK-induced phenotypic

changes in canola, such as increased surface area of petals, jagged

edges of petals, and altered vasculature of flowers, are carried forward

to the next generation of non-primed plants (Zuñiga-Mayo et al.,

2018). This phenomenon can be achieved through the alterations of

DNA methylation status. S-Adenosyl-L-homocysteine hydrolase

(SAHH) appears to play a major role in this process (Li et al.,

2008). Exogenous CK application induced the expression of the

three cytosine DNA methyltransferase genes, MET1, CMT3, and

DRM2, suggesting an important role of CKs in promoting DNA

methylations in Arabidopsis (Li et al., 2008). Interestingly,

downregulation of SAHH caused DNA hypomethylation, increased

levels of CKs, and resistance against various plant viruses in tobacco

(Masuta et al., 1995).

In addition, our aromatic CK derivatives that have been

synthesized and tested retain certain properties of CK responses,

such as delayed senescence and defense against pathogens, while the

classical CK signaling pathway is only negligibly affected (Bryksová

et al., 2020; Kučerová et al., 2020); therefore, an alternative mode of

action for CK priming via the classical MAPK signaling cascade in
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Hudeček et al. 10.3389/fpls.2022.1103088
PAMP-triggered immunity (PTI) responses and underlying

epigenetic modifications cannot be ruled out. Experiments with

these aromatic CK derivatives confirmed the synergistic relationship

between CK and JA in defense priming, as the levels of JA and its

metabolites were significantly elevated (Bryksová et al., 2020).

However, a negative correlation was found between the senescence

activity of aromatic CK derivatives and ET production (Kučerová

et al., 2020). An ET production is generally known to be stimulated by

exogenous CK treatment (Cary et al., 1995; Zdarska et al., 2015).

Together with the JA pathway, ET regulates the herbivory-induced

responses (Onkokesung et al., 2010). Interestingly, no stimulation of

ET production was observed in aromatic CK derivative-treated wheat

and Arabidopsis leaves (Kučerová et al., 2020).

While the effects of CK priming under biotic stresses are relatively

well documented, mechanistic studies on CK priming in relation to

abiotic stresses are just beginning to emerge. Previous works are

mainly devoted to CK’s role in priming against heat stress and

drought (Cheikh and Jones, 1994; Kang et al., 2012; Sobol et al.,

2014; Wu et al., 2016; Wu et al., 2017). Kang et al. (2012) found that
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sensor histidine kinase (AHK) mutant lines, mainly ahk2 and ahk3,

show significant tolerance to dehydration. CK crosstalk with ABA

may be significantly involved in dehydration tolerance, as ahk

mutants have an increased level of expression of ABA-upregulated

genes (Kang et al., 2012). CK pretreatment with KIN was able to

further increase the survival rate of ahk single mutant lines after

subsequent dehydration stress (Kang et al., 2012). This phenomenon

can be explained by the interplay of increased expression of ABA-

upregulated genes and a wide range of CK effects (including priming)

in plant defense may not be linked to the classical CK pathway, as

previously discussed.
Conclusion and perspectives

In the last decade, many studies have pointed to the practical use

of plant growth regulators that can mitigate the negative effects of

biotic and abiotic stress conditions and improve overall crop

condition and yield. Hormopriming is widely accepted as an
FIGURE 1

A simplified model showing the beneficial effects of cytokinin priming on photosynthesis and plant regulatory processes under stress conditions.
Cytokinins can protect the light and dark reactions of photosynthesis by processes such as chlorophyll retention (upregulation of chlorophyll
biosynthesis and downregulation of chlorophyll catabolism; cytokinin upregulated genes coding for POR, Protochlorophyllide oxidoreductase and
downregulated genes coding for NOL, Chlorophyll b reductase; NYE1, Non-yellowing 1, and NYE2, Non-yellowing 2, are shown). Other cytokinin
regulated processes include upregulation of LHCII and RCII components, upregulation of RuBisCO activity and activation of ROS scavenging system
leading to membrane protection. Another important mechanism of action of cytokinins during stress and recovery is the desirable crosstalk of cytokinins
with traditional plant stress hormones, potentially including volatile substances (GLVs). During herbivory, so-called “green islands” with elevated levels of
CKs are formed; crosstalk mediated by volatile compounds and other phytohormones can initiate defense priming. Thus, the application of cytokinins
can regulate plant response to various abiotic and biotic stresses, leading to balanced photosynthetic function, improved stress tolerance and increased
crop yield.
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efficient way to create memory imprints in seeds or young developing

plants that can later, under limiting or stressful conditions, help shift

the endogenous hormonal balance towards defense responses. Given

the persistent social barriers to genetically modified crops, targeted

modification of stress-related pathways through treatment with low

amounts of highly bioactive substances offers an interesting

alternative for agricultural use. The plant hormone CK is emerging

as a promising new type of priming agents, the use of which appears

to be closely linked to the control of the photosynthetic apparatus

(Figure 1). Given the growing number of studies linking CK to

defense or stress priming on the one hand and maintenance of

photosynthesis on the other, more clear understanding on the

mechanisms of a CK action on a photosynthetic and gas exchange

machinery will be necessary for themore comprehensive understanding

of CK-controlled stress protective responses. So far, mainly aromatic

CKs BAP or KIN have been reported as priming agents with several

possibilities of use. The application of natural CKs and many of their

derivatives offers numerous advantages due to their negligible

cytotoxicity to human cells and low risks to the environment resulting

from their high biological activity in plants. However, although natural

and some synthetic CKs show satisfactory results in terms of retarding

senescence or maintaining balanced photosynthetic activity, they also

show some negative effects on root development, and optimizing their

effective use in field conditions remains a challenge. Therefore, new

further SAR studies will be required to carefully promote the desirable

traits of CK-based growth regulators to offer more practical future

applications in sustainable agriculture.
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of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and
chloroplast ultrastructure during water stress and after rehydration. Photosynthetica 44,
606–614. doi: 10.1007/s11099-006-0079-5

Hare, P. D., Cress, W. A., and van Staden, J. (1997). The involvement of cytokinins in
plant responses to environmental stress. Plant Growth Regul. 23, 79–103. doi: 10.1023/
A:1005954525087

Hilker, M., and Schmülling, T. (2019). Stress priming, memory, and signalling in
plants. Plant Cell Environ. 42, 753–761. doi: 10.1111/pce.13526

Hirao, T., Okazawa, A., Harada, K., Kobayashi, A., Muranaka, T., and Hirata, K. (2012).
Green leaf volatiles enhance methyl jasmonate response in arabidopsis. J. Biosci. Bioeng.
114, 540–545. doi: 10.1016/j.jbiosc.2012.06.010

Holeski, L. M., Jander, G., and Agrawal, A. A. (2012). Transgenerational defense
induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27, 618–626.
doi: 10.1016/j.tree.2012.07.011
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Hudeček et al. 10.3389/fpls.2022.1103088
oxidative stresses in crop plants. Biotechnol. Adv. 40, 107503. doi: 10.1016/
j.biotechadv.2019.107503
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Müller, M., and Munné-Bosch, S. (2021). Hormonal impact on photosynthesis and
photoprotection in plants. Plant Physiol. 185, 1500–1522. doi: 10.1093/plphys/kiaa119

Mur, L. A. J., Naylor, G., Warner, S. A. J., Sugars, J. M., White, R. F., and Draper, J.
(1996). Salicylic acid potentiates defence gene expression in tissue exhibiting acquired
resistance to pathogen attack. Plant J. 9, 559–571. doi: 10.1046/j.1365-
313X.1996.09040559.x

Naeem, M. S., Jin, Z. L., Wan, G. L., Liu, D., Liu, H. B., Yoneyama, K., et al. (2010). 5-
aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under
salinity stress in oilseed rape (Brassica napus l.). Plant Soil 332, 405–415. doi: 10.1007/
s11104-010-0306-5

Nawaz, A., Amjad, M., Khan, S. M., Afzal, I., Ahmed, T., Iqbal, Q., et al. (2013). Tomato
seed invigoration with cytokinins. JAPS J. Anim. Plant Sci. 23, 121–128.

Nisler, J., Zatloukal, M., Spichal, L., Koprna, R., Dolezal, K., and Strnad, M. (2015).
1,2,3-thiadiazol-5yl-urea derivatives, use thereof for regulating plant senescence and
preparations containing these derivatives. U. S. Patent 9,993,002.

Oh, M.-H., Kim, J.-H., Zulfugarov, I. S., Moon, Y.-H., Rhew, T.-H., and Lee, C.-H.
(2005). Effects of benzyladenine and abscisic acid on the disassembly process of
photosystems in anArabidopsis delayed-senescence mutant,ore9. J. Plant Biol. 48, 170–
177. doi: 10.1007/BF03030405

Onkokesung, N., Baldwin, I. T., and Gális, I. (2010). The role of jasmonic acid and
ethylene crosstalk in direct defense of nicotiana attenuata plants against chewing
herbivores. Plant Signal. Behav. 5, 1305–1307. doi: 10.4161/psb.5.10.13124

Pharmawati, M., Billington, T., and Gehring, C. A. (1998). Stomatal guard cell
responses to kinetin and natriuretic peptides are cGMP-dependent. Cell. Mol. Life Sci.
CMLS 54, 272–276. doi: 10.1007/s000180050149
Frontiers in Plant Science 09
Pieterse, C. M. J., Leon-Reyes, A., van der Ent, S., and Van Wees, S. C. M. (2009).
Networking by small-molecule hormones in plant immunity.Nat. Chem. Biol. 5, 308–316.
doi: 10.1038/nchembio.164

Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M.,
and Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annu.
Rev. Phytopathol. 52, 347–375. doi: 10.1146/annurev-phyto-082712-102340
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